Towers of Covers

Dynamics 00000000 Typesets 00000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Homeomorphisms of solenoidal manifolds

Steve Hurder April 17, 2023

University of Illinois at Chicago www.math.uic.edu/~hurder

Typesets

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A report on joint works with

Olga Lukina, Mathematical Institute, Leiden University

* Clark & Hurder, *Homogeneous matchbox manifolds*, **Trans. A.M.S.**, 365, 2013.

* Clark, Hurder & Lukina, *Classifying matchbox manifolds*, **Geom. & Top.**, 23, 2019

* Dyer, Hurder & Lukina, *Molino theory for matchbox manifolds*, **Pac. J. Math.**, 289, 2017

* Hurder & Lukina, Wild solenoids, Trans. A.M.S., 371, 2019

* Hurder, Lukina & van Limbeek, *Cantor dynamics of renormalizable groups*, **Groups, Geom., and Dynamics**, 15, 2021

* Hurder & Lukina, Type invariants for solenoidal manifolds, preprint, 2023

Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A continuum is a compact, connected, non-empty metric space.

Examples include compact manifolds, finite CW complexes, laminations of compact manifolds, Hawaiian Earrings, etc

A topological space X is *homogeneous* if for every $x, y \in X$, there exists a homeomorphism $h: X \to X$ such that h(x) = y.

Theorem. [Bing, 1960] Let X be a homogeneous, circle-like continuum that contains an arc. Then either X is homeomorphic to a circle, or to a Vietoris solenoid.

Dynamics 00000000 Typesets 00000

Vietoris solenoids

Choose a sequence of integers $\vec{m} = (m_1, m_2, ...)$ with $m_{\ell} > 1$. Form the chain of coverings of the circle

$$\mathbb{S}^1 \stackrel{m_1}{\longleftrightarrow} \mathbb{S}^1 \stackrel{m_2}{\longleftrightarrow} \mathbb{S}^1 \stackrel{m_3}{\longleftrightarrow} \mathbb{S}^1 \stackrel{m_4}{\longleftrightarrow} \cdots$$

$$\mathcal{S}(ec{m}) = ec{\lim_{\longleftarrow}} \ \{m_\ell \colon \mathbb{S}^1 o \mathbb{S}^1\} \subset \prod_{\ell \geq 0} \ \mathbb{S}^1$$

Towers of Covers

Dynamics 00000000 Typesets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The supernatural number, or Steinitz number, defined by \vec{m}

$$\xi(\vec{m}) = \operatorname{lcm}\{m_1 m_2 \cdots m_\ell \mid \ell > 0\} \; ,$$

lcm denotes the least common multiple of the collection of integers. A Steinitz number ξ can be written uniquely as the formal product over the set of primes Π ,

$$\xi = \prod_{p \in \Pi} p^{\chi_{\xi}(p)}$$

The characteristic function $\chi_{\xi} \colon \Pi \to \{0, 1, \dots, \infty\}$ counts the multiplicity with which a prime *p* appears in the infinite product ξ .

Two Steinitz numbers ξ and ξ' are said to be *asymptotically* equivalent if there exists finite integers $m, m' \ge 1$ such that $m \cdot \xi = m' \cdot \xi'$, and we then write $\xi \stackrel{a}{\sim} \xi'$

The type associated to a Steinitz number ξ is the asymptotic equivalence class of ξ , denoted by $\tau[\xi]$.

Lemma. ξ and ξ' satisfy $\xi \stackrel{a}{\sim} \xi'$ if and only if their characteristic functions χ, χ' satisfy

- $\chi(p) = \chi'(p)$ for all but finitely many primes $p \in \Pi$
- $\chi(p) = \infty$ if and only iff $\chi'(p) = \infty$ for all primes $p \in \Pi$.

Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem. [Bing, 1960] 1-dimensional solenoids $S(\vec{m})$ and $S(\vec{m'})$ are homeomorphic if $\xi(\vec{m}) \stackrel{a}{\sim} \xi(\vec{m'})$.

Theorem. [McCord, 1965] If 1-dimensional solenoids $S(\vec{m})$ and $S(\vec{m}')$ are homeomorphic then $\xi(\vec{m}) \stackrel{*}{\sim} \xi(\vec{m}')$.

Conclusion: A Vietoris solenoid is completely determined up to homeomorphism by the type $\tau[\xi(\vec{m})]$.

Exercise. Write down two strings \vec{m} and $\vec{m'}$ with $\xi(\vec{m}) \sim \xi(\vec{m'})$. Explicitly construct a homeomorphism between $S(\vec{m})$ and $S(\vec{m'})$.

Theorem. [Clark & H, 2013] Let X be a homogeneous continuum, and suppose that every for every $x \in X$, the connected component of a neighborhood of x is an *n*-disk. Then M is homeomorphic to a McCord solenoid of dimension *n*.

There is a *presentation* \mathcal{P} consisting of:

- \star M_{ℓ} is compact, closed, connected, *n*-dimensional manifold,
- $\star \ p_{\ell+1} \colon M_{\ell+1} \to M_{\ell} \text{ is a } proper \text{ covering map.}$

$$M \cong \mathcal{S}(\mathcal{P}) = \lim_{\longleftarrow} \{ p_{\ell+1} \colon M_{\ell+1} \to M_{\ell} \} \subset \prod_{\ell \ge 0} M_{\ell}$$

M is called

- a weak solenoid (McCord) or
- a solenoidal manifold (Sullivan)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions:

- (1) What is $\mathcal{S}(\mathcal{P})$, for a general covering sequence \mathcal{P} ?
- * D. Sullivan, Solenoidal manifolds, J. Singul., 9:203–205, 2014.
- * A. Verjovsky, *Low-dimensional solenoidal manifolds*, arXiv:2203.10032v2
- (2) When are $\mathcal{S}(\mathcal{P})$ and $\mathcal{S}(\mathcal{P}')$ homeomorphic?
- (3) What is the structure of Homeo($\mathcal{S}(\mathcal{P})$)?

Dynamics 00000000 Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $q_{\ell} \colon M_{\ell} \to M_0$ is covering map, $m_{\ell} = \text{degree}(q_{\ell})$ $\xi(\mathcal{P}) = \text{lcm}\{m_1 m_2 \cdots m_{\ell} \mid \ell > 0\}$

Theorem. [H & Lukina, 2023] If solenoidal manifolds $S(\mathcal{P})$ and $S(\mathcal{P}')$ are homeomorphic then $\xi(\mathcal{P}) \stackrel{a}{\sim} \xi(\mathcal{P}')$.

Remark. For $n \ge 2$, the converse is false in so many ways, and opens the door to many questions

Need to take a "deep dive" into what homeomorphism between solenoidal manifolds means.

Towers of Covers

Dynamics 00000000 Typesets 00000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Projections $\widehat{p}_{\ell} \colon \mathcal{S}(\mathcal{P}) \to M_{\ell}$

 $q_{\ell} = p_{\ell} \circ \cdots \circ p_1 \colon M_{\ell} \to M_0$

Choose a basepoint $x \in S(\mathcal{P})$, set $x_{\ell} = \hat{p}_{\ell}(x) \in M_{\ell}$ Fundamental groups $\pi_1(M_{\ell}, x_{\ell})$

 $(q_{\ell})_{\#} \colon \pi_1(M_{\ell}, x_{\ell}) \to \Gamma_{\ell} \subset \Gamma = \pi_1(M_0, x_0)$ Group chain $\mathcal{G}(\mathcal{P}) = \{\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots \}$

Towers of Covers

Dynamics 00000000 Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Each inclusion $\Gamma_\ell \subset \Gamma$ has finite index
- Γ_ℓ is not assumed to be normal in Γ
- Γ acts transitively on finite set $X_\ell = \Gamma / \Gamma_\ell$
- $C_{\ell} \subset \Gamma_{\ell}$ is kernel of action map $\Phi_{\ell} \colon \Gamma \to \operatorname{Aut}(X_{\ell})$
- C_{ℓ} is normal in Γ
- $Q_{\ell} = \Gamma/C_{\ell}$ is finite group, acts on X_{ℓ} .

Towers of Covers

Dynamics 00000000 Typesets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$X_{\infty} \equiv \lim_{\leftarrow} \{ p_{\ell+1} \colon X_{\ell+1} \to X_{\ell} \mid \ell \ge 0 \} \subset \prod_{\ell \ge 0} X_{\ell} .$$
$$\widehat{\Gamma} = \lim_{\leftarrow} \{ p_{\ell+1} \colon Q_{\ell+1} \to Q_{\ell} \mid \ell \ge 0 \} \subset \prod_{\ell \ge 0} Q_{\ell} .$$

$$\widehat{\Gamma}_{\infty} \equiv \varprojlim \{ p_{\ell+1} \colon Q_{\ell+1} \to Q_{\ell} \mid \ell \ge 0 \} \subset \prod_{\ell \ge 0} Q_{\ell} .$$

The fiber $q_{\ell}^{-1}(x_0) \subset M_{\ell}$ is identified with $X_{\ell} = \Gamma/\Gamma_{\ell}$ as a Γ -space. Action $\Phi \colon \Gamma \times X_{\infty} \to X_{\infty}$ is identified with monodromy of fibration $\widehat{p} \colon \mathcal{S}(\mathcal{P}) \to M_0$.

- X_{∞} and $\widehat{\Gamma}_{\infty}$ are Cantor sets
- Action Φ is equicontinuous and minimal a Cantor action.

Dynamics 00000000 Typesets

Theorem. Suppose that $\mathcal{S}(\mathcal{P})$ and $\mathcal{S}(\mathcal{P}')$ are homeomorphic, then $\Phi \colon \Gamma \times X_{\infty} \to X_{\infty}$ and $\Phi' \colon \Gamma' \times X'_{\infty} \to X'_{\infty}$ are *return equivalent*.

Theorem. [Clark, H & Lukina, 2019] Suppose that $S(\mathcal{P})$ and $S(\mathcal{P}')$ are solenoidal manifolds of the same dimension, and their monodromy actions are return equivalent. If the base manifolds M_0 and M'_0 are strongly Borel (ie all finite coverings satisfy the Borel Conjecture), and each space contains a simply connected leaf, then $S(\mathcal{P})$ and $S(\mathcal{P}')$ are homeomorphic.

Remark. There are examples which show this is about as sharp of converse as can be expected.

 $\star\,$ The study of the homeomorphism problem reduces to the study return equivalence between minimal equicontinuous Cantor actions.

Let $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ a minimal equicontinuous Cantor action **Properties:**

 $U \subset \mathfrak{X}$ clopen means closed and open.

U adapted if $U \neq \emptyset$, and for all $\gamma \in \Gamma$, $\gamma \cdot U \cap U \neq \emptyset$ then $\gamma \cdot U = U$ $\Gamma_U = \{\gamma \in \Gamma \mid \gamma \cdot U = U\}$

 Γ_U is subgroup of finite index in $\Gamma,$ as Γ translates U to give a partition of $\mathfrak X$

 Γ_U defines finite covering of M_0 when $\Gamma = \pi_1(M_0, x_0)$

Fact. Action Φ is equicontinuous iff action of Γ on collection of clopen subsets has finite orbits.

 $\Rightarrow~$ adapted clopen sets form a subbasis for the topology of $\mathfrak{X}.$

Dynamics 00000000 Typesets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition. Actions $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ and $\Phi' \colon \Gamma' \times \mathfrak{X}' \to \mathfrak{X}'$ are *return equivalent* if there exists adapted sets $U \subset \mathfrak{X}$ and $U' \subset \mathfrak{X}'$ and homeomorphism $h \colon U \to U'$ that conjugates the subgroups

$$\begin{array}{lll} \mathcal{H}(U) &=& \mathrm{Image}\{\Phi_U \colon \Gamma_U \to \mathrm{Homeo}(\mathrm{U})\} \\ \mathcal{H}'(U') &=& \mathrm{Image}\{\Phi'_{U'} \colon \Gamma'_{U'} \to \mathrm{Homeo}(\mathrm{U'})\} \end{array}$$

The subtlety in this definition is that the map $\Phi_U \colon \Gamma_U \to \mathcal{H}(U)$ may have kernel, and likewise for $\Phi'_{U'}$.

That is, return equivalence is *lossy*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition. Define the group of germs of return equivalences

$$\mathcal{E}_x(\mathfrak{X}, \mathsf{\Gamma}, \Phi) = \{h \colon U o V \mid x \in U, V \subset \mathfrak{X} \} / \sim$$

Example. Let $\mathfrak{G}(\Gamma)$ be the full profinite completion of Γ with respect to all normal subgroups of finite index, basepoint $\hat{e} \in \mathfrak{G}(\Gamma)$.

Theorem. $\mathcal{E}_{\widehat{e}}(\mathfrak{G}(\Gamma), \Gamma, \Phi) \cong \operatorname{Comm}(\Gamma)$, where $\operatorname{Comm}(\Gamma)$ is the group of abstract commensurators of Γ .

* E. Bering, IV and D. Studenmund, *Topological Models of Abstract Commensurators*, arXiv:2108.10586v1.

Problem. Calculate $\mathcal{E}_x(\mathfrak{X}, \Gamma, \Phi)$ in general.

Dynamics 00000000 Typesets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The action Φ is equicontinuous, so isometric on $\mathfrak X$

 $\Rightarrow \quad \text{closure } \mathfrak{G}(\Phi) = \overline{\Phi(\Gamma)} \subset \operatorname{Homeo}(\mathfrak{X}) \text{ is profinite group}$ Action Φ is minimal \Rightarrow induced action $\widehat{\Phi} \colon \mathfrak{G}(\Phi) \times \mathfrak{X} \to \mathfrak{X}$ is transitive

Isotropy group $\mathfrak{D}_x = \{ \widehat{\phi} \in \mathfrak{G}(\Phi) \mid \widehat{\phi}(x) = x \}$ is closed subgroup

 \mathfrak{D}_{\times} is called *discriminant* of action by H & Lukina, or *parabolic* subgroup by Nekrashevych

Guiding Principle. Dynamics of action $\Phi \colon \Gamma \times \mathfrak{X} \to \mathfrak{X}$ determined by action of \mathfrak{D}_x on \mathfrak{X}

Typesets

The action Φ is:

- free if \mathfrak{D}_x is identity $\Rightarrow \mathfrak{X} = \mathfrak{G}(\Phi)/\mathfrak{D}_x$ is group
- topologically free if $id \neq \widehat{g} \in \mathfrak{X}_x$ fixes no open set in \mathfrak{X}
- stable if $\exists \epsilon > 0$ such that action $\widehat{\Phi}$ on ϵ -neighborhood of x is topologically free
- wild if $\forall \epsilon > 0$ there exists $id \neq \widehat{g} \in \mathfrak{D}_{\times}$ and $U \subset \mathfrak{X}$ with $\operatorname{diam}(U) < \epsilon$ so that action $\widehat{\Phi}(\widehat{g})$ on U fixes open subset $V \subset U$

Theorem. The property that an action is wild or stable is an invariant of return equivalence.

Remark. For each of these cases, the study of $\mathcal{E}_x(\mathfrak{X}, \Gamma, \Phi)$ has special techniques & invariants.

Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The asymptotic discriminant of an equicontinuous action (X, Γ, Φ), distinguishes the actions up to local conjugacy.
- In particular, using the asymptotic discriminant, one divides all actions into *stable* and *wild*.
- Direct limit group invariants, which distinguish different classes of wild actions.
- Prime spectrum of actions (*type* and *typeset*).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Abundance of actions on trees/Cantor sets

Theorem. [Dyer, H. & Lukina, 2017] Every finite group, and every separable profinite group, can be realized as the stable discriminant of an action of a torsion-free finite index subgroup of $SL(n, \mathbb{Z})$, for $n \ge 5$, on a Cantor set.

Theorem. [H. & Lukina, 2019] There exists uncountably many wild actions on Cantor sets of the same torsion-free subgroup of $SL(n,\mathbb{Z})$, for $n \ge 5$, with distinct asymptotic discriminants.

Dynamics 0000000 Typesets 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The study of $\mathcal{E}_x(\mathfrak{X}, \Gamma, \Phi)$ depends on the algebraic structure of Γ :

- \star Γ is torsion-free abelian
- \star Γ is torsion-free nilpotent
- $\star~\Gamma$ is torsion-free arithmetic lattice in higher rank linear group
- $\star~\Gamma$ is an automatic group acting on a tree boundary
- $\star~\Gamma$ is a branch group acting on a tree boundary
- $\star~\Gamma$ is an absolute Galois group with arboreal action on roots

Each of these cases deserves its own discussion.

Dynamics 00000000 Typesets •0000

The notions of type and typeset for $(\mathfrak{X}, \Gamma, \Phi)$ are inspired by the case for Γ abelian.

Let $\mathcal{G}(\mathcal{P}) = \{\Gamma \supset \Gamma_1 \supset \Gamma_2 \supset \cdots\}$ be a group chain for action. Set $m_\ell = \#\{\Gamma_\ell/\Gamma_{\ell+1}\}$ Set $\xi(\mathcal{G}) = \operatorname{lcm}\{m_1m_2\cdots m_\ell \mid \ell > 0\}$

Theorem. [H. & Lukina, 2023] The type $\tau[\xi(\mathcal{G})]$ depends only on the return equivalence class of the action $(X_{\infty}, \Gamma, \phi)$ it determines.

Dynamics 00000000 Typesets 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$\Pi = \{2, 3, 5, ...\}$$
 denote the set of primes.
For $\xi = \prod_{p \in \Pi} p^{\chi(p)}$, define:

$$\pi(\xi) = \{ p \in \Pi \mid \chi(p) > 0 \}, \text{ prime spectrum of } \xi ;$$

 $\pi_f(\xi) = \{ p \in \Pi \mid 0 < \chi(p) < \infty \}, \text{finite prime spectrum of } \xi ;$

 $\pi_{\infty}(\xi) = \{ p \in \Pi \mid \chi(p) = \infty \}$ infinite prime spectrum of ξ

Note that if $\xi \stackrel{\circ}{\sim} \xi'$, then $\pi_{\infty}(\xi) = \pi_{\infty}(\xi')$.

The property that $\pi_f(\xi)$ is an *infinite* set is preserved by asymptotic equivalence of Steinitz numbers, so is an invariant of type.

Typesets

The *typeset* for $(\mathfrak{X}, \Gamma, \Phi)$.

 $\mathfrak{G}(\Phi)$ the profinite closure of the action.

For $\gamma \in \Gamma$ we obtain a subgroup $\langle \gamma \rangle \subset \mathfrak{G}(\Phi)$ whose closure $\mathcal{A}(\gamma) = \overline{\langle \gamma \rangle}$ is a compact abelian group,

Get an abelian action $(\mathcal{A}(\gamma), \mathbb{Z}, \Phi_{\gamma})$

Definition. $\tau[\gamma] = \tau[\xi(\mathcal{A}(\gamma), \mathbb{Z}, \Phi_{\gamma})]$

Definition. The *typeset* for $(\mathfrak{X}, \Gamma, \Phi)$ is the collection of types

 $\mathcal{T}[\mathfrak{X}, \Gamma, \Phi] = \{\tau[\gamma] \mid \gamma \in \Gamma\}$

Theorem. [H. & Lukina, 2023] The commensurable equivalence class of the typeset $\mathcal{T}[\mathfrak{X}, \Gamma, \Phi]$ is an invariant of the return equivalence class of $(\mathfrak{X}, \Gamma, \Phi)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The type and typeset were introduced for the classification of dense subgroups of \mathbb{Q}^n .

* [Baer, 1937], [Butler, 1965], [Arnold, 1982], [Fuchs, 2015]

This problem is equivalent, via Pontrjagin Duality, to the classification of profinite groups defined by a group chain $\mathcal{G} = \{\Gamma_{\ell} \mid \ell > 0\}$ in $\Gamma_0 = \mathbb{Z}^n$. That is, for the study of homeomorphisms between solenoidal manifolds with base \mathbb{T}^n .

It is known that this problem is not "solvable":

* S. Thomas, *The classification problem for torsion-free abelian groups of finite rank*, **J. Amer. Math. Soc.**, 16, 2003.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The classification problem for dense subgroups of \mathbb{Q}^n has been solved for special cases.

Definition. $A \subset \mathbb{Q}^n$ is a *Butler group* if it can be written as a sum $A = A_1 + \cdots + A_s$ of rank 1 subgroups.

In this case the classification problem is much more tractable:

* D. Arnold and C. Vinsonhaler, *Isomorphism invariants for abelian groups*, **Trans. A.M.S.**, 330, 1992.

* S. Thomas, *The classification problem for finite rank Butler groups*, in **Models, modules and abelian groups**, 2008.

Problem. Find classes of Cantor actions $(\mathfrak{X}, \Gamma, \Phi)$ for which the return equivalence group $\mathcal{E}(\mathfrak{X}, \Gamma, \Phi)$ can be calculated.