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Abstract. The Connes Embedding Problem (CEP) asks whether ev-
ery separable II1 factor embeds into an ultrapower of the hyperfinite
II1 factor. We show that the CEP is equivalent to the statement that
every type II1 tracial von Neumann algebra has a computable universal
theory.

1. Introduction

With the advent of continuous model theory, model theoretic studies of
operator algebras began in earnest (see [11, 12]). The class of C*-algebras
and tracial von Neumann algebras were seen to be elementary classes as were
many interesting subclasses - II1 factors, particular von Neumann algebras,
being one such; see [10] for other examples. Naturally one would look at ex-
istentially closed models in these classes ([8]) and attempt to identify model
complete theories and theories with significant quantifier simplification. The
results in this direction have been decidably negative. For tracial von Neu-
mann algebras, it is known that there is no model companion ([7]); in fact,
no known theory of II1 factors is model complete ([8]). For C*-algebras, the
only theory of an infinite-dimensional algebra which has quantifier elimina-
tion is the entirely atypical theory of C(X), continuous functions from X
into C where X is Cantor space ([5]). It follows that the class of C*-algebras
does not have a model companion.

Most of the work to date in this area has focused on identifying useful
elementary properties, classes and their axioms. The axioms for all known
elementary classes have been recursive and indeed of low quantifier complex-
ity (∀∃-axiomatizable or better). In this paper, we would like to address
the other end of the spectrum: we want to consider the possibility that the
theories of even iconic operator algebras such as R are not computable. By
computable, in the continuous setting, we mean: is there an algorithm such
that given a sentence ϕ and ε > 0, the algorithm successfully computes ϕR
to within ε?

To apparently make it easier, we ask if the universal theory of R is com-
putable. We find ourselves at the doorstep of one of the most celebrated
problems in the theory of operator algebras, the Connes embedding problem
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(CEP): does every separable II1 factor embed into an ultrapower of R? In
[12], it is shown that CEP is equivalent to the logical statement that every
II1 factor has the same universal theory as R. In this paper, we show that
CEP is equivalent to the statement that every type II1 tracial von Neumann
algebra has a computable universal theory. Although this result does not
resolve the question of the computability of the theory of R, we view this
result as cautionary. CEP is a well-studied problem (see the survey [3] for
many equivalences) and its resolution would only deal with the issue of the
universal theory if one believes that Th(R) is computable.

We would like to thank David Sherman for a helpful conversation regard-
ing this project.

2. Prerequisites from von Neumann Algebras

The study of what are now called von Neumann algebras began in the
1930’s with the work of Murray and von Neumann [9] and was motivated by
von Neumann’s work in the foundations of quantum mechanics. In this sec-
tion, we recall the basic definitions needed from the theory of von Neumann
algebras. If H is a complex Hilbert space, B(H) denotes the set of bounded
operators on H. B(H) has the structure of a unital ∗-algebra and a unital
∗-subalgebra A of B(H) is said to be a von Neumann algebra if A is closed
in the strong operator topology, which is the weakest topology on B(H) that
makes, for each x ∈ H, the map T 7→ ‖T (x)‖ : B(H)→ C continuous.

Example 2.1. For any Hilbert space H, B(H) is a von Neumann algebra.
In particular, if H is n-dimensional, then B(H) in this case is isomorphic to
Mn(C), the algebra of n× n matrices over C.

Of particular importance in von Neumann algebras are the projections.
If A is a von Neumann algebra then p ∈ A is a projection if p2 = p = p∗.
Any von Neumann algebra is generated by its projections. The role of von
Neumann algebras and projections in the study of representation theory and
invariant subspaces is highlighted by the following example taken from [6].

Example 2.2. Suppose that Γ is a group and H is a Hilbert space. Consider
U(H), the unitary group of B(H); that is, the set of u ∈ B(H) such that
u∗ = u−1. Fix a group homomorphism f : Γ → U(H); f is called a unitary
representation of Γ. An important object of study in representation theory
are subspaces of H which are invariant under the representation f . We say
that a closed subspace K ⊆ H is f -invariant if for all γ ∈ Γ, f(γ)(K) ⊆
K. Now if K is any f -invariant closed subspace and p is the orthogonal
projection of H onto K then a small calculation (see section 2.2 of [6])
shows that the projection p commutes with f(γ) for all γ ∈ Γ. Conversely,
if p is any projection which commutes with all elements of f(Γ), then the
associated closed subspace of H is f -invariant. In this way, the study of
f -invariant closed subspaces of H becomes the study of projections in the



COMPUTABILITY AND CEP 3

von Neumann algebra

f(Γ)′ = {a ∈ B(H) : a commutes with f(γ) for all γ ∈ Γ},

known as the commutant of f(Γ). More about the relationship between
representation theory and von Neumann algebras can be found in [13].

If A is a von Neumann algebra, then a trace on A is a linear functional
tr : A→ C such that

(1) tr(1) = 1;
(2) tr is positive, that is, for all a ∈ A, tr(a∗a) ≥ 0;
(3) tr(ab) = tr(ba) for all a, b ∈ A;
(4) tr is faithful, that is, tr(x) = 0 if and only if x = 0; and
(5) tr is normal, that is, whenever (pα) is a collection of mutually orthog-

onal projections from A with join
∨
pα, then tr(

∨
pα) =

∑
tr(pα).

If tr is a trace on A, then tr induces a norm on A, called the 2-norm, defined
by ‖x‖2 :=

√
tr(x∗x); A is then called separable if it is separable in the

topology induced by the 2-norm.

Example 2.3. In the case ofMn(C), there is a trace which is the normalized
version of the usual trace on matrices, that is, if A = (aij) then tr(A) =
1
n

∑
i aii.

Example 2.4. Here is a more general example related to our comments
about representation theory above. Suppose that Γ is a group. Let H be
the Hilbert space formally generated by an orthogonal basis ζh for all h ∈ Γ.
For any g ∈ Γ, define ug := f(g) to be the linear operator on H determined
by ug(ζh) = ζgh for all h ∈ Γ. Notice that f(g) is unitary for all g ∈ Γ (since
u∗g = u−1

g = ug−1) and so f is a unitary representation of Γ; it is called the
left regular representation. The von Neumann algebra generated by f(Γ) is
called the group von Neumann algebra L(Γ). Any element of L(Γ) has the
form

∑
g∈Γ cgug for complex numbers cg (NB: not all such expressions define

elements of L(Γ)). One can define a trace on L(Γ) as follows:

tr(
∑
g∈Γ

cgug) = ce

where e is the identity in Γ.

If A is a von Neumann algebra, then the center of A is the set Z(A) :=
{x ∈ A : xy = yx for all y ∈ A}. The center of A is a ∗-subalgebra of A
and thus contains (a copy of) C. A is said to be a factor if the center of A
is as small as possible, that is, when Z(A) = C. B(H) is an example of a
factor for any Hilbert space H. One can check that L(Γ) is a factor if and
only if every nontrivial conjugacy class in Γ is infinite.

A tracial von Neumann algebra is a pair (A, tr), where A is a von Neumann
algebra and tr is a trace on A. We will often suppress mention of the trace
and simply say “Let A be a tracial von Neumann algebra...” It is a fact that
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a factor admits at most one trace, so this abuse in notation should cause no
confusion in the case of factors.

An infinite-dimensional factor that admits a trace is called a II1 factor.
Of particular importance in this paper is the hyperfinite II1 factor R, which
can be described as follows. The map

X 7→
(
X 0
0 X

)
which sends M2n(C) to M2n+1(C) is an embedding of tracial von Neumann
algebras; by definition, R is the inductive limit of these embeddings. The
trace on R is induced by the normalized traces on the matrix algebras. It is
a fact that R embeds into any II1 factor. In general, a tracial von Neumann
algebra is said to be of type II1 if it contains a copy of R.

There is an ultraproduct construction for tracial von Neumann algebras;
for the details on this tracial ultraproduct, see [13]. If A is a tracial von
Neumann algebra and ω is a nonprincipal ultrafilter on N, we let Aω denote
the tracial ultrapower of A. We say that a separable II1 factor is embeddable
if it embeds into Rω for some (equivalently, any) nonprincipal ultrapower
on N. As alluded to in the introduction, the Connes Embedding Problem
(CEP) asks whether or not every separable II1 factor is embeddable.

3. Prerequisites from Logic

In this section, we describe an appropriate language in continuous logic
for studying tracial von Neumann algebras.

For a von Neumann algebra A, we let A1 denote the operator norm unit
ball. Let F denote the set of all ∗-polynomials p(x1, . . . , xn) (n ≥ 0) such
that, for any von Neumann algebra A, we have p(An1 ) ⊆ A1. For example,
the following functions belong to F :

• the “constant symbols” 0 and 1 (thought of as 0-ary functions);
• x 7→ x∗;
• x 7→ λx (|λ| ≤ 1);
• (x, y) 7→ xy;
• (x, y) 7→ x+y

2 .

We then work in the language L := F ∪ {trR, tr=, d}, where tr< (resp.
tr=) denote the real (resp. imaginary) parts of the trace and d denotes the
metric on A1 given by d(x, y) := ‖x − y‖2. We can then formulate certain
properties of tracial von Neumann algebras using the language L as follows.

Basic L-formulae will be formulae of the form tr<(p(~x)) or tr=(p(~x)) for
p ∈ F . Quantifier-free L-formulae are formulae of the form f(ϕ1, . . . , ϕm),
where f : Rm → R is a continuous function and ϕ1, . . . , ϕm are basic L-
formulae. Finally, an arbitrary L-formula is of the form

Q1
x1∈A1

· · ·Qkxk∈A1
ϕ(x1, . . . , xn),
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where k ≤ n, ϕ(x1, . . . , xn) is a quantifier-free formula, and each Qi is either
sup or inf; we think of these Qi’s as quantifiers over the unit ball of the
algebra.

Remarks 3.1.
(1) Our setup here is a bit more specialized than the general treatment

of continuous logic in [1], but a dense set of the formulae in [1] are
logically equivalent to formulae in the above form, so there is no loss
of generality in our treatment here.

(2) In order to keep the set of formulae “separable”, when forming the set
of quantifier-free formulae, we restrict ourselves to a countable dense
subset of the set of all continuous functions Rm → R as m ranges
over N. In fact, one can take this countable dense set to be “finitely
generated” which is important for our computability-theoretic con-
siderations. (See [2].)

Suppose that ϕ(~x) is a formula, A is a tracial von Neumann algebra, and
~a ∈ An1 , where n is the length of the tuple ~x. We let ϕ(~a)A denote the
real number obtained by replacing the variables ~x with the tuple ~a; we may
think of ϕ(~a)A as the truth value of ϕ(~x) in A when ~x is replaced by ~a. For
example, if ϕ(x1) is the formula supx2

d(x1x2, x2x1), then ϕ(a)A = 0 if and
only if a is in the center of A.

If ϕ has no free variables (that is, all variables occurring in ϕ are bounded
by some quantifier), then we say that ϕ is a sentence and we observe that
ϕA is a real number. Given a tracial von Neumann algebra, the theory of
A is the function Th(A) which maps the sentence ϕ to the real number
ϕA. Sometimes authors define Th(A) to consists of the set of sentences ϕ
for which ϕA = 0; since Th(A), as we have defined it, is determined by its
zeroset, these two formulations are equivalent.

If ϕ(~x) is a formula, then there is a bounded interval [mϕ,Mϕ] ⊆ R called
the range of ϕ such that, for any tracial von Neumann algebra A and any ~a ∈
A, we have ϕ(~a)A ∈ [mϕ,Mϕ]. A sentence of the form supx1∈A1

· supxn∈A1
ϕ

is called universal if the range of ϕ is non-negative and similarly existential
if all the quantifiers are inf. This terminology is justified if one thinks of
the value 0 as “true". If we restrict the function Th(A) to the set of all
universal (resp. existential) sentences, the resulting function is defined to
be the universal (resp. existential) theory of A, denoted Th∀(A) (resp.
Th∃(A)). We should also mention that, as a consequence of Łos’ theorem
(and the fact that the tracial ultraproduct construction is the continuous
logic ultraproduct construction), we have Th(A) = Th(Aω) for any ultrafilter
ω.

Remark 3.2. In what follows, we will restrict ourselves to L-structures that
are tracial von Neumann algebras. We can do this because it is shown in
[11] that the class of (unit balls of) tracial von Neumann algebras forms a
universally axiomatizable class of L-structures.
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Let T be a set of L-sentences. We say that a tracial von Neumann algebra
A models T , written A |= T , if ϕA = 0 for each ϕ ∈ T . It is shown in
[11] that there is a set TII1 of L-sentences such that A |= TII1 if and only if
A is a II1 factor. In fact, by examining TII1 , one can show that there is a
recursively enumerable such set TII1 , meaning that there is an algorithm that
runs forever and continually returns the axioms of TII1 . The aforementioned
observation will be crucial for what is to follow and so we isolate it:

Fact 3.3. The class of II1 factors has a recursively enumerable axiomatiza-
tion.

Up until now, we have been treating tracial von Neumann algebras se-
mantically. It will be crucial to also treat them syntactically. In [2], a proof
system for continuous logic is established. In our context, this gives meaning
to the phrase “the axioms TII1 can prove the sentence σ,” which we denote
TII1 ` σ.

Fact 3.4. The set {σ : TII1 ` σ} is recursively enumerable.

Proof. This follows immediately from the existence of the proof system de-
veloped in [2] together with Fact 3.3. �

There is a connection between the semantic and syntactic treatments de-
veloped above (which [2] refers to as “Pavelka-style completeness”). Let
−. : R2 → R be the function x −. y := max(x − y, 0) and let D denote
the set of dyadic rational numbers.

Fact 3.5. ([2, Corollary 9.8]) For a sentence ϕ, we have

sup{ϕA : A |= TII1} = inf{r ∈ D>0 : TII1 ` ϕ−. r}.
We denote this common value by ϕTII1

.

Remark 3.6. By Downward Löwenheim-Skolem, every tracial von Neumann
algebra has a separable subalgebra with the same theory. Consequently, we
have that

ϕTII1
= sup{ϕA : A |= TII1 and A is separable}.

CEP and Model Theory: At this point, it is convenient to recall the con-
nection between CEP and model theory. If A,B are tracial von Neumann
algebras and A is a subalgebra of B, then Th∀(A) ≤ Th∀(B) (as func-
tions). Since R embeds into any II1 factor, we have that Th∀(R) ≤ Th∀(A)
for every II1 factor A. If A is an embeddable II1 factor, then certainly
Th∀(A) ≤ Th∀(R) (as Th(R) = Th(Rω)). Conversely, suppose that A is a
separable tracial von Neumann algebra such that Th∀(A) ≤ Th∀(R). It is
then a standard fact of model theory that A is embeddable. We thus see
that CEP is equivalent to the statement that, for every II1 factor A, we
have that Th∀(A) = Th∀(R). (Actually, we just saw that CEP is equiv-
alent to the statement that Th∀(A) = Th∀(R) for every separable type
II1 tracial von Neumann algebra.) As a side remark, note that, for tracial
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von Neumann algebras A and B, we have Th∀(A) = Th∀(B) if and only
if Th∃(A) = Th∃(B), which is easily seen to be equivalent to the operator
algebraic conjecture known as the Microstate Conjecture.

4. CEP implies Computability

In this section, we assume that CEP holds. For ease of notation, we set
T := TII1 .

Lemma 4.1. Suppose that σ is universal. Then σT = σR.

Proof. By definition, σR ≤ σT . Now fix a separable II1 factor M ; we must
show σM ≤ σR. This follows immediately from the fact that M is embed-
dable. �

Lemma 4.2. Suppose that σ is existential. Then σT = σR.

Proof. Again, it suffices to show that σM ≤ σR for arbitrary M |= T . But
this follows from the fact that M contains a copy of R. �

Corollary 4.3. If σ is a universal sentence, then (Mσ −. σ)T = Mσ −. σT .

Proof. Observe thatMσ−. σ is logically equivalent to an existential sentence.
Using the previous two lemmas, we have

(Mσ −. σ)T = (Mσ −. σ)R = Mσ −. σR = Mσ −. σT . �

If A is a tracial von Neumann algebra, we say that Th∀(A) is computable if
there is an algorithm such that, upon inputs universal sentence σ and positive
dyadic rational number ε, returns an interval I ⊆ R of length at most ε with
dyadic rational endpoints such that σA ∈ I. One defines Th∃(A) being
computable in an analogous way.

Remark 4.4. This is not the same notion of computable theory as defined
in [2] but is more appropriate for our needs.

Corollary 4.5. Th∀(R) and Th∃(R) are computable.

Proof. Here is the algorithm: given universal σ and positive dyadic rational
ε, run all proofs from T and wait until you see that T ` σ −. r and T `
(Mσ −. σ) −. s where r − (Mσ − s) ≤ ε. By the previous corollary, this
algorithm will eventually halt and the interval [Mσ− s, r] will be the desired
interval. �

5. Computability implies CEP

Recall that if CEP is false, then there are at least two distinct universal
(equivalently existential) theories of type II1 algebras. In fact:

Proposition 5.1. Suppose that CEP fails. Then there are continuum many
different universal (equivalently existential) theories of type II1 algebras. In
fact, there is a single existential sentence σ such that σM takes on continuum
many values as M ranges over all type II1 algebras.
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Proof. For N ∈ N, A a type II1 algebra, a a tuple from A, and ε > 0, let
σN,A,a,ε be the existential sentence

inf
x

(
max

deg p≤N
max(| tr<(p(x))− tr<(p(a))|, | tr=(p(x))− tr=(p(a))|)

)
−. ε.

Here the max is over all ∗-monomials p of degree at most N with complex
coefficient 1. Since CEP fails, there are N , A, a, and ε > 0 such that
σRN,A,a,ε > 0. (Of course σAN,A,a,ε = 0.) For simplicity, set σ := σN,A,a,ε and
r := σR. For each t ∈ [0, 1], set At := tR ⊕ (1 − t)A, which denotes the
direct sum of R and A with trace trt := t trR+(1− t) trA. Note that each At
is a type II1 algebra and the map t 7→ σAt : [0, 1] → R is continuous. Since
σA0 = 0 and σA1 = r, the proof of the proposition is complete. �

Corollary 5.2. Suppose that the universal theory of every type II1 algebra
is computable. Then CEP holds.

Proof. Suppose that CEP fails. By the previous lemma, there are uncount-
ably many universal theories of type II1 algebras. But there are only count-
ably many programs that could be computing universal theories of type II1
algebras, whence not every type II1 algebra has a computable universal the-
ory. �

6. Further computability-theoretic consequences of the CEP

In this section, we assume that CEP holds and we derive some further
computability-theoretic results. Unlike Section 4, in this section, we let
T denote the set of sentences whose models are the tracial von Neumann
algebras (see Remark 3.2).

Fix a separable II1 factor A with enumerated subset X = (a0, a1, a2, . . .)
that generates A (as a von Neumann algebra). We now pass to a language LX
containing L obtained by adding to L new constant symbols for each ai. We
now add to T sentences of the form max(rn−. f(~a), f(~a)−. sn), where f ∈ F
and (rn, sn) is a sequence of intervals of dyadic rationals containing f(~a)
with sn − rn → 0; we call the resulting theory T(A,X). (In model-theoretic
lingo: we are just adding the atomic diagram of A to T .) Note that a model
of T(A,X) is a tracial von Neumann algebra B whose interpretations of the
new constants generate a von Neumann subalgebra of B isomorphic to A.

We say that (A,X) as above is recursively presented if there is an algorithm
that enumerates each sequence of intervals (rn, sn) for each f ∈ F . It is a
standard construction in recursion theory to code a recursively presented
tracial von Neumann algebra (A,X) by a single natural number, which we
refer to as the Gödel code of (A,X).

Fix a recursively presented II1 factor (A,X). Suppose that σ = supx ϕ(x)
is a universal sentence and ε is a positive dyadic rational. Then clearly there
is n ∈ N such that σA ≤ maxi≤n ϕ(ai)A + ε; we will say that such an n is
good for (A,X, σ, ε). Consider the following algorithmic question: is there
a way of computably determining some n that is good for (A,X, σ, ε)? The
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next result tells us that CEP implies that there is a single algorithm that
works for all recursively presented (A,X) and all σ and ε.

Theorem 6.1. There is a computable partial function f : N×N×D>0 ⇀ N
such that, if e is the Gödel code of a recursively presented separable II1 factor
(A,X) and n is the Gödel code of a universal sentence σ = supx ϕ(x), then
f(m,n, ε) is good for (A,X, σ, ε).

Proof. Here is the algorithm for determining f(m,n, ε). First, use the com-
putability of Th∀(R) to determine an interval I = [c, d] ⊆ R with |I| ≤ ε

2

such that σR ∈ I. By CEP, σR = σA. We claim that there is an N such that
c − ε

2 ≤ ϕ(aN )A. Indeed, there is N such that σA − ε
2 ≤ ϕ(aN )A. For such

an N , we have that c− ε
2 ≤ ϕ(aN )A ≤ σA ≤ d and d− (c− ε

2) ≤ ε, whence
N is good for (A,X, σ, ε). Now we just start computing ϕ(ai)A (which we
can do since (A,X) is recursively presented) and wait until we reach N with
c− ε

2 ≤ ϕ(aN )A. �

Note that there is a countable X ⊆ R such that (R, X) is recursively
presented. In the rest of this paper, we fix such an X and let TR := T(R,X)

and let RX denote the obvious expansion of R to an LX -structure.
In the next proof, we will need the following fact (see [7, Lemma 3.1]):

Fact 6.2. For any nonprincipal ultrafilter ω on N, any embedding h : R →
Rω is elementary, that is, for any formula ϕ(~x), and any tuple ~a ∈ R, we
have ϕR(~a) = ϕR

ω
(h(~a)).

Lemma 6.3. Suppose that σ is a universal or existential LX-sentence. Then
σTR = σRX .

Proof. As in Section 4, we need only show that σM ≤ σRX for every M |=
TR. First suppose that σ is existential, say σ = infx ϕ(ca, x), where a is a
tuple from X and ca is the corresponding tuple of constants. Let i : R →M
be the embedding of R into M determined by setting i(a) := cMa for every
a ∈ X. Then

σM = inf{ϕ(i(a), b)M : b ∈M} ≤ inf{ϕ(i(a), i(d))M : d ∈ R} = σRX .

Now suppose that σ is universal, say σ = supx ϕ(ca, x). Fix an embedding
j : M → Rω. Then

σM = sup{ϕ(i(a), b)M : b ∈M} ≤ sup{ϕ(ji(a), d)R
U

: d ∈ RU} = σRX ,

since ji : R → Rω is elementary. �

Corollary 6.4. Th∀(RX) and Th∃(RX) are computable.

Proof. This follows from the previous lemma just as in Section 4. �

Define Th∃∀(R) to be the restriction of Th(R) to the set of formulae of
the form

Q1
x1∈A1

· · ·Qkxk∈A1
ϕ(x1, . . . , xn),
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where ϕ is quantifier-free, k ≤ n, and such that there is l ∈ {1, . . . , k} such
that Qi = inf for i ∈ {1, . . . , l} and Qi = sup for i ∈ {l + 1, · · · , k}.

We say that Th∃∀(R) is upper computably enumerable if there is an al-
gorithm that enumerates all sentences of the form σ −. s, where σ is an
∃∀-sentence and s is a dyadic rational with σR < s.

Corollary 6.5. Th∃∀(R) is upper computably enumerable.

Proof. Consider (for simplicity) the sentence infx supy ϕ(x, y). For each a ∈
X and ε ∈ D>0, use the previous corollary to find an interval I = [r, s] with
dyadic endpoints of length ≤ ε such that supy ϕ(a, y)R ∈ I. We then add
the condition infx supy ϕ(a, y) ≤ s to our enumeration. We claim that this
algorithm shows that Th∃∀(R) is upper computably enumerable. Indeed,
suppose that infx supy ϕ(x, y) = s. Fix s′ ∈ D, s < s′. Fix δ ∈ D>0 such that
s+ 2δ < s′. We claim that when the algorithm encounters a ∈ X such that
supy ϕ(a, y)R ≤ s+δ, our algorithm will let us know that infx supy ϕ(x, y) ≤
s′. Indeed, our algorithm will tell us that infx supy ϕ(x, y) ≤ d, where d ∈
D>0 and d ≤ supy ϕ(a, y)R + δ. �
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