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Introduction

Genericity of Dynamics

Weak Palis Conjecture: M compact manifold, then the space of
Diff" (M) of C"-diffeomorphisms (r > 1) contains a dense open set
which decomposes as the union MS UZ of two disjoint open sets:

o MS is the set of Morse-Smale diffeomorphisms,
e 7 is the set of diffeomorphisms having transverse homoclinic

intersection.

A diffeomorphism is Morse-Smale if its non-wandering set consists
of finitely many hyperbolic periodic orbits.

e J. Palis, A global view of dynamics and a conjecture on the
denseness of finitude of attractors, Astérisque,Vol. 261, 2000.

e J. Palis, On Open questions leading to a global perspective in
dynamics, Nonlinearity,21:, 2008.
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The Weak Palis Conjecture

Small sets
are neglected

Almost all LI, I
parameter basins of
values attraction

Parameter space

Phase space/Space of events

(Mlustration from Palis, Nonlinearity 2008)

[m] = =

it
N)
yel
)



Introduction

We are interested in the “structural stability” of the following class
of examples, called "Kuperberg flows":

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable
3-manifold. Then M admits a C* non-vanishing vector field
whose flow ¢; has no periodic orbits.

e K. Kuperberg, A smooth counterexample to the Seifert
conjecture, Ann. of Math. (2), 140:723-732, 1994.

e E Ghys, Construction de champs de vecteurs sans orbite
périodique (d’apres Krystyna Kuperberg), Séminaire Bourbaki, Vol.
1993/94, Exp. No. 785, Astérisque, 227: 283-307, 1995.

e S. Hurder & A. Rechtman, The dynamics of generic Kuperberg
flows, Astérisque, Vol. 377 (216), 250 pages.
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What we know of the dynamics of the Kuperberg flows:

Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow ¢: on M has entropy zero.

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set 9t C M.

Theorem (Hurder & Rechtman, 2015) Let ®; be a generic
Kuperberg flow on a plug K. There the unique minimal set 9 for
the flow is a 2-dimensional lamination “with boundary” which is
equal to the non-wandering set of ®.

Moreover, the flow restricted to 9t has non-zero “slow entropy”,
for exponent a = 1/2.

So, a generic Kuperberg flow almost has positive entropy.
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Question: Where do the Kuperberg flows sit in the scheme of the
Weak Palis Conjecture?

Theorem 1: Let ®; be a Kuperberg flow on a plug K. Then there
is a C>®-family of flows ®¢ on K, for —1 < ¢ < 0, with ®9 = o,
such that each flow & is “partially Morse-Smale” and so has
entropy 0.

Theorem 2: Let &, be a Kuperberg flow on a plug K. Then there
is a C>°-family of flows ®$ on K, for 0 < € < a, with ®% = &,
such that each flow &% admits a “horseshoe”, and so has positive
entropy.

Conclusion: The generic Kuperberg flows lie at the boundary of
chaos (entropy > 0) and the boundary of tame dynamics.

e S. Hurder & A. Rechtman, Aperiodic flows at the boundary of
chaos, in preparation, available March 2016.



Plugs

Definition: A plug is a 3-manifold with boundary of the form
P = D x [-1,1] with D a compact surface with boundary. P is
endowed with a non-vanishing vector field X, such that:

o X is vertical in a neighborhood of JP, that is X = d%' Thus X
is inward transverse along D x {—1} and outward transverse along
D x {1}, and parallel to the rest of OP.

e There is at least one point p € D x {—1} whose positive orbit is
trapped in P.

e If the orbit of g € D x {—1} is not trapped then its orbit
intersects D x {1} in the facing point.

e There is an embedding of P into R? preserving the vertical
direction.



Plugs

Modified Wilson Plug W (sort of Morse-Smale)

Consider the rectangle R x S with the vector field W = VT/l + fd—fe
f is asymmetric in z and Wy = gd—fz is vertical.
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Grow horns and embed them to obtain Kuperberg Plug K,
matching the flow lines on the boundaries.

Embed so that the Reeb cylinder {r = 2} is tangent to itself.



Plugs

The insertion map as it appears in the face E;
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Radius Inequality:

Forall x' = (r',0/,=2) € L;, let x = (r,0,z) = o¢(r',0',-2) € L;,
then r < r’ unless x’ = (2,6;,—2) and then r = 2.
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Parametrized Radius Inequality: For all X' = (r',6', —2) € L;, let
x=(r,0,z) =of(r',0/,—2) € L;, then r < r’ + ¢ unless
x'=(2,0;,—2) and then r =2 + .

The modified radius inequality for the cases ¢ < 0 and € > 0:
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Theorem 1

Proposition: Let ®¢ be a Kuperberg flow for which the insertion
map satisfies the Parametrized Radius Inequality with ¢ < 0. Then
the flow in the plug K. has two periodic orbits that bound an
invariant cylinder, and the flow has topological entropy zero.

Idea of the proof: This follows from the techniques for the standard
flow when € = 0, which imply that every flow orbit of a point x
with radius r(x) # 2 entering an insertion, exits at the same radius.

Varying the radius of the insertion for ¢ < 0, we obtain Theorem 1.
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The idea of the proof of Theorem 2 is to study the dynamics of
Kuperberg flows &% for e > 2.

Our approach in the Asterisque paper introduced the technique of
comparing the dynamics of the flow ®? with that of an induced
map on a (partial) section to the flow.

Return map of a flow ®5 induces a smooth pseudogroup Gec on Rg

Critical difficulty: There is not always a direct relation between
the continuous dynamics of the flow ®; and the discrete dynamics
of the action of the pseudogroup Gee.
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The section Ry C K used to define pseudogroup Gee.

The flow of ®¢ is tangent to Ry along the center plane {z = 0}, so
the action of the pseudogroup has singularities along this line.
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We consider two maps with domain in Rg

e 1) which is the return map of the Wilson flow W,

e ¢§ which is the return map of the Kuperberg flow ®$ for orbits
that go through the entry region E;

Form the pseudogroup they generate G. = (W, ¢9).

Proposition: The restriction of G, to the region {r>2}NRpis a
sub-pseudogroup of Gge
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Action of Go = (1, ¢7) on the line r =2 for e = 0.

This looks like a ping-pong game, except that the play action is
too slow to generate entropy.
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Action of G, = (1, ¢7) on the line r =2 for e > 0.

The dynamics of this action is actually too complicated to draw
precisely, or calculate with.
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Instead, we define a compact region Uy C Ry which is mapped to
itself by the map ¢ = ¢k o @9 for k sufficiently large.

A
\/~
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The images of the powers ¢! of the map the map ¢ form a
d-separated set for the action of the pseudogroup G..
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We then show that for ¢ > 0 well-chosen with respect to the choice
of k above, the restriction of the map ¢ to Uy is defined by the
return map of ®F and hence ®$ has positive entropy.

Conclude with two remarks:

e For e <0, the dynamics of the map &5 is tame, and completely
predictable, except that as ¢ — 0 the dynamics approaches that of
the Kuperberg flow.

e For € > 0, the dynamics of the map @5 is chaotic, but making
calculations of entropy for example, is only possible for well-chosen
embeddings. We have no intuition, for example, of how to describe
the nonwandering set for the flows ®5.
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Thank you for your attention!
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