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The Smale solenoid

For m > 1, let Πm : S1 → S1, given by Πm(eιθ) = eιmθ.

Πm is a proper self-covering map of the circle of degree m.

Iterate the map Πm repeatedly to obtain the Smale solenoid:

Sm ≡ lim←− {S
1 Πm←− S1 Πm←− S1 Πm←− · · · } ⊂

∏
`≥0

S1 .



Definition: A closed connected manifold M is said to be
non co-Hopfian if it admits a proper self-covering map.

The circle S1 is non co-Hopfian.

The n-torus Tn = S1 × · · · × S1 is non co-Hopfian.

N closed connected manifold, then S1 × N is non co-Hopfian.

Associated to a proper self-map Π: M → M we can form a
generalized solenoid SΠ as before. These are a special class of the
weak solenoids introduced by Chris McCord in 1966.

More generally, non co-Hopfian manifolds have applications in
dynamical systems, foliation theory, and spectral theory.

Problem: Characterize the non co-Hopfian manifolds.



Group chains

For the Smale solenoid, given the tower of maps

Sm ≡ lim←− {S
1 Πm←− S1 Πm←− S1 Πm←− · · · } ⊂

∏
`≥0

S1 ,

let x0 ∈ S1 be the identity element, then π1(S1, x0) ∼= Z.

We get a chain of subgroups of finite index

Gm = {Z ⊃ m · Z ⊃ m2 · Z ⊃ · · · }



Next, do this for a non co-Hopfian manifold of dimension n > 1.

Let M be non co-Hopfian and Π: M → M a proper self-covering.

Choose a basepoint x1 ∈ M and set x0 = Π(x1). Then we have

Π∗ : π1(M, x1)→ π1(M, x0) ≡ Γ0

Choose an isomorphism π1(M, x1) ∼= π1(M, x0).

? Π∗ induces a self-embedding ϕ : Γ0 → Γ0.

? Γ0 is finitely generated.

? ϕ(Γ0) ⊂ Γ0 is proper subgroup with finite index.

? Group chain Gϕ = {Γ0 ⊃ Γ1 = ϕ(Γ0) ⊃ Γ2 = ϕ(Γ1) ⊃ · · · }.



A finite index inclusion ϕ : Zn → Zn is called a renormalization of
the lattice Zn ⊂ Rn in the percolation & physics literature.

Definition: Let Γ be a finitely generated group, then an inclusion
ϕ : Γ→ Γ with finite index image is called a renormalization of Γ.

Γ is said to be renormalizable if it admits a renormalization.

Γ is also called a finitely non-co-Hopfian group.

Fact: M is non co-Hopfian ⇔ π1(M, x) is renormalizable.

Questions:

1. What groups are renormalizable?

2. What are the invariants of renormalization maps?



Irreducibility:

Let ϕ : Γ→ Γ be a renormalization. Recursively define a
descending chain of subgroups Γ`+1 = ϕ(Γ`) for ` ≥ 0, so

Γ ≡ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ · · ·

Let Gϕ = {Γ` ≡ ϕ`(Γ) | ` ≥ 0} be the descending chain of
subgroups of finite index associated to ϕ, then

K (ϕ) =
⋂
`≥0

Γ`

is called the kernel of the chain.

Definition: A renormalization ϕ : Γ→ Γ is said to be irreducible if
K (ϕ) is the trivial group, and almost irreducible if K (ϕ) is finite.



In the terminology of Benjamini, and Nekrashevych and Pete,

? Scale-invariant groups, Groups Geom. Dyn., 2011

Definition: Γ is said to be strongly scale-invariant if there is an
almost irreducible renormalization for Γ.

Question: Is a strongly scale-invariant group Γ virtually nilpotent?

This question is inspired by a celebrated result of Gromov .



Example: Expanding manifolds

Let M be a closed Riemannian manifold. A smooth map
f : M → M is expanding if there exists some λ > 1 such that

‖df (~v)‖ ≥ λ‖~v‖ for all x ∈ M and ~V ∈ TxM

The map f must be a proper covering.

Theorem: [Franks 1968] If M admits an expanding map, then
Γ0 = π1(M, x0) has polynomial growth rate.

Theorem: [Gromov 1979] If Γ is a finitely generated group with
polynomial growth rate, then Γ admits a nilpotent subgroup Λ ⊂ Γ
with finite index. i.e., Γ is virtually nilpotent.



Our work was motivated by the following result from

• Van Limbeek, Towers of regular self-covers and linear
endomorphisms of tori, Geom. Topol., 2018.

Theorem: Let Γ be a strongly scale-invariant group, with a
renormalization ϕ : Γ→ Γ such that Γ` = ϕ`(Γ) is normal in Γ.
Then Γ/K (ϕ) is abelian.

Question: Is there a weaker assumption than normality for the
subgroups Γ` that yields a solution to the nilpotent question?

Our approach uses ideas from Cantor dynamical systems,

• Hurder, Lukina & Van Limbeek, Cantor dynamics of
renormalizable groups, arxiv:2002.01565



Construction of Cantor actions

Consider again the Smale solenoid. Fix the integer m > 1, so we
have an embedding ϕ : Z→ Z, given by ϕ(k) = m · k .

Then Γ` = m` · Z ⊂ Z.

Pass to quotient groups and form the inverse limit space

X ≡ lim←− {0 = Z/Z m∗←− Z/mZ m∗←− Z/m2Z m∗←− · · · }

The inverse limit X is a Cantor group, the m-adic integers Ẑm.

The group Γ = Z acts by addition on each quotient group Z/m`Z.

Get dynamical system Z× X→ X which is m-adic odometer.



Let Γ be a finitely generated group.

Let G = {Γ` | ` ≥ 0} be a group chain, where Γ0 = Γ and
Γ`+1 ⊂ Γ` is a proper subgroup of finite index.

X` = Γ/Γ` is a finite set with transitive left Γ-action.

Inclusion Γ`+1 ⊂ Γ` induces a surjection p`+1 : X`+1 → X`. Define

X ≡ lim←− {p`+1 : X`+1 → X` | ` ≥ 0} ⊂
∏
`≥0

X` .

The product of finite sets is given the Tychonoff topology -
cylinder sets generate the topology.

Then X is a closed subset, so is a Cantor space with left Γ-action.

Obtain minimal Γ-action Φ: Γ× X→ X.

Called a subodometer by Cortez and Petite.



A Cantor action Φ: Γ× X→ X is equicontinuous if for some
metric dX on X, for every ε > 0 there exists δ > 0 such that

dX(x , y) < δ =⇒ dX(Φ(g)(x),Φ(g)(y)) < ε for all g ∈ Γ.

For ultrametric metric on X, the action Φ is isometric:

• (X, Γ,Φ) is an equicontinuous Cantor action.

Remark: A minimal equicontinuous Cantor action can also be
viewed as a group action on a rooted tree.



Let Φ: Γ× X→ X be an equicontinuous Cantor action.

This defines a homomorphism Φ: Γ→ Homeo(X)

Γ̂ = Φ(Γ) ⊂ Homeo(X) is the closure in uniform topology

Proposition: [Ellis, 1969] Φ equicontinuous implies that Γ̂ is a
profinite group, compact and totally disconnected.

Lemma: Let ϕ : Γ→ Γ be a renormalization for Γ with associated
Cantor action (Xϕ, Γ,Φϕ). Then ker(Φϕ) ⊂ K (ϕ), where

Φϕ : Γ→ Γ̂ϕ is the map to the completion.

Strategy: For K (ϕ) finite, find conditions on renormalization
ϕ : Γ→ Γ which imply that Γ̂ϕ is a virtually nilpotent group, and
hence Γ is virtually nilpotent.



Lemma: Φϕ induces an equicontinuous action Φ̂ϕ : Γ̂× Xϕ → Xϕ.

For a sequence γ̂ = {Φϕ(γi ) ∈ Homeo(X) | i > 0} ∈ Γ̂ which
converges in the uniform topology of maps, given x ∈ Xϕ set
γ̂ · x = lim Φϕ(γi )(x).

Lemma: Φϕ minimal implies that Γ̂ϕ acts transitively on Xϕ.

For x ∈ Xϕ, define the isotropy subgroup

Dx = {γ̂ ∈ Γ̂ϕ | Φ̂ϕ(γ̂)(x) = x}

Isomorphism class of Dx is independent of choice of x and
invariant of isomorphism of actions.



Proposition: Xϕ is a homogeneous space for Γ̂ϕ. That is,

Xϕ ∼= Γ̂ϕ/Dx as left Γ− spaces

Remark: If Γ is abelian group, then Dx is trivial, so Xϕ is a
profinite group and the action of Γ on it is by “addition”.

Then (Xϕ, Γ,Φϕ) is a generalized odometer.

Remark: We obtain invariants of the self-embedding ϕ by
studying the dynamics of the adjoint action of Dx on Γ̂ϕ.



We first observe there is a canonical basepoint for (Xϕ, Γ,Φϕ).

Proposition: There is a rescaling λϕ : Xϕ → Xϕ whose image
U1 = λϕ(Xϕ) is a clopen subset of Xϕ. Moreover, the action
(Xϕ, Γ,Φϕ) is conjugate to the restricted action (U1, ΓU1 ,ΦU1).

Idea of proof: ϕ induces a map of quotients ϕ : Γ/Γ` → Γ1/Γ`+1.
This induces the shift map λϕ : Xϕ → U1 ⊂ Xϕ.

• Let Dϕ ⊂ Homeo(Xϕ) be the isotropy subgroup at the unique
fixed-point xϕ of the contraction map λϕ.



The study of invariants for the adjoint action of Dϕ on Γ̂ϕ leads
into analyzing the regularity properties of Cantor actions.

Let Φ: Γ× X→ X be a Cantor action of a countable group Γ.

The action is:

? effective, or faithful, if Φ: Γ→ Homeo(X) has trivial kernel.

? free if for all x ∈ X and g ∈ Γ, g · x = x implies that g = e

? isotropy group of x ∈ X is Γx = {g ∈ Γ | g · x = x}

? Fix(g) = {x ∈ X | g · x = x}, and isotropy set

Iso(Φ) = {x ∈ X | ∃ g ∈ Γ , g 6= id , g · x = x} =
⋃

e 6=g∈Γ

Fix(g)



Cantor action Φ: Γ× X→ X is topologically free if Iso(Φ) is
meager in X =⇒ Iso(Φ) has empty interior.

For Γ a countable group, this is a natural hypothesis to impose.

However, for a Cantor action Φ: H × X→ X where H is not
countable, we introduce another definition of regularity.

First, recall the topology of Cantor space X is generated by clopen
subsets: U is closed and open. A non-empty clopen U ⊂ X is
adapted if the return times to U form a subgroup:

ΓU = {g ∈ Γ | Φ(g)(U) = U} ⊂ Γ

Lemma: For x ∈ X and open x ∈ V , there is adapted U with
x ∈ U ⊂ V .



Definition: An action Φ: H × X→ X, where

• H is a topological group and

• X is a Cantor space

is quasi-analytic if for each clopen set U ⊂ X, g ∈ H

• if Φ(g)(U) = U and the restriction Φ(g)|U is the identity map
on U, then Φ(g) acts as the identity on all of X.

For H a countable group, this is equivalent to topologically free.

Here is our key technical result:

Theorem 1: The action Φ̂ϕ : Γ̂ϕ × Xϕ → Xϕ is quasi-analytic.

Corollary: Let γ̂ ∈ Γ̂ϕ. The homeomorphism Φ̂ϕ(γ̂) : Xϕ → Xϕ is
uniquely determined by its restriction to an adapted subset of X.



Return now to study of Γ̂ϕ associated to a renormalization
ϕ : Γ→ Γ. Here is our two main (technical) results:

Theorem 2: A renormalization map ϕ induces a contraction map
on the closure, ϕ̂ : Γ̂ϕ → Γ̂ϕ with open image.

Theorem 3: Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ) ⊂ Γ̂ϕ

This connects discriminant invariants for Cantor actions, with
invariants for contraction profinite groups.

The proof of Theorem 3 follows almost directly from the algebraic
definition for Dϕ developed in

? Jessica Dyer, Dynamics of Equicontinuous Group Actions
on Cantor Sets, 2015 UIC PhD.



The proof of Theorem 2 looks equally “obvious”, except that it
isn’t. Here is the issue:

The renormalization ϕ naturally induces a map
ϕ̂ : Γ̂ϕ → Homeo(U1). We need to show that the maps in the
image of ϕ̂ have unique extensions to Homeo(Xϕ).

This is exactly what Theorem 1 says is true.

Theorems 2 and 3 are applied to show that Γ̂ϕ is virtually nilpotent.

There is an extensive literature on the structure of profinite groups
with an open contraction mapping, in particular by:

? Baumgartner, Caprace, Reid, Wesolek, Willis, Wilson



The following result is based on results of

Udo Baumgartner & George Willis, and Colin Reid:

Theorem: Let ϕ̂ : Γ̂ϕ → Γ̂ϕ be a contraction map with open
image. Then there is an isomorphism with a semi-direct product

Γ̂ϕ ∼= Nϕ oDϕ

Nϕ = {ĝ ∈ Γ̂ϕ | lim
`→∞

ϕ̂`(ĝ) = ê}

Dϕ =
⋂
n>0

ϕ̂n(Γ̂ϕ) ⊂ Γ̂ϕ

Moreover, the contraction factor Nϕ is pro-nilpotent.



We use this structure theorem for contraction maps to show:

Theorem [HLvL2020]: Let ϕ be a renormalization of the finitely
generated group Γ. Suppose that

K (ϕ) =
⋂
`>0

ϕ`(Γ) ⊂ Γ , Dϕ =
⋂
n>0

ϕ̂n
0(Γ̂ϕ) ⊂ Γ̂ϕ

are both finite groups, then

• Γ is virtually nilpotent,

• If both groups are trivial, then Γ is nilpotent.

Remark: The normality assumption in Van Limbeek’s Theorem is
replaced by the assumption that Dϕ is a finite group.



Basic Problem: Let ϕ be an irreducible renormalization of the
finitely generated group Γ. Show that Dϕ is nilpotent.

This is true in all examples calculated. Need better understanding
of closed subgroups of profinite groups to prove it in general.

One expects further properties of renormalizable groups can be
obtained from applying results on contraction groups and scales of
automorphisms of totally disconnected locally compact groups to
the contraction map ϕ̂ : Γ̂ϕ → Γ̂ϕ induced by a renormalization.
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