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Abstract. Kirchberg’s Embedding Problem (KEP) asks whether ev-
ery separable C∗ algebra embeds into an ultrapower of the Cuntz algebra
O2. In this paper, we use model theory to show that this conjecture is
equivalent to a local approximate nuclearity condition that we call the
existence of good nuclear witnesses. In order to prove this result, we
study general properties of existentially closed C∗ algebras. Along the
way, we establish a connection between existentially closed C∗ algebras,
the weak expectation property of Lance, and the local lifting property of
Kirchberg. The paper concludes with a discussion of the model theory
of O2. Several results in this last section are proven using some techni-
cal results concerning tubular embeddings, a notion first introduced by
Jung for studying embeddings of tracial von Neumann algebras into the
ultrapower of the hyperfinite II1 factor.
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1. Introduction

The Cuntz algebra O2 is defined to be the universal C∗-algebra generated
by two isometries v1, v2 satisfying the relation v1v

∗
1 + v2v

∗
2 = 1. It is a

unital, separable, simple, nuclear, purely infinite C∗-algebra (we refer to such
algebras in short as Kirchberg algebras). In the 1990s Kirchberg obtained
two remarkable theorems which established O2 as a central object of study
in the K-theoretic classification of separable, nuclear C∗-algebras: A⊗O2

∼=
O2 for any Kirchberg algebra A; and (jointly with N. Phillips) that any
separable, exact (e.g., nuclear) C∗-algebra is embeddable in O2 (this in fact
characterizes exactness).

The techniques developed by Kirchberg and Kirchberg-Phillips to prove
the O2 embedding theorem in fact suggest the possibility that every sepa-
rable C∗-algebra is embeddable into an ultrapower of O2, though there are
many examples of non-exact, separable C∗-algebras also due to Kirchberg
[21]. This possibility was already noticed by Kirchberg and we refer to the
question of whether every separable C∗-algebra is Oω2 -embeddable as Kirch-
berg’s Embedding Problem (KEP). We remark that this problem should not
be conflated with Kirchberg’s conjecture that there is a unique C∗-norm
on the algebraic tensor product C∗(F∞) � C∗(F∞), which is known to be
equivalent to Connes’ Embedding Problem [21].

The purpose of this paper is to investigate KEP from the perspective
of the continuous model theory of C∗-algebras. The development of the
model theory of C∗-algebras in general, and nuclear (or exact) C∗-algebras
specifically, is in its very early stages, so many results obtained in this work
are aimed at developing the foundational aspects of this theory. The results
and ideas detailed below are complementary to (and borrow from) a larger
systematic treatment of the model theory of nuclear C∗-algebras by Farah,
et al. [11] which is forthcoming. One important feature of our approach is
that we emphasize the importance of the model theory of C∗-algebras as
operator spaces, though this is also implicit in [11]. In appendix B we have
included a treatment of operator systems and operator spaces in the context
of continuous logic as an exposition of this material has not appeared so far
in the literature.

We now describe the structure of the paper, pointing out the main results
in the order they appear. Aside from the introduction (first section), the
paper is divided into four main sections and three appendices. As a means
for preparing the groundwork for discussing KEP, the second section of the
paper deals with general properties of existentially closed (e.c.) unital C∗-
algebras. The first main result is that an exact, unital, e.c. C∗-algebra is
nuclear (Theorem 2.13). Using results from [11] and Kirchberg’s “A ⊗ O2”
theorem, it follows that O2 is the only possible separable, exact, unital, e.c.
C∗-algebra (Proposition 2.18). As will be demonstrated in section 3, KEP
is equivalent to whether O2 is actually existentially closed. We further show
that all e.c. C∗-algebras have trivial K-theory. The second section ends with
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a discussion of the relationship between existential closedness and Lance’s
weak expectation property (WEP).

The main results on KEP are established in the third section. The first
main result is that KEP has a positive solution if and only if O2 is existen-
tially closed which, by the results described in section 2, is true if and only if
there is a unital, exact, e.c. C∗-algebra (Theorem 3.3). This is the first key
step towards the main result of the paper: KEP has a positive solution if and
only if every satisfiable condition admits good nuclear witnesses (Theorem
3.7). In operator algebraic parlance, the latter condition roughly means that
any C∗-algebra can be locally modelled by operators in B(H) which are ap-
proximately nuclear in B(H). The hard direction of the proof of this result
rests on a finer analysis of an “omitting types” characterization of nuclearity
as developed in [11] combined with a general Omitting Types Theorem from
the theory of continuous model theoretic forcing to produce an existentially
closed C∗-algebra from the collection of good nuclear witnesses, whence KEP
follows by Theorem 3.3.

The fourth and fifth sections of the paper are concerned with results on the
general model theory of O2. The fourth section establishes some technical
result on tubularity of embeddings of C∗-algebras, a concept first introduced
in the context of von Neumann algebras by Jung [18]. In the fifth and final
section, it is established, among other results, that O2 is the prime model of
its theory, that KEP implies that Th(O2) is not model complete nor does
the theory of C∗ algebras admit a model companion, and that O2 is the only
so-called stably presented model of its theory. We leave it as open questions
whether Th(O2) is model complete or admits an exact, non-nuclear model
(O2 is the only nuclear model of Th(O2)). It is observed though that at least
one of the two questions must have a negative answer (Proposition 5.11).

For the sake of completeness, three appendices are included. The first
discusses the general theory of continuous model theoretic forcing towards
establishing a technical result needed in the proof of Theorem 3.7: that
generic models of ∀∃-axiomatizable theories are e.c. models of the theory.
The second appendix gives an axiomatization of operator spaces and operator
systems in continuous logic. The last appendix contains the proof of a result,
due to Martino Lupini, on the definability of the operator norm on the matrix
algebras Mn(A) over a C∗-algebra A.

We assume that the reader is familiar with the model-theoretic treatment
of operator algebras as presented in [12]. A reader looking for a quicker
introduction to the model theory of operator algebras can consult the intro-
duction of [14] (which only treats von Neumann algebras).

In this paper, ω always denotes a nonprincipal ultrafilter on the natural
numbers. In the presence of a nonprincipal ultrafilter ω, the phrase “for
almost all i, P (i) holds” will mean that the set of i for which P (i) holds
belongs to the ultrafilter ω.
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2. Existentially closed C∗ algebras

2.1. General properties. Suppose that A and B are C∗ algebras and i :
A → B is an embedding of C∗ algebras. We say that i is an existential
embedding if, for any quantifier-free formula ϕ(v, w), where v and w are
tuples of variables, any n ≥ 1, and any tuple a from A, we have

inf{ϕ(a, b) : b ∈ A≤n} = inf{ϕ(i(a), c) : c ∈ B≤n}.

If A ⊆ B and the inclusion is an existential embedding, we say that A is
existentially closed in B. We say that A is existentially closed (e.c.) if A is
existentially closed in B for any B containing A.

In [12], the authors present the language for arbitrary (i.e., not necessarily
unital) C∗ algebras. For our purposes, this is a bit troublesome:

Proposition 2.1. Suppose that A is an e.c. C∗ algebra in the language for
C∗ algebras that does not require a unit. Then A is not unital.

Proof. Suppose that A is unital. Then for any B ⊇ A we have that B is
unital and 1A = 1B. Indeed, if x ∈ B and r := d(1A · x, x) > 0, then
(infx(r −. d(1A · x, x)))B = 0; since A is e.c., there is x ∈ A such that
d(1A · x, x) > r

2 , a contradiction.
Now such a phenomenon cannot happen: just take a nonunital C∗ algebra

M and let B := A⊕M . �

Thus, in the rest of this paper, unless otherwise stated, we work in the
language of unital C∗ algebras and all C∗ algebras are required to be unital.

In the rest of this subsection, we outline some of the basic C∗ algebraic
properties that any e.c. C∗ algebra must have. As the attentive reader may
begin to suspect, existential closure imposes a myriad of strong structural
properties on a C∗-algebra. Therefore, before proceding to establish some of
these properties, we point out that existential closure is well worth studying
as separable e.c. C∗-algebras are in some sense generic among all separable
C∗-algebras. To be more precise, the set of separable e.c. C∗-algebras in dense
in the the set of all separable C∗-algebras in the “logic topology” described in
section 2.2 of [30]: see Fact 4.2 therein. In fact a random C∗-algebra is e.c. for
any reasonable choice of probability measure on the space of separable C∗-
algebras equipped with the logic topology by Lemma 4.7 in [30]. Moreover
the separable e.c. C∗-algebras form a universal class:

Proposition 2.2. Every separable C∗-algebra is a (unital) subalgebra of an
existentially closed C∗-algebra.
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Proof. For a proof of this result in the context of classical logic see Lemma
3.5.7 in [7]: the proof for continuous logic is similar. See the proof of Fact
2.8 in [30] for more details. �

Occasionally, we may choose an embedding of a given C∗-algebra A into
some e.c. C∗-algebra B which we refer to as an “existential closure” of A
(there is no apparent reason why there is a unique or even minimal such
one).

Proposition 2.3. There are uncountably many pairwise non-isomorphic
separable e.c. C∗-algebras.

Proof. It follows from [19, Proposition 2.6] that there is no separable C∗-
algebra into which all separable C∗-algebras embed. Thus there cannot be
countably many isomorphism classes of separable e.c. C∗-algebras, lest we
could construct such a universal C∗-algebra as a tensor product of represen-
tatives from each class. �

Let A be a (unital) C∗ algebra. We say that A has the strong Dixmier
property (SDP) if, for every a1, . . . , an ∈ A+ and every ε > 0, there are
unitaries u1, . . . , uk ∈ A and real numbers r1, . . . , rn with ‖aj‖ ≤ 4|rj | and

‖1
k

k∑
i=1

uiaju
∗
i − rj · 1‖ < ε

for each j = 1, . . . , n. (While there is a general consensus on what the
Dixmier property means, there does not seem to be a consensus on what the
strong Dixmier property means. In particular, this is not what Blackadar [3,
III.2.5.16] calls the strong Dixmier property. Instead, we follow Kirchberg’s
terminology from [21].)

Fact 2.4. If A has the SDP, then A is simple.

Proof. Suppose that I is a nonzero (closed) ideal in A. Fix a ∈ I+ with
‖a‖ = 4. Take unitaries u1, . . . , uk ∈ A and a real number r such that,
setting Y := 1

k

∑k
i=1 uiau

∗
i , we have ‖Y − r · 1‖ < 1

2 and |r| ≥ 1. Then
‖1
rY − 1‖ < 1

2 , whence
1
rY is invertible. But 1

rY ∈ I, whence I = A. �

Proposition 2.5. An e.c. (unital) C∗ algebra has SDP. In particular, an
e.c. unital C∗ algebra is simple.

Proof. First, given any finite tuple a from A, there is a separable elementary
substructure A0 of A containing a; if A is e.c., then so is A0. It thus suffices to
consider the case that A is separable. The proof of [21, Corollary 3.5] shows
that every unital separable C∗ algebra embeds into a separable (unital) C∗
algebra with SDP. Thus, we can embed A into B separable with SDP. Given
any a1, . . . , an ∈ A+ and ε > 0 there are real numbers r1, . . . , rn such that
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inf ϕ(ā, ȳ)B = 0, where ϕ(ā, ȳ) is the formula

max

(
max

1≤j≤n
‖

k∑
i=1

yiajy
∗
i − rj · 1‖,

k∑
i=1

‖y∗i yi − 1‖

)
.

By existential closedness of A and functional calculus, we may find unitaries
in A witnessing that A has the SDP. �

Corollary 2.6. C∗(F2) and C∗(F∞) are not existentially closed.

Proposition 2.7. If A is an e.c. C∗ algebra, then every automorphism of A
is approximately inner.

Proof. This was proven in [14] for tracial von Neumann algebras so we only
sketch the proof. If α is an automorphism of A, then setting B := AoαZ, we
see that α is implemented by a unitary u in B. Thus, for any x1, . . . , xn ∈ A,
there is a unitary u ∈ B that conjugates xi to α(xi) for each i = 1, . . . , n.
Since A is e.c., one concludes that there is an “almost” unitary in A that
conjugates each xi close to α(xi); by functional calculus, this almost unitary
can be correct to an actual unitary while maintaining that the conjugate of
xi and α(xi) remain close. �

Fact 2.8 ([11]). The following properties are ∀∃-axiomatizable properties of
separable C∗ algebras:

(1) O2-stable;
(2) simple and purely infinite.

Although the above result is proven in [11], we repeat their proof of O2-
stability here for the current reader’s convenience. For A separable, A is
O2-stable if and only if O2 embeds into A′ ∩ Aω; see, for example, [25,
Theorem 7.2.2]. Now notice that O2 embeds into A′ ∩ Aω if and only if A
satisfies the axioms

sup
~x

inf
y1,y2

(Σ‖[xi, yj ]‖+ d(y∗1y1, 1) + d(y∗2y2, 1) + d(y1y
∗
1 + y2y

∗
2, 1)) = 0,

where we have one such axiom for all possible lengths of the finite tuples ~x
appearing in the displayed formula.

Corollary 2.9. A separable e.c. C∗ algebra is O2-stable.

Proof. By general model theory, if P is an ∀∃-axiomatizable property of
separable C∗ algebras and every separable C∗ algebra embeds into a separable
C∗ algebra with property P, then a separable e.c. C∗ algebra has property
P. Clearly any separable C∗ algebra embeds into a separable O2-stable C∗
algebra: simply tensor with O2. �

From the above corollary, we also see that an e.c. C∗ algebra does not
admit a quasitrace. Indeed, if an e.c. C∗ algebra admitted a quasitrace,
then since it is also simple, it would be stably finite (see, for example, [26,
Theorem 2.2]), contradicting the previous corollary.
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Recall that if A is a C∗ algebra, then the theory of A is the function Th(A)
which maps a sentence σ to its truth value σA. We say that A and B are
elementarily equivalent, denoted A ≡ B, if Th(A) = Th(B); in this case, we
also say that A is a model of Th(B) (and, of course, that B is a model of
Th(A)).

We say that a C∗ algebra A is an existentially closed model of its theory
if it satisfies the above definition of being existentially closed but only for
extensions B that are elementarily equivalent to A. We define the universal
theory of A to be the function Th∀(A) which is simply the restriction of
Th(A) to the set of universal sentences. (One can, of course define Th∃(A)
and Th∀∃(A) similarly.) It is a basic fact of model theory that if A and B
are separable C∗ algebras, then Th∀(A) ≤ Th∀(B) (as functions) if and only
if A is embeddable into an ultrapower of B. Thus, A is an e.c. model of
its theory if and only if it satisfies the above definition of being existentially
closed but only for extensions B that are embeddable into an ultrapower
of A. Finally, recall that an embedding between C∗ algebras f : A → B
is said to be elementary if, for any formula ϕ(x), where x is an m-tuple of
variables, and any m-tuple a from A, we have ϕ(a)A = ϕ(f(a))B. If A ⊆ B
is such that the inclusion map is elementary, we say that A is an elementary
substructure of B, denoted A � B.
Lemma 2.10. Suppose that A is a separable C∗ algebra such that every
embedding of A into Aω is elementary. Then A is an existentially closed
model of its theory. In particular, O2 is an existentially closed model of its
theory.
Proof. Suppose that B is embeddable in Aω, say j : B → Aω, ϕ(v, w) is a
formula, and a ∈ A, we have

(inf
w
ϕ(a,w))A ≥ (inf

w
ϕ(a,w))B ≥ (inf

w
ϕ(j(a), w))A

ω
= (inf

w
ϕ(a,w))A.

It is well known that every embedding of O2 into its ultrapower is unitarily
conjugate to the diagonal embedding, whence elementary. (The main ideas
behind the proof can be found at the end of Section 5.) �

In [11], it is shown that any strongly self absorbing C∗ algebra (see [29])
satisfies the assumption of the previous lemma, whence any strongly self
absorbing C∗ algebra is an e.c. model of its theory.

2.2. Connection with nuclearity and exactness. In this subsection, we
investigate whether or not there is a connection between existential closed-
ness on the one hand and exactness and/or nuclearity on the other hand. A
first observation:
Fact 2.11. Not every e.c. C∗ algebra is exact.
Proof. Since being exact is preserved under substructure and every C∗ alge-
bra embeds into an e.c. one, we would then have that every C∗ algebra is
exact, a contradiction. �
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Let us be less ambitious:

Question 2.12. Is there an exact e.c. C∗ algebra? Is there a nuclear e.c.
C∗ algebra?

It turns out these are the same question:

Theorem 2.13. If A is an exact e.c. C∗ algebra, then A is nuclear.

Theorem 2.13 follows from the following more general statement:

Theorem 2.14. Suppose that f : A→ B is an existential nuclear embedding.
Then A is nuclear.

Proof. For the sake of simplicity, let us suppose that f is an inclusion A ↪→ B
and that A is e.c. in B. Once again, for simplicity assume that A is separable
(although the general case is no more difficult.) Let (an) be an enumeration
of a dense subset of A and let φn : A→Mkn and τn : Mkn → B be completely
positive contractions such that

max
1≤j≤n

‖(τn ◦ φn)(aj)− aj‖ ≤
1
n
.

For each j, let λj,nk,l denote the coordinates of φn(aj) with respect to the
standard basis ofMkn . Fix a finite δ-net F ⊆ (Mkn)1, for δ sufficiently small.
Consider the formulae σ1 := ‖w∗w−u‖, σ2 := max1≤j≤n ‖

∑
λj,nk,l ukl−aj‖−.

1
n ,

and σ3 := maxηk,l∈F (‖
∑
ηk,lukl‖ −. ‖

∑
ηk,lek,l‖). We should mention that

in σ1, we are using the max norm on Mkn(B) and not the operator norm.
Then the formula infu,w∈Mkn (B) max(σ1, σ2, σ3) evaluates to 0 in B.

Since the above formula only mentions parameters from A, it must also
evaluate to 0 in A. By functional calculus, this allows us to choose u ∈
Mn(B)+ such that, defining ψn : Mkn → A by ψn(ek,l) := uk,l, we have that

‖(ψn ◦ φn)(aj)− aj‖ ≤
2
n

for j = 1, . . . , n. Moreover, if δ was chosen sufficiently small (and if the
u was chosen to make the inf sufficiently small in A), we get that ψn is
ρn-Lipshitz, where limn→∞

1
ρn

= 1. By rescaling u by 1
ρn

and choosing ρn
sufficiently small, we get a positive u that defines ψn that is contractive and
for which the error ‖(ψn ◦ φn)(aj) − aj‖ ≤ 3

n for j = 1, . . . , n. By Choi’s
Theorem (see [23, Theorem 3.14]), ψn is completely positive. It follows that
the identity map on A is nuclear, whence A is nuclear. �

In the above proof, observe that the only use of the algebra structure was
to express positivity. Thus, we really have proven:

Theorem 2.15. Suppose that f : A → B is a nuclear embedding that is
existential in the language of operator systems. Then A is nuclear.
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Since there has yet to be any exposition of operator spaces and operator
systems in continuous logic appearing in the literature, we take the oppor-
tunity to present this in Appendix B.

We would like to offer an alternative proof of the previous theorem. With-
out loss of generality, assume that A is a subalgebra of B such that the in-
clusion is nuclear and such that A is e.c. in B in the language of operator
systems. Again, for simplicity, we assume that A is separable. Let (ai) enu-
merate a countable dense subset of (A+)1. Fix j, δ and choose n and u.c.p.
maps φ : A → Mn(C) and ψ : Mn(C) → B so that the following condition
(∗) holds: maxi≤j ‖ψ ◦ φ(ai)− ai‖ < δ.

Recall that any positive matrix x ∈ Mn(C) can be written as a sum of
n matrices of the form v∗v where v = (v1, . . . , vn). (Use the diagonaliza-
tion.) Write φ(ai) as

∑n
k=1(vik)

∗vik. Examining the operator space duality
CP(Mn(C), B)↔Mn(B)+ we see that condition (∗) is the same as

inf
Ψ∈Mn(B)+

max
i≤j
‖

n∑
k=1

vikΨ(vik)
∗ − ai‖ < δ.

Since A is e.c. in B in the language of operator systems, we can find such
Ψn ∈Mn(A)+ instead. This concludes the proof.

The hypothesis in Theorem 2.15 really is a weakening of the hypothesis
in Theorem 2.14:

Proposition 2.16. Suppose that A and B are unital C∗ algebras such that
A is a unital subalgebra of B. If A is e.c. in B in the language of C∗ algebras
then A is e.c. in B in the language of operator systems.

Proof. It was already proven in [11] that if A is elementary in B thenMn(A)
is elementary in Mn(B), the crucial point being that the operator norm on
Mn(A) is a definable predicate in A, a fact due to Martino Lupini and proven
here in Appendix C. A more careful analysis of this fact yields the proof of
the current proposition. In Appendix C, we prove the following: let A be a
C∗ algebra and let

Xn,A := {(~x, ~y) ∈ A2n
1 : max

(∥∥∥∑x∗ixi

∥∥∥ ,∥∥∥∑ y∗i yi

∥∥∥) ≤ 1}.

Then for (aij) ∈Mn(A) we have ‖(aij)‖ = sup(~x,~y)∈Xn,A
‖
∑
x∗i aijyj‖. More-

over, the relation defining Xn,A is stable, whence Xn,A is uniformly defin-
able in all C∗ algebras in the sense that there is a formula ψ(~x, ~y) such that
ψ(~x, ~y)A is the distance between (~x, ~y) and Xn,A in all C∗ algebras A. (See
[6, Lemma 2.1] for a proof of the preceding fact.) By the proof of [1, Theorem
9.17], it follows that there is a formula (as opposed to an arbitrary definable
predicate) Φn((zij)) such that, for all C∗ algebras A and all (aij) ∈ Mn(A)
we have Φn((aij))A = ‖(aij)‖. Finally, it remains to notice that Φn is ap-
proximable by quantifier-free formulae, uniformly in all C∗ algebras, whence
any existential statement about Mn(A) in the language of operator systems
can be approximated by existential statements aboutMn(A) in the language
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of C∗ algebras, finishing the proof of the proposition. Indeed, by a standard
quantifier-elimination test (see [1, Proposition 13.2]), it suffices to show that
whenever A is a C∗ algebra that is a common subalgebra of the C∗ algebras
B and C, then for any (aij) ∈ Mn(A), we have Φn((aij))B = Φn((aij))C ,
which clearly holds as the operator norm onMn(A) is the restriction of both
the operator norm on Mn(B) and the operator norm on Mn(C). �

There is something a bit strong about asking that a C∗ algebra be ex-
istentially closed as an operator system for it would require, by definition,
that A be existentially closed in all operator systems in which A admits a
complete order embedding. In particular, it would imply that any embed-
ding of A into a C∗ algebra that is merely a complete order embedding is an
existential embedding. This requirement is so strong that the first author
and Martino Lupini were able to prove in [17] that if A is an existentially
closed C∗ algebra, then A is not existentially closed as an operator system.
Thus, it seems appropriate to allow for an intermediate notion.

Definition 2.17. We say that a C∗ algebra A is semi-existentially closed
as an operator system (resp. semi-existentially closed as an operator space)
if, for any unital inclusion A ⊆ B of C∗ algebras, any existential formula
ϕ(x) in the language of operator systems (resp. in the language of operator
spaces), and any tuple a from A, we have ϕ(a)A = ϕ(a)B.

We can thus restate Theorem 2.16 as follows: if a C∗ algebra is existentially
closed (as a C∗ algebra), than it is semi-existentially closed as an operator
system.

Theorem 2.13 tells us that we should focus our attention on the search for
an e.c. nuclear C∗ algebra. If we search for a separable nuclear C∗ algebra,
we know where to search:

Proposition 2.18. If A is a separable unital e.c. nuclear C∗ algebra, then
A ∼= O2.

Proof. Since A is e.c., we have A ⊗ O2
∼= A. However, because A is simple

and nuclear, by Kirchberg’s “A⊗O2 Theorem” (see [25, Theorem 7.1.2]), we
have that A⊗O2

∼= O2, whence we have A ∼= O2. �

Thus even though there are uncountably many separable e.c. C∗-algebras,
at most one of them, O2, can be exact. The obvious question is: is O2 e.c.?
This turns out to be equivalent to KEP; see Theorem 3.3.

We just saw that O2 is the only possible nuclear (even exact) separable
e.c. nuclear C∗ algebra. The next result says that O2 is the only possible
separable e.c. C∗ algebra satisfying some other properties.

Proposition 2.19. Let A be unital separable e.c. C∗ algebra. Then the
following are equivalent:

(1) A ∼= O2;
(2) A ∼= A⊗min A;
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(3) The “flip” (a⊗ b)→ (b⊗a) is an approximately inner automorphism
of A⊗min A;

(4) The embeddings A ⊗ 1 and 1 ⊗ A into A ⊗min A are approximately
unitarly equivalent.

Proof. (1)⇒(2) is trivial. (2)⇒(3) holds since A⊗minA would be e.c., hence
any automorphism would be approximately inner. (3)⇒(4) is clear. (4)⇒ A
is nuclear ([22, Lemma 3.10]), which implies (1) by the previous proposition.

�

In fact, the above argument shows that the only possible e.c. “tensor
square” is O2, that is, the only possible separable e.c. B such that B ∼= A⊗A
for some A is O2.

2.3. K-theory. 1

In this subsection, we show that e.c. C∗ algebras have trivial K-theory.
Since e.c. C∗ algebras are O2-stable, the results of this subsection follow
from the fact (pointed out to us by Chris Phillips) that A ⊗ O2 has trivial
K-theory for any C∗ algebra A. Since this aforementioned fact uses the
Künneth formula for C∗ algebras (see [27]) together with the fact that O2

belongs to the so-called “bootstrap class” (see [25, Section 4.2]), we prefer
to give completely elementary arguments, which further highlight the role of
existential closedness in connection with familiar C∗-algebraic concepts.

Proposition 2.20. If A is an e.c. C∗ algebra, then K0(A) = {0}.

Proof. Suppose that A is an e.c. C∗ algebra and p ∈ P (Mm(A)) and q ∈
P (Mn(A)) with m ≤ n. We claim that p and q are stably equivalent, so
that K0(A)+ = {0}. Suppose that A is concretely represented as a C∗
subalgebra of B(H) where H is an infinite-dimensional Hilbert space. Since
K0(B(H))+ = {0}, we know that there is r ∈ P (Mk(B(H))) such that
p⊕ r ⊕ 0n−m ∼ q ⊕ r, that is, there is x ∈Mn+k(A) such that

p⊕ r ⊕ 0n−m = x∗x, q ⊕ r = xx∗.

Thus, in B(H), the following sentence evaluates to 0:

inf
r∈Mk

inf
x∈Mn+k

max(d(r, r∗), d(r, r2), d(p⊕ r ⊕ 0n−m, x∗x), d(q ⊕ r, xx∗)).

Once again, the d symbols refer to the max norm on the appropriate
matrix algebras and not the operator norm. In connection with the previous
sentence, it is useful to note that, for Mk(A), the operator norm is bounded
by
√
k times the max norm.

Fix ε0 such that, for all C∗ algebras B and all projections p, q ∈ B, we
have that p and q are Murray-von Neumann equivalent if and only if there
is b ∈ B such that max(‖p − b∗b‖, ‖q − bb∗‖) < ε0. Since A is e.c., using
functional calculus, we may find r ∈ P (Mk(A)) and x ∈Mn+k(A) such that

1The remaining two subsections are not needed in connection with the material on
Kirchberg’s Embedding Problem appearing in the next section.
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d(p ⊕ r ⊕ 0n−m, x∗x), d(q ⊕ r, xx∗) < ε0√
n+k

, whence they are within ε0 in
operator norm. It follows that p and q are stably equivalent in A. �

Proposition 2.21. If A is an e.c. C∗ algebra, then K1(A) = {0}.
Proof. For m ≥ 1, let Um(A) denote the unitary group of Mm(A). Fix
u ∈ Um(A) and v ∈ Un(A). We want to show that u ∼1 v. Since B(H)
has trivial K1, there is k ≥ max(m,n) such that u ⊕ 1k−m ∼h v ⊕ 1k−n,
say witnessed by the path α : [0, 1]→ U(Hk). By uniform continuity of the
path, there is j ≥ 1 such that

inf
y1,...,yj∈Mk(B(H))

ϕ(u, v, ~y)

evaluates to 0 in B(H), where, setting

ϕ1(~y) := max
1≤i≤j

max(d(y∗i yi, 1), d(yiy∗i , 1))

and
ϕ2(~y) := max

1≤i<j
(d(yi, yi+1)−. 1

2
),

ϕ(u, v, ~y) is the formula

max(ϕ1(~y), ϕ2(~y), d(u⊕ 1k−m, y1)−. 1
2
, d(yj , v ⊕ 1k−n)−. 1

2
).

Once again, the metric is the max metric. Since A is e.c., the value of the sen-
tence is 0 in A as well. Since the operator norm onMk(A) is bounded by

√
k

times the max norm and since the unitary group of a C∗ algebra is definable,
there are actual unitaries making this inf as small as we want. Since elements
of the unitary group that are sufficiently close are automatically homotopy
equivalent, we get that u ∼1 v in A. It follows that K1(A) = {0}. �

One can play a similar game to show that an e.c. C∗ algebra has trivial
Cuntz semigroup.

2.4. Connection with the Weak Expectation Property. We recall the
following

Definition 2.22. Let A ⊂ B be a unital inclusion of C∗-algebras. We
say that B is weakly injective relative to A if there exists a contraction φ :
B → A∗∗ such that φ|A = idA (the map φ is known as a weak conditional
expectation). We say that A has the weak expectation property (WEP) of
Lance if every unital extension A ⊂ B of A is weakly injective relative to A.

We remark that the canonical extension φ∗∗ : B∗∗ → A∗∗ can be shown
to be a norm one projection from B∗∗ onto A∗∗ (see [21], p. 459). By
Tomiyama’s theorem, φ∗∗ is u.c.p. whence so is φ.

An operator system X ⊂ B(H) is weakly injective (or almost injective in
the terminology of [8]) if there is a u.c.p. extension φ : B(H) → X of the
identity id : X → X, where X is the weak closure of X. The following
proposition is heavily inspired by an argument of Choi and Effros (see [8,
Theorem 3.4]).
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Proposition 2.23. Let X ⊂ B(H) be an operator system. If X is e.c. as
an operator system in B(H), then X is weakly injective.

Proof. Let Cn be the positive cone in Mn(•). Consider the existential for-
mulae

φn,k,σ(a, b) = inf
x∈Cn
‖[aij + σ1

ijb1 + · · ·+ σkijbk]− x‖

where [aij ] ∈Mn(•) is a self-adjoint matrix and σ = (σ1, . . . , σk) ∈Mn(C)k

is self-adjoint. For b = (b1, . . . , bk) ∈ B(H)k self-adjoint, operator systems
X ⊂ Y ⊂ B(H), and b′ ∈ Y k, note that the linear map

η : X + Cb1 + · · ·+ Cbk → Y, η(x+
∑
l

λlbl) := x+
∑
l

λlb
′
l

is u.c.p. if and only if, for every self-adjoint a ∈Mn(X) and every self-adjoint
σ ∈ Mn(C)k, we have φn,k,σ(a, b)B(H) = 0 implies φn,k,σ(a, b′)Y = 0. Call a
formula φn,k,σ(a, y) admissible if (infy φn,k,σ(a, y))B(H) = 0.

Note that the set Wn,k,σ,a,ε := {b ∈ Xk : ‖b‖ ≤ 1, φn,k,σ(a, b)X < ε} is
a bounded subset of X, so its weak closure is weakly compact. Since X is
e.c., the family (Wn,k,σ,a,ε), where we only consider admissible φn,k,σ(a, y),
has the finite intersection property, whence the intersection of their weak
closures is non-empty. This shows that for every b ∈ B(H)k, there is a u.c.p.
map ηb : X+Cb1 + · · ·+Cbk → X which extends the identity on X. Letting
F be the net all of finite subsets of self-adjoint elements of B(H) directed by
inclusion, we have that any weak cluster point η of {ηb : b ∈ F} is a u.c.p.
map η : B(H) → X which extends the identity on X, whence X is weakly
injective. �

If A is a C∗-algebra, then choosing the embedding A ⊂ B(Hu) in the
universal representation, we have that that the following corollary holds by
[8, Corollary 6.3].

Corollary 2.24. If A is a unital C∗ algebra that is semi-existentially closed
as an operator systems, then A has the WEP.

We would next like to offer an alternative proof of Corollary 2.24. First,
for a positive element a of an operator system S, we say that a is strictly
positive if there is r > 0 such that a ≥ r1. According to [3, Section II.4.2],
if A is a unital C∗ algebra, then a positive element a of A is strictly positive
if and only if a is invertible. It is an easy exercise to check that these two
notions of strictly positive agree for elements of unital C∗ algebras. We need
the following recent theorem of Farenick, Kavruk, and Paulsen.

Theorem 2.25 ([15]). Suppose that A ⊆ B(H) is a unital C∗ algebra. The
following are equivalent:

(1) A has WEP;
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(2) Whenever, for arbitrary p ∈ N, there exists x1, x2 ∈ Mp(A) and
a, b, c ∈Mp(B(H)) such that a+ b+ c = 1 and the matrix a x1 0

x∗1 b x2

0 x∗2 c


is strictly positive inM3p(B(H)), then there also exist ã, b̃, c̃ inMp(A)
with the same property.

We can use the previous theorem to give an alternative proof of Corollary
2.24. We verify condition (2) in the previous theorem. Fix x1, x2, a, b, c as
in the condition; call that matrix u. Take r > 0 such that u− rI is positive
in M3p(B(H)), say u− rI = d∗d. Fix s > 0 very small. Then since A is e.c.,
A has elements a′, b′, c′, d′ such that a′ + b′ + c′ is within s of 1 (in the max
metric on Mp(A)) and such that u′ − r1 is within s of (d′)∗d′ (again, with
the max metric on M3p(A)); here u′ denotes the corresponding matrix with
the primed elements replacing the original elements. By perturbing a′, b′, c′
we may assume that a′, b′, c′ are self-adjoint and add up to 1, and perhaps
now u′− r1 is within 2s of (d′)∗d′. Now by functional calculus, there is t > 0
such that u′ − t1 is positive, whence u′ is strictly positive again.

We would like to thank David Sherman for pointing out that the previous
theorem ought to imply Corollary 2.24.

Remark. Corollary 2.24 yields yet another proof of the fact that e.c. exact
C∗ algebras are nuclear. Indeed, by the results of [9], an exact C∗ algebra is
nuclear if and only if it has WEP.

Corollary 2.26. If a unital inclusion A ⊂ B of C∗-algebras is existential in
the language of operator systems, then A has the WEP if B has the WEP.

Since Kirchberg proved that the Connes Embedding Problem (CEP) is
equivalent to C∗(F∞) having WEP, we see that CEP follows from C∗(F∞)
being semi-existentially closed as an operator system. (We already know
that it is not e.c. as a C∗ algebra.) In fact, since any injective von Neumann
algebra has the WEP, CEP would follow as a consequence of there existing
an embedding C∗(F∞) ↪→ R which is existential in the language of operator
systems (again, the Dixmier property obstructs any such embedding from
being existential in the language of C∗-algebras). Perhaps the existence
of such an existential embedding (or at least such a positively existential
embedding, see below) is equivalent to CEP. Also, by [15, Theorem 7.2], we
have:

Corollary 2.27. If C∗(F2) is semi-existentially closed as an operator sys-
tems, then CEP holds.

We now present a partial converse to Corollary 2.24. For the moment, we
work in an arbitrary continuous signature L. Suppose thatM and N are L-
structures. We say a function F :M→N is a homomorphism if it respects
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the interpretations of function and constant symbols and is contractive with
respect to predicate symbols, that is, PN (F (a)) ≤ PM(a). For example,
u.c.p. maps between operator systems are homomorphisms.

We call a quantifier-free formula ϕ(v) positive if, for any L-structuresM
and N , any homomorphism F :M→N , and any tuple a from M , we have
ϕ(F (a))N ≤ ϕ(a)M. This definition (which is a more general definition that
that given in [28, Section 3] as the Lemma below establishes) is motivated by
the fact from classical logic that a formula is positive (i.e., is built without
using negations) if and only if its truth is preserved by homomorphisms.
It turns out that many of the quantifier-free formulae considered above are
positive. In fact, we now give a general result indicating how to produce a
large collection of positive formulae.

We say that a continuous function f : [0, 1]n → [0, 1] is increasing if
ui ≤ vi for each i implies f(u1, . . . , un) ≤ f(v1, . . . , vn). Notice that the n-
ary connectives max and min as well as n-ary addition are all increasing. The
following lemma is proven by a routine induction on complexity of formulae:

Lemma 2.28. If a quantifier-free formula is built using only increasing con-
nectives, then it is a positive formula.

We say that an L-structure is positively existentially closed (p.e.c.) if
it satisfies the definition of being e.c. but only with respect to positive
quantifier-free formulae. (In [28], the author uses the term “algebraically
closed” instead of p.e.c.) There is also a natural notion of a C∗ algebra being
semi-positively existentially closed (semi-p.e.c.) as either an operator system
or an operator space.

Inspecting the proof of Corollary 2.24, we actually showed:

Corollary 2.29. If A is a unital C∗ algebra that is semi-p.e.c. as an operator
systems, then A has WEP.

More generally, the proof of Proposition 2.23 shows:

Corollary 2.30. If A ⊆ B are C∗ algebras such that A is p.e.c. in B as an
operator system, then B is weakly injective relative to A.

Here is a partial converse to Corollary 2.24.

Proposition 2.31. Suppose that A is a unital C∗ algebra with WEP. Further
suppose that, for every faithful representation π : A → B(H), we have A is
positively e.c. in π(A)′′ in the language of operator systems. Then A is
positively e.c. as an operator system

Proof. Suppose that S is an operator system with A ⊆ S ⊆ B(H). Using
the conditional expectation B(H) → π(A)′′ (where π is the induced repre-
sentation of A into B(H)) we see that any solution to a positive formula in
S can be mapped to one in π(A)′′; now use the fact that A is positively e.c.
in π(A)′′. �
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Of course the preceding assumption can be replaced with the equivalent
assumption that A is positively e.c. in A∗∗.

Recall that a von Neumann algebra is injective if and only if it has WEP.
Consequently, we have:

Corollary 2.32. For a von Neumann algebra A, we have that A is injective
if and only if it is positively e.c. in the class of operator systems.

Examining the proof of Theorem 2.14, we see that the quantifier-free for-
mulae involved were positive. We thus have:

Proposition 2.33. Suppose that A is a separable exact C∗ algebra. Then A
is nuclear if and only if A is positively e.c. in O2 in the language of operator
systems.

Proof. If A is nuclear, then we have a conditional expectation from O2 to
A, which implies that A is positively e.c. in O2. The remarks preceding this
proposition yield the converse. �

We next remark on the connection between the WEP and existential
closedness in the language of operator spaces. For a map φ : A → B, let
‖φ‖n = ‖φ⊗ idMn(C) ‖. Note that ‖φ‖n ≤ ‖φ‖n+1 since Mn(C)→Mn+1(C)
embeds (non-unitally). Consider the following properties:

(α) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every ε > 0 there exists a map
φ : E → A such that ‖φ‖ < 1 + ε and φ|E∩A = idE∩A.

(α′) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every ε > 0 there exists a map
φ : E → A such that ‖φ‖ ≤ 1 and ‖φ|E∩A − idE∩A ‖ < ε.

(β) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every ε > 0 there exists a map
φ : E → A such that ‖φ‖cb < 1 + ε and φ|E∩A = idE∩A.

(β′) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every ε > 0 there exists a map
φ : E → A such that ‖φ‖cb ≤ 1 and ‖φ|E∩A − idE∩A ‖ < ε.

(γ) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every n, ε > 0 there exists a map
φ : E → A such that ‖φ‖n < 1 + ε and φ|E∩A = idE∩A.

(γ′) For every unital inclusion A ⊂ B of C∗-algebras and every finite-
dimensional subspace E ⊂ B and every n, ε > 0 there exists a map
φ : E → A such that ‖φ‖n ≤ 1 and ‖φ|E∩A − idE∩A ‖ < ε.

Clearly we have that (β)⇒ (γ)⇒ (α). Note that (β)⇔ (β′) by standard
operator space perturbation techniques, and the equivalences (α) ⇔ (α′)
and (γ)⇔ (γ′) are standard. Then A has the WEP ⇔ (α′) (the non-trivial
implication is the principle of local reflexivity for Banach spaces, see Lemma
13.3.2 in [5] for a proof of this equivalence), and (β)⇒ A is semi-p.e.c. as an
operator space (c.b. maps are homomorphisms in the category of operator
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spaces). In fact, it is not much harder to see that (γ) is sufficient to ensure
A is semi-p.e.c. as an operator space.

Proposition 2.34. If A has the WEP, then A is semi-p.e.c. as an operator
space.

Proof. We need only show that WEP ⇒ (γ′). Let φ : B → A∗∗ be a
weak conditional expectation. Since φ is u.c.p., φn : Mn(B) → Mn(A∗∗) ∼=
Mn(A)∗∗ is contractive; since φn restricts to the identity onMn(A), it follows
that φn is a weak conditional expectation.

Let F ⊂ B be a finite-dimensional operator system and define E := F ∩A
so that Mn(E) = Mn(F ) ∩Mn(A). By the princple of local reflexivity, we
have that for every ε > 0, there is a contraction φ′ : Mn(F ) → Mn(A) so
that ‖ idMn(E)−φ′|Mn(E)‖ < ε. Since interchanging rows or columns is an
isometry on Mn(B) or Mn(A) and idMn(E) commutes with these operations,
by averaging we may assume without loss of generality that φ′ commutes with
interchanging any rows or columns. In particular φ′(eij ⊗ x)ij = φ′′(ekl ⊗
x)kl for any i, j, k, l ∈ {1, . . . , n}, x ∈ F . It is easy to see that φ′′(eij ⊗
x) := eiφ

′(eij ⊗ x)ej is again a contraction so that φ′′ = idMn(C)⊗ψ with
‖ idE −ψ|E‖ < ε. �

We have thus seen that, for a unital C∗ algebra A, we have that the
following conditions are successively weaker:

(1) A is semi-p.e.c. as an operator system;
(2) A has WEP;
(3) A is semi-p.e.c. as an operator space.

This leads naturally to the following

Question 2.35. For a unital C∗ algebra A, do we have that A is semi-p.e.c.
as an operator system if and only if A is semi-p.e.c. as an operator space?

A positive answer to the above question would have two nice consequences.
First, there would now be two new nontrivial definitions of WEP for operator
systems. Secondly, we would have a new equivalent formulation of CEP,
namely that C∗(F∞) is semi-p.e.c. as an operator system.

Recall from [9] that a C∗ algebra A is said to be approximately injective
if given finite-dimensional operator systems E1 ⊆ E2 ⊆ B(H), a completely
positive map φ1 : E1 → A, and ε > 0, there is a completely positive map
φ2 : E2 → A such that ‖φ2|E1 − φ1‖ < ε. It is shown in [9, Proposition 4.5]
that approximate injectivity implies WEP.We leave the following proposition
as an easy exercise.

Proposition 2.36. If A is an approximately injective C∗ algebra, then A
is p.e.c. as an operator system. In particular, being approximately injective,
being (semi-)p.e.c. as an operator system, and having WEP are successively
weaker conditions.
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Question 2.37. For a unital C∗ algebra A, can either of the previous im-
plications be reversed? That is, do we have either: (A) A is p.e.c. as an
operator system if and only if A is approximately injective; or (B) A is p.e.c.
as an operator system if and only if A has WEP?

Note that we cannot have positive answers to both Questions 2.37(A) and
(B), for otherwise we would have that the notions of WEP and approximately
injective coincide for separable C∗ algebras, contradicting Corollary 3.1 of
[19]. Corollary 3.1 of [19] also implies that C∗(F∞) is not approximately
injective, whence a positive answer to Question 2.37(A) would imply that
C∗(F∞) is not p.e.c. as an operator system. Further, a negative answer to
(B) would imply a negative answer to Question 2.35.

We have seen that the difference between the WEP and approximate in-
jectivity lies in the fact that with the WEP, given E1 ⊂ E2 finite-dimensional
operator systems, and a u.c.p. map φ : E1 → A, we are only able to find
for any n an n-contractive approximate extension of φ to E2. With this in
mind, we make the following definition:

Definition 2.38. An operator system X is said to be CP-stable if for any
for any finite-dimensional subspace E1 ⊂ X and δ there exists a finite-
dimensional subspace E2 ⊃ E1 and n, ε so that for any unital map φ : E2 →
A into any unital C∗-algebra A with ‖φ‖n < 1 + ε, there exists a u.c.p. map
ψ : E1 → A so that ‖φ|E1 − ψ‖ < δ. If, in addition, we can ensure that
‖φ|E1 − ψ‖cb < δ, then we say that X is strongly CP-stable. In this case,
note that φ|E1 is completely bounded with ‖φ|E1‖cb < 1 + δ.

Proposition 2.39. Let X be an operator system which is contained in a CP-
stable operator system and let A be a C∗-algebra with the WEP. Then for any
finite-dimensional subsystems E1 ⊂ E2 ⊂ X, any u.c.p. map φ : E1 → A,
and every ε > 0 there exists a u.c.p. map φ′ : E2 → A so that ‖φ′|E1−φ‖ < ε.

Proof. Suppose that X ⊂ X̃ with X̃ CP-stable. Let E1 ⊂ E2 ⊂ X be finite-
dimensional operator systems, φ : E1 → A a u.c.p. map, and δ > 0. By
CP-stability we can then find E2 ⊂ E3 ⊂ X̃ finite-dimensional and n, ε so
that for any unital map φ′ : E3 → A so that ‖φ′‖n < 1 + ε, there is a u.c.p.
map φ′′ : E2 → A so that ‖φ′|E2 −φ′′‖ < δ. Since A has the WEP, the set of
all such maps φ′ : E3 → A is non-empty; further, we may find such φ′ with
‖φ′|E1 − φ‖ < δ. Therefore ‖φ′′|E1 − φ‖ < 2δ, and we are done.

�

The following result is probably well known but seems hard to source in
the literature. In particular it demonstrates that Mk is strongly CP-stable.
(We thank Martino Lupini for showing us how Choi’s theorem could be used
to eliminate one of the parameters in the conclusion.) Before stating this
result we introduce some notation. For any linear map φ : Mk → A, we
define φ̂ := [φ(eij)]ij ∈Mk(A).
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Proposition 2.40. Fixing k, for any δ > 0 there exists ε > 0 so that for any
unital map φ : Mk → A, A an arbitrary unital C∗-algebra, with ‖φ‖k < 1+ε,
there exists a u.c.p. map ψ : Mk → A so that ‖φ− ψ‖cb ≤ 1 + δ.

Proof. We claim that for any η, there exists ε so that for φ as above there
exists a ∈ Mk(A)+, ‖a‖ ≤ 1 so that ‖φ̂ − a‖ < η. Given the claim, we
now show how the proposition follows. If ψa : Mk → A is the c.c.p. map
induced by a, then by the “small perturbation argument” (see Lemma 12.3.15
in [5]), choosing the dual basis {e∗ij}, we have that ‖φ − ψa‖cb < k2η =: δ.
Since ‖ψa(1) − 1‖ < δ, if δ < 1, b := ψa(1) is invertible, whence setting
ψ(x) := b−1/2ψa(x)b−1/2 yields the desired u.c.p. map.

We now prove the claim. Suppose, towards a contradiction, that the claim
is false, that is, there exists η > 0 so that for any ε > 0 there exists a unital
map φ : Mk → A in to some C∗-algebra (we may assume separable) with
‖φ‖k < 1 + ε so that dist(φ̂,Mk(A)+

≤1) ≥ η. For j ≥ 1, let φj : Mk →
Aj be such a map corresponding to ε = 1

j . Consider the ultrapower map
φ := (φj)• : Mk →

∏
ω Aj =: A. Then it is easy to see that φ is unital and

‖φ‖k = 1, whence φ is k-positive and hence u.c.p. by Choi’s Theorem (see,
for example, [23, Theorem 3.1.4]). This implies that φ̂ = (φ̂j)• is a positive
contraction in Mk(A); however, this cannot be the case since Mk(A) ∼=∏
ωMk(Aj) and each φ̂j is η-separated form the positive contractions in

Mk(Aj). �

We remark that setting X = Mk in Proposition 2.39 recovers an observa-
tion of Effros and Haagerup that WEP implies “finite approximate injectiv-
ity.” (See the remarks following Proposition 4.5 in [9].) Note our argument
differs slightly from the one given there.

Corollary 2.41. The class of strongly CP-stable operator systems contains
all nuclear operator systems.

We end this section on the connection between existential closedness and
the lifting property. Recall that a unital C∗ algebra A has the lifting property
(LP) if, for every unital C∗ algebra C, every closed ideal J of C, and every
u.c.p. map ρ : A → C/J , there is a u.c.p. lift ρ̃ : A → C (i.e., πJ ◦ ρ̃ = ρ,
where πj : C → C/J is the canonical projection map). If, in the preceding
definition, we can only ensure that ρ|X has a u.c.p. lift for every finite-
dimensional operator system X ⊆ A, then we say that A has the local lifting
property (LLP) of Kirchberg.

We now show that, unlike WEP, not every e.c. C∗ algebra has the LLP. We
need a preparatory result giving an alternate characterization of CP-stability
for C∗ algebras in terms of an appropriate lifting property:

Proposition 2.42. Suppose that A is a separable unital C∗ algebra. Then
A is CP-stable if and only if A has the local ultrapower lifting property
(LULP), namely, for every unital C∗ algebra B, every nonprincipal ultrafilter
ω on N, every u.c.p. map φ : A→ Bω, and every finite-dimensional operator
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system E ⊆ A, there are u.c.p. maps φn : E → B such that φ|E = (φn)•. In
particular, every separable C∗ algebra with the LLP is CP-stable.

Proof. First assume that A is CP-stable and fix a u.c.p. map φ : A → Bω.
Fix a finite-dimensional operator system E ⊆ A. Fix n ≥ 1. By CP-stability,
there are finite-dimensional E′ ⊇ E and m, ε such that, for any unital map
ψ : E′ → C into any unital C∗-algebra C with ‖ψ‖m < 1 + ε, there exists a
u.c.p. map θ : E → C so that ‖ψ|E − θ‖ < 1

2n . Write φ|E′ = (ψk)•, where
each ψk : E → B is a unital linear map. Since φ|E′ is u.c.p., for almost all
k we have that ‖ψk‖m < 1 + ε. It follows that, for almost all k, there is
u.c.p. map θ : E → B such that ‖ψk|E − θ‖ < 1

2n . Also, for almost all k, we
have ‖ψk|E − φ|E‖ < 2

n . Thus, there is a u.c.p. map φn : E → B such that
‖φn − φ|E‖ < 1

n . It follows that φ|E = (φn)•.
Conversely, suppose that A has the LULP and yet A is not CP-stable as

witnessed by some finite-dimensional E ⊆ X and some δ > 0. Let

E = E0 ⊆ E1 ⊆ E2 ⊆ · · ·
be an increasing sequence of finite-dimensional operator subsystems of A
whose union is dense in A. For each n ≥ 1, we have a unital linear map
φn : En → B(H) such that ‖φn‖n < 1 + 1

n and yet φn|E is not within δ of
a u.c.p. map E → B(H). Note that A is a subalgebra of

∏
ω En, so we may

define φ : A → B(H)ω by φ = (
∏
ω φn)|A. Since ‖φn‖n < 1 + 1

n for all n,
it follows that φ is u.c.p. By the LULP, there are u.c.p. ψn : E → B(H)
such that φ|E = (ψn)•. For almost all n, we have that ‖φn|E − ψn‖ < δ,
contradicting the fact that each φn is at least δ away from any u.c.p. map
E → B(H). �

Corollary 2.43. There exists a separable C∗ algebra that is not contained in
any CP-stable C∗ algebra. In particular, it is not the case that every separable
e.c. C∗ algebra is CP-stable, whence it follows that not every separable e.c.
C∗ algebra has the LLP.

Proof. Suppose that every separable C∗ algebra is contained in a CP-stable
C∗ algebra. Then by Proposition 2.39, we have that every C∗ algebra with
WEP is approximately injective, contradicting Corollary 3.1 of [19]. (See
Remark (iv) after the aforementioned corollary.) �

Corollary 2.44. Assuming KEP, Oω2 does not have the LLP, whence having
the LLP is not an elementary property.

Proof. Suppose, towards a contradiction, that Oω2 had LLP. Let A be a
separable e.c. C∗ algebra. Then Oω2 is weakly injective relative to A by
Lemma 2.30, whence we would have that A has LLP by [21, Corollary 2.6(v)].
Since A was an arbitrary separable e.c. C∗ algebra, we get a contradiction
to the previous corollary. �

Remark. If KEP holds, then a C∗ algebra A is semi-p.e.c. as an operator
system if and only if it is p.e.c. in Oω2 , in which case A has WEP. If one
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drops the KEP assumption but still assumes that A is p.e.c. in Oω2 , then
one can still conclude that A is WEP if one also assumes that A has the
LLP. Indeed, if A is p.e.c. in Oω2 , then Oω2 is weakly injective relative to A
by Lemma 2.30. By [21, Corollary 3.3(i)], `∞(O2) has WEP, whence Oω2 is
QWEP (quotient of a C∗ algebra with WEP). By [21, Corollary 3.3(iii)], it
follows that A is QWEP. Finally, by [21, Corollary 3.6(ii)], we have that A
is WEP.

3. Kirchberg’s embedding problem

3.1. General remarks. Kirchberg’s embedding problem (KEP) asks whether
every separable C∗ algebra embeds into an ultrapower of O2. As stated this
is a bit ambiguous as it’s not clear whether we are working in the unital or
nonunital category. It turns out that the unital and nonunital versions of
KEP are equivalent. Indeed, if every separable, unital C∗ algebra embeds
unitally into Oω2 , then by considering unitizations, we see that every separa-
ble C∗ algebra embeds into Oω2 . Conversely, suppose that every separable C∗
algebra embeds into Oω2 . Suppose that A is a separable, unital C∗ algebra
and f : A → Oω2 is a (not necessarily unital) embedding. Let p := f(1), a
projection in Oω2 . Notice then that f : A→ pOω2 p is a unital embedding. We
may write p = (pn)•, with each pn a projection in O2. Since pnO2pn ∼= O2

(unitally) for each n, we see that pOω2 p ∼= Oω2 (unitally).
In some sense, KEP is the C∗ analog of the Connes Embedding Problem.

We now want to point out an interesting difference between the two problems.
It is known that if M is a (separable) II1 factor that is Rω-embeddable and
α is an automorphism of M , then M oα Z is once again Rω-embeddable. It
turns out that the analogous statement for Oω2 -embeddability is equivalent
to KEP.
Definition 3.1. Let S denote the universal, separable UHF algebra. A C∗-
algebra A is said to be quasi-diagonal if there exists an embedding A→ Sω
which admits a c.c.p. lift (u.c.p. if A is unital).

This is not the usual definition, but is easily seen to be equivalent. Since S
embeds into O2, we see that quasi-diagonal C∗ algebras are Oω2 -embeddable.

For any C∗-algebra A consider the C∗-algebra C0(R) ⊗ A, which is the
same as the algebra C0(R, A) of all continuous functions f : R→ A for which
limx→±∞ f(x) = 0. Voiculescu proved that C0(R, A) and its unitization B
are always quasi-diagonal (see [31, Theorem 5]).

We now follow the argument given in [25, Theorem 6.3.11]. We let α be
the automorphism of C0(R, A) given by α(f(t)) = f(t + 1) and extend α
to an automorphism (also denoted α) of B. We then have that K ⊗ A ∼=
C0(R, A) oα Z ⊆ B oα Z. Thus, if Oω2 -embeddable (even quasidiagonal)
algebras remain Oω2 -embeddable after taking a cross product with Z, then
every separable C∗ algebra embeds into Oω2 . We just proved:
Proposition 3.2. KEP is equivalent to the statement that the class of Oω2 -
embeddable algebras is closed under crossed products by Z.
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As in the case of CEP, KEP is equivalent to the statement that Th∃(O2) ≤
Th∃(A) for every C∗ algebra A. The following model-theoretic equivalents
of KEP are somewhat deeper.

Theorem 3.3. The following are equivalent:
(1) KEP;
(2) O2 is existentially closed;
(3) there is an exact e.c. C∗ algebra.

Proof. By Lemma 2.10, O2 is an e.c. model of its universal theory; KEP
implies that every (unital) C∗ algebra is a model of the universal theory of
O2, whence O2 is actually e.c. in the class of all (unital) C∗ algebras. For
the converse, note that e.c. C∗ algebras have the same existential (even ∀∃)
theories, so if A is a separable C∗ algebra embedded into the e.c. C∗ algebra
B, we have

Th∃(O2) = Th∃(B) ≤ Th∃(A),
whence A embeds into an ultrapower of O2. (2) implies (3) is trivial and the
converse follows from Theorem 2.13 and Proposition 2.18. �

Remark. The preceding theorem yields yet another reformulation of KEP,
namely that KEP is equivalent to the assertion that every separable nuclear
C∗ algebra is contained in a separable e.c. nuclear C∗ algebra. Moreover,
KEP is also equivalent to the assertion that every separable exact C∗ algebra
is contained in a separable e.c. exact C∗ algebra.

Remark. Suppose A is a C∗-algebra which is an e.c. model of its universal
theory. Let KEPA be the statement, “every separable C∗-algebra embeds in
an ultrapower of A.” Then as in the previous theorem KEPA is equivalent
to A being existentially closed. In particular, if A is strongly self absorbing,
then it follows easily from Proposition 2.19 that KEPA is known to be false
unless A ∼= O2. Is there an operator algebraic proof of this fact (even just
for the case A = O∞)?

3.2. Good nuclear witnesses. Following [11], for a C∗ algebra A and an
m-tuple a from A, define

∆A
nucm(a) := inf

F,φ,ψ
max
i≤m
‖(ψ ◦ φ)(a)− a‖,

where F ranges over all finite-dimensional C∗ algebras, φ ranges over all cpc
maps φ : A→ F and ψ ranges over all cpc maps ψ : F → A. So A is nuclear
if and only if ∆A

nucm(a) = 0 for all m and all m-tuples a from A. Note that,
if A ⊆ B and a is an m-tuple from A, we have ∆B

nucm(a) ≤ ∆A
nucm(a) as

every cpc map φ : A→ F can be extended to one B → F .

Fact 3.4 ([11]). For each m ≥ 1, there are existential formulae Φm,n(x),
with x and m-tuple of variables, such that, for any C∗ algebra A and any
m-tuple a from A, we have

∆A
nucm(a) = inf

n
Φm,n(a).
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Remark. The above fact gives a simpler (albeit less elementary) proof of the
fact that if A and B are simple unital C∗ algebras and A is e.c. in B, then B
nuclear implies A nuclear. Indeed, suppose that A is not nuclear. Then there
is somem and some k ≥ 1 such that the partial type {Φm,n(x) ≥ 1

k : n ≥ 1}
is realized in A, say by a ∈ A. Since each Φm,n(x) is existential and since
A is e.c. in B, we have that ΦB

m,n(a) ≥ 1
k for each n ≥ 1, whence B is not

nuclear.

Let us define a condition to be a finite set p of expressions of the form
ϕ(x) < r, where ϕ(x) is quantifier-free and r is a positive real number. We
say that a tuple a from a C∗ algebra A satisfies the condition p if ϕ(a)A < r
for every condition ϕ(x) < r in p. Note that a condition is satisfiable if and
only if it is satisfied in B(H) for separable H.

In order to motivate the main result of this section, let us first note the
somewhat easy equivalent reformulation of KEP:

Proposition 3.5. The following are equivalent:
(1) KEP;
(2) every satisfiable condition is satisfied in a nuclear C∗ algebra;
(3) every satisfiable condition is satisfied in an exact C∗ algebra.

Proof. First suppose that KEP holds and that p(x) is a condition. Suppose
that a is a tuple from a C∗ algebra A satisfying p. Without loss of generality,
we may suppose that A is separable. Suppose p(x) = {ϕi(x) < ri : i =
1, . . . ,m}. Let si := ϕi(a) < ri. Let σ(x) := max1≤i≤m(ϕi(x) −. si). Then
since A is embeddable in Oω2 , we have (infx σ(x))O2 = (infx σ(x))O

ω
2 = 0.

Thus, if ε > 0 is small enough such that si + ε < ri for each i, then by
choosing b ∈ O2 such that σ(b) < ε, we have that b satisfies p(x) and (2)
holds.

Clearly (2) implies (3). Finally, suppose that (3) holds. We want Th∃(O2) ≤
Th∃(A) for every (separable) C∗ algebra A. Suppose that σ := infx ϕ(x) is
an existential sentence and r := σA. Fix ε > 0 and consider the condition
p(x) := {ϕ(x) < r + ε}. Since p(x) is realized in A, there is an exact C∗
algebra B such that p(x) is realized in B, say by a ∈ B. Let B1 be the
subalgebra of B generated by a. Then B1 is separable, exact, so embeds in
O2 by Kirchberg’s Exact Embedding Theorem (see [25, Theorem 6.3.11]). It
follows that p(x) is realized in O2, so σO2 ≤ r+ ε. Since ε was arbitrary, we
get that σO2 ≤ r. �

The idea is to now weaken the hypothesis in (2).

Definition 3.6. Let us say that a satisfiable condition p(x) has good nuclear
witnesses if, for every ε > 0, there is a C∗ algebra A and a tuple a from A
that realizes p(x) and such that ∆A

nuc(a) < ε.

Theorem 3.7. The following are equivalent:
(1) KEP;
(2) every satisfiable condition has good nuclear witnesses.
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Proof. (1) implies (2) follows from the previous theorem. We now show (2)
implies (1). The idea is to use a version of the Omitting Types Theorem for
continuous logic. The version we use is Corollary 4.7 from [2]; for the sake
of the reader, we include the formulation of this result in Appendix A.

Let ϕm,k be the infinitary sentence supx ∆nucm(x). (Yes, we know that k
doesn’t appear in ϕm,k.) Let rmk

:= 1
k . Then assumption (2) implies that

p ∪ {∆nucm(x) < 1
k} is satisfiable for any satisfiable condition p. Thus

the Omitting Types theorem applies and gives us a canonical structure
M (also defined in Appendix A) such that ϕMm,k ≤

1
k for every m, k, i.e.

supx ∆M
nucm(x) = 0 for all m.

The proof of the Omitting Types Theorem in [2] shows that the afore-
mentioned canonical structure M is a so-called finitely generic structure. In
particular, M is existentially closed! (This is well-known in classical logic;
see [20, Theorem 8.13] for a proof. We give a proof of this in the continuous
case in Appendix A.) It follows that M is existentially closed and nuclear,
whence KEP holds (and in fact M must be O2!).

�

At this point two remarks are in order. First, define a basic condition to be
a finite set of formulae of the form |‖t(x)‖−r| < ε for some *polynomial t(x)
and some r and ε. We claim that in the above proof it is enough to ask that
satisfiable basic conditions have good nuclear witnesses. Indeed, suppose
that satisfiable basic conditions have good nuclear witnesses and that p is a
satisfiable condition. Let a be a tuple satisfying p in B(H). The quantifier-
free formulae in p are of the form f(ϕ1, . . . , ϕn), where each ϕi of the form
‖t(x)‖ for some term t. Let t1, . . . , tm enumerate all terms appearing in the
q.f. formulae in p and let ri := ‖ti(a)‖. Then for each δ > 0, by assumption
the satisfiable basic condition asking that |‖ti(x)‖− ri| < δ has good nuclear
witnesses. If we choose δ small enough, such witnesses also witness p.

Second, let us remark that good nuclear witnesses can be reformulated in
an a priori weaker way, namely that, for every satisfiable condition p and
ε > 0, there is a tuple a in B(H) witnessing p and such that there are cpc
maps φ : S →Mk and ψ : Mk → B(H) for which ‖(ψ ◦φ)(a)−a‖ < ε, where
S is the operator system generated by a. Indeed, if this is the case, let A be
the C∗ algebra generated by a and the image of ψ. We can then extend φ to
a cpc map φ : A→Mk and it remains to notice that ψ takes values in A.

It is useful to define a local version of good nuclear witnesses. For a tuple a
in a C∗-algebra, we define the “quantifier-free type” of a to be the subset of all
conditions p(x) for which it holds that ϕ(a)A < r for all “ϕ(x) < r” ∈ p. We
say that the tuple a has good nuclear witnesses if for every ε > 0 and every
condition p(x) in the quantifier-free type of a, there is a tuple a′ ∈ B(H)
which satifies p with ∆B(H)

nuc (a′) < ε. In other words, there exists a sequence
(an) of tuples in B(H) so that ∆B(H)

nuc (an) < 1/n and so that the obvious map
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a 7→ (ai)• extends to an embedding of C∗(a) into B(H)ω. Naturally, we will
say that a C∗-algebra A admits good nuclear witnesses if every finite tuple
a ∈ A does. By the previous remark, every satisfiable condition has good
nuclear witnesses if and only if every (separable) C∗-algebra has good nuclear
witnesses. Additionally, it follows by the same argument as in Theorem 3.7
that A admits good nuclear witnesses if there is a nuclear C∗-algebra which
is an e.c. model of the universal theory of A.

We can see that having good nuclear witnesses is an a priori weaker prop-
erty than Oω2 -embeddability, though it shares many of the key properties,
e.g., being closed under substructure, tensor products, and (full) free prod-
ucts. A very natural question to ask then is whether the local version of
Theorem 3.7 holds:

Question 3.8. Does a separable C∗-algebra A have good nuclear witnesses
if and only if it is Oω2 -embeddable?

For an exact C∗-algebra A there is a well-developed notion of entropy for
an action on A by an automorphism due to Voiculescu and Brown (see [4]).

Question 3.9. Can one extend this to an entropy theory for actions by auto-
morphisms for the class of C∗-algebras which admit good nuclear witnesses?

Since KEP is equivalent to permanence of the class of Oω2 -embeddable C∗-
algebras under crossed products by general automorphisms, such an entropy
theory could provide important insight into this problem.

We now remark on the connection between good nuclear witnesses and
the phenomena of soficity/hyperlinearity for discrete groups. See [24] for
an introductory treatment of this topic. To recall, a discrete group is said
to be sofic if it is embeddable in a metric ultraproduct of finite symmetric
groups equipped with the Hamming distance. The closest known analog
of soficity in the category of C∗-algebras is the embeddability of C∗r (G) in
a C∗-ultraproduct of matrix algebras (in which case C∗r (G) admits good
nuclear witnesses). In contrast with soficity few groups are known to satisfy
the latter, though it is an open problem whether these two properties are
equivalent.

From such observations it is reasonable to draw a loose analogy between
KEP and the open problem of whether every discrete group is sofic. We
venture to make this slightly more precise.

Question 3.10. Does a stably finite C∗-algebra have good nuclear witnesses
if and only if it embeds in an ultraproduct of matrix algebras? For a discrete
group G are either of these conditions on C∗r (G) equivalent to soficity?

As very preliminary evidence, we note that if G embeds in an ultraprod-
uct

∏
ωHn of discrete amenable groups (whence G is sofic), then the faithful

unitary representation π of G induced by the embedding extends to an em-
bedding C∗(π(G)) →

∏
ω C
∗(Hn), whence C∗(π(G)) admits good nuclear

witnesses. In fact it is easy to see that π weakly contains the left-regular
representation, so C∗r (G) is quotient of C∗(π(G)).
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Finally, we remark on the formulation of an operator system version
of KEP. It is not hard to see that KEP implies that every separable C∗-
algebra A (equivalently, every separable operator system) has a complete
order embedding as an operator system in Sω, i.e., there is a u.c.p. embed-
ding φ : A→ Sω so that φ−1 : φ(A)→ A is also u.c.p. (Recall that S is the
universal, separable UHF C∗ algebra.) However, it is easy to see that this
fact holds without assuming KEP. Indeed, fix a separable operator system
E realized concretely in B(H) for a separable Hilbert space H. Choose an
increasing sequence (pn) of finite rank projections in H converging strongly
to the identity. Then the map x 7→ (pnxpn)• : E →

∏
ωMr(n)(C) ⊂ SU is a

complete order embedding, where r(n) := rank(pn).
In [13], the authors call a modelM of some theory T locally universal if

every model of T embeds in an ultrapower of M; equivalently, if Th∀(N )
is dominated by Th∀(M) for every N |= T . Thus CEP (resp., KEP) asks
whether or not R is locally universal for the theory of tracial von Neumann
algebras (resp., whether or not O2 is locally universal for the theory of C∗
algebras). By abstract model theory, one can show that there is a locally
universal object in each of the classes of tracial von Neumann algebras, C∗
algebras, and operator systems. In the former two cases, we cannot identify
a concrete locally universal object, whereas the previous paragraph shows
that S is a locally universal operator system.

Since R embeds into any II1 factor, we see that CEP is equivalent to
Th∀(M) = Th∀(R) for each II1 factor R. This motivates us to ask the
following:

Question 3.11. Is Th∀(S) the unique universal theory of infinite-dimensional
operator systems?

4. Tubularity

In what follows, we will be considering maps ρ : A → Bω. Given such a
map ρ, we define maps ρi : A → B in such a way that ρ(a) = (ρi(a))•. Of
course the maps ρi are not uniquely defined. If ρ(1) = 1, we can (and will)
always suppose that ρi(1) = 1.

Following Jung [18], we make the following definition.

Definition 4.1. Let A and B be unital C∗-algebras. A u.c.p. map ρ =
(ρi)• : A→ Bω is tubular if for any finite subset F ⊂ A and any δ > 0 there
exists k so that there are u.c.p. maps φi : B → Mk(C), ψi : Mk(C) → B so
that ‖ρi(x)− (ψi ◦ φi) ◦ ρi(x)‖ < δ for all x ∈ F and for almost all i.

Remarks.

(1) Tubularity does not depend on the representative sequence (ρi)•.
(2) Tubular maps are nuclear.
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(3) If B is nuclear, then for any embedding θ : A → B, the “diagonal”
embedding θω : A→ Bω obtained by composing θ with the diagonal
embedding B → Bω is tubular.

Lemma 4.2. Suppose that A is separable and there exists B and an elemen-
tary tubular embedding ρ : A→ Bω. Then A is nuclear.

Proof. We already showed above that if a C∗ algebra admits an existential
nuclear embedding into another algebra, then it is nuclear. �

Nuclear maps on separable C∗-algebras are always liftable by a result
of Choi and Effros (see [25, 6.1.4]). We are able to offer an alternative
quantitative proof in the tubular case.

Proposition 4.3. Let A be a unital, separable C∗-algebra. If the u.c.p. map
ρ = (ρi)• : A→ Bω is tubular, then there is a u.c.p. lift (ρ̃i : A→ B) which
may furthermore be chosen so that ρ̃i is finite rank almost everywhere.

Proof. For E a finite-dimensional unital operator subspace of A, let ρEi de-
note the restriction of ρi to E. It suffices to show that, for any such E and any
ε > 0, there exists r ≥ 1 and, for almost all i, u.c.p. maps σi : E → Mr(C)
and τi : Mr(C) → B so that ‖τi ◦ σi − ρEi ‖ ≤ ε. Indeed, we may then use
Arveson extension to extend each σi to a u.c.p. map σ̃i : A → Mr(C) and
then set ρ̃Ej = τj ◦ σ̃j : A → B. Letting E ⊂ A be an arbitrary finite-
dimensional operator subspace and letting ε tend to 0, we have constructed
the requisite u.c.p. lift (ρ̃i : A→ B) of ρ.

Fix once and for all ε > 0 and F ⊂ A a finite set of self-adjoint elements,
and let E ⊂ A be the finite-dimensional operator system spanned by F and
1. Restricting ρi to the finite-dimensional space E, we may assume without
loss of generality that each ρEi is unital, linear, and ∗-linear. (Choose a basis
1, v1, . . . , vn of E, and replace ρi with ρ′i which is the linear extension of
ρ′i(1) = 1, ρ′i(vj) = (ρi(vj) + ρi(v∗j )

∗)/2. Since ρi converges pointwise to a
unital, ∗-linear map ρ, thus uniformly on bounded subsets of E, so does ρ′i.)

Since ρ itself is u.c.p. and E is finite-dimensional, it must be the case
that for each n, limU ‖ρEi ⊗ idMn(C) ‖ ≤ ‖ρ‖cb = 1. Choose In ∈ ω so
that supi∈In ‖ρ

E
i ⊗ idMn(C) ‖ ≤ 1 + ε/2. Since ρ is tubular, there exists r

and J ⊂ Ir generic so that there are u.c.p. maps φj : B → Mr(C) and
ψj : Mr(C)→ B so that ‖(ψj ◦φj) ◦ ρEj − ρEj ‖ < ε/2 for j ∈ J . Consider the
map σ′j := φj ◦ ρEj : E →Mr(C). By Smith’s lemma ([23, Proposition 8.11])
we have that

‖σ′j‖cb = ‖σ′j ⊗ idMr(C) ‖ ≤ ‖φj‖cb · ‖ρEj ⊗ idMr(C) ‖ ≤ 1 + ε/2.

By [25, Lemma 6.1.7], for each j ∈ J , there exists u.c.p. σj : E →Mr(C) so
that ‖σj−σ′j‖cb ≤ ε/2. Setting τj = ψj , we see that (σj , τj) are the required
pairs of u.c.p. maps.

�
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Proposition 4.4. Let A be a unital, separable C∗-algebra, and let B be
unital, nuclear. Suppose ρ : A → Bω is the unique embedding up to unitary
conjugacy. Then ρ is tubular.

Proof. Let 1 ∈ F ⊂ A be any finite subset of self-adjoint elements. We denote
byXA(F, n, ε) the set of unital maps ϕ : F → B so that ‖p(ϕ(F ))‖ ∼ε ‖p(F )‖
for any non-commutative polynomials p(X) =

∑
i ciX

α(i) of degree n in |F |
variables with

∑
i |ci| ≤ 1. Let 1 ∈ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · be a sequence

of finite subsets of self-adjoint elements of (Asa)1 so that
⋃
n Fn is dense in

(Asa)1 and generates A as a C∗-algebra.

Claim: ρ = (ρi)• is the unique embedding up to unitary conjugacy if and
only if for any δ,m, there exists k, n, ε so that for any l ≥ k and ξ, η ∈
XA(Fl, n, ε) there is a unitary u ∈ U(B) so that ‖uξ(x)u∗− η(x)‖ < δ for all
x ∈ Fm.

Proof of Claim: Note that two embeddings (ρi)ω and (ρ′i)ω of A are unitar-
ily conjugate in Bω if and only if they are approximately unitarily conjugate
if and only if for every F ⊂ A finite and δ > 0 there is a sequence of uni-
taries ui ∈ U(B) so that limω maxx∈F ‖ρi(x)−u∗i ρ′i(x)ui‖ < δ. Consider two
embeddings ρ = (ρi)ω, ρ′ = (ρ′i)ω. Let F be any finite subset of self-adjoint
elements in (Asa)1 and choosem sufficiently large so that F ⊂δ/2 Fm. For the
k, n, ε corresponding to m, δ/2 we have that ρi, ρ′i ∈ XA(Fk, n, ε) for almost
every i, so there exist unitaries ui ∈ U(B) so that ‖ρi(x)−u∗i ρ′i(x)ui‖ < δ/2
for all x ∈ Fm and almost every i. It follows that ‖ρi(x) − u∗i ρ′i(x)ui‖ < δ
for all x ∈ F and almost every i.

Conversely, suppose there exist m, δ so that for all k, n, ε there is l ≥ k
and ξl, ηl ∈ XA(Fl, n, ε) so that infu∈U(B) maxx∈Fm ‖ξl(x) − u∗ηl(x)u‖ ≥
δ. Since Fm is finite, by sparsfying, we can find a sequence (lp ≥ p) so
that there are ξlp , ηlp ∈ XA(Flp , p, 1/p) so that infu∈U(B) maxFm ‖ξlp(x) −
u∗ηlp(x)u‖ ≥ δ. The embeddings ξ = (ξlp)p∈ω and (ηlp)p∈ω then cannot be
unitarily conjugate.

Let F be a finite subset of (Asa)1. For such δ/8, fix ξ ∈ XA(Fl, n, ε) for l
sufficiently large so that F ⊂δ/8 Fl. Then, since ρi ∈ XA(Fl, n, ε) for almost
every i, there are unitaries ui ∈ B so that ‖uiξ(x)u∗i − ρi(x)‖ < δ/8. By
the nuclearity of B, we can find for some k u.c.p. maps φ : B → Mk(C)
and ψ : Mk(C) → B so that ‖ξ(x) − (ψ ◦ φ) ◦ ξ(x)‖ < δ/8 for all x ∈ Fl.
Setting φi(x) = φ(u∗ixui) and ψi(x) = uiψ(x)u∗i , we obtain pairs (φi, ψi)
which are an (F, δ)-witness for tubularity. Since F and δ were arbitrary, we
are done. �

Corollary 4.5. Suppose that A is a unital, separable C∗-algebra, B is a nu-
clear C∗ algebra, and suppose that there is a unique embedding up to unitary
conjugacy A→ Bω. Then A is exact.
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Corollary 4.6. Let D be unital, separable, simple, and O2-stable. If D has
a unique embedding into Oω2 up to unitary conjugacy, then D is elementarily
equivalent to O2 if and only if D ∼= O2.

Proof. If D is a separable model of Th(O2) and has a unique embedding into
Oω2 up to unitary conjugacy, then that embedding is tubular and elementary
(since Oω2 is an ℵ1-saturated model of its theory), whence D is nuclear and
thus isomorphic to O2. �

Question 4.7. Let B be unital, separable, exact, (simple?). Does B ⊗ O2

have a unique embedding into Oω2 up to unitary conjugacy? Are any two
embeddings B → O′2 ∩ Oω2 unitarily conjugate?

5. Some model theory of O2

In this section, we use our earlier results to initiate a model theoretic study
of the theory of O2. First, recall that a structure M is the prime model of
its theory if it embeds elementarily into all models of Th(M).

Proposition 5.1. O2 is the prime model of its theory.

Proof. Suppose that A |= Th(O2) is separable. Then A is O2-stable, whence
A contains a copy of O2. We then have O2 ⊆ A ↪→ Oω2 , where the embedding
of A into Oω2 is elementary; since the composition O2 ↪→ Oω2 is elementary,
we get that the embedding O2 ⊆ A is elementary. �

Notice that O2 is not a minimal model of its theory, that is, it has proper
elementary submodels. Indeed, the embedding id⊗1:O2 ↪→ O2 ⊗ O2 is ele-
mentary.

Corollary 5.2. Every elementary submodel of O2 is isomorphic to O2.

Proof. An elementary submodel of O2 is necessarily a prime model; since
prime models are unique up to isomorphism, we are done. �

We can say even more:

Proposition 5.3. Suppose that A is a subalgebra of O2 that is e.c. in O2.
Then A is isomorphic to O2 and A � O2.

Proof. Since being O2 stable is ∀∃-axiomatizable (Fact 2.8) and O2 is O2-
stable, we have that A is O2-stable. On the other hand, A is exact and e.c.
in O2, whence A is simple (Fact 2.8) and nuclear (Theorem 2.14) and thus
A⊗O2

∼= O2. It follows that A ∼= O2. Since any embedding of O2 into itself
is elementary, we have that A � O2. �

Recall that a theory is ω-categorical if it has a unique (up to isomorphism)
separable model.

Proposition 5.4. Th(O2) is not ω-categorical. In fact, there must exist a
nonexact separable model of Th(O2).
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Proof. Let A := C∗(F2). Since A is quasidiagonal, A is Oω2 -embeddable.
Without loss of generality, assume that A is a subalgebra of Oω2 . Let O′2 be
a separable elementary substructure of Oω2 containing A. Then O′2 is not
exact, else A is exact. �

Remark. If KEP holds, then there are uncountably many nonisomorphic
separable models of Th(O2). Indeed, suppose that there are only countably
many separable models of Th(O2) up to isomorphism. KEP implies that
every separable C∗ algebra embeds into some such model, whence as in the
proof of Proposition 2.3 their tensor product is a universal separable e.c. C∗
algebra.

Question 5.5. Can Th(O2) have an exact, nonnuclear model? (We already
know that O2 is the only separable, nuclear model of its theory.) More gen-
erally, do the axioms for being simple and O2-stable axiomatize Th(O2)?

We suspect the answer to both of these questions is: no. In connection
with this, we now establish that a positive answer to the latter question
implies a strong form of KEP is true.

Lemma 5.6. Suppose that A is a simple, O2-stable C∗ algebra that is ele-
mentarily equivalent to a nuclear algebra. Then A ≡ O2.

Proof. Suppose that A ≡ N where N is nuclear. Since A is simple and
purely infinite, we have that N is simple and purely infinite. Passing to a
separable elementary substructure of N (which preserves the nuclearity of
N by Theorem 2.14), we may further assume that N is separable. Since N
is separable, simple, and nuclear, we have that N ⊗ O2

∼= O2; since N is
O2-stable, we conclude that N ∼= O2. �

Proposition 5.7. KEP is equivalent to the statement that there is an e.c.
C∗ algebra that is elementarily equivalent to a nuclear algebra.

Proof. The forward direction follows from our earlier characterization of
KEP, namely that O2 is e.c. Now suppose that A is e.c., N is nuclear,
and A ≡ N . By the Downward Löwenheim–Skolem theorem, we can assume
that A is separable. Since A is simple and O2-stable, it follows from Lemma
5.6 that A ≡ O2. Since O2 is a prime model of its theory, O2 embeds el-
ementarily into A; since A is e.c., it follows that O2 is e.c., whence KEP
holds. �

Corollary 5.8. The following statements are successively weaker:
(1) simplicity and O2-stability axiomatize Th(O2);
(2) every e.c. C∗-algebra has the same theory as O2;
(3) KEP is true.

Proof. The former implication is trivial, while the latter implication follows
directly from the previous proposition. �
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We remark that Lemma 5.6 has some interest independent of its use in
the proof of Proposition 5.7. In [6], the authors ask if every C∗ algebra
is elementarily equivalent to a nuclear one. In [11], they give examples
of C∗ algebras which are not elementarily equivalent to nuclear algebras.
Moreover, all of their counterexamples admit traces. In [10], the author asks
for an example of an exact, nonnuclear C∗ algebra that is not elementarily
equivalent to a nuclear one. Thus, if A is a simple, O2-stable C∗ algebra that
is not elementarily equivalent to O2, then A is not elementarily equivalent to
a nuclear algebra, providing a completely different type of counterexample
to the question posed in [6]. Moreover, if A is also exact, then we also have
a solution to the question posed in [10].

Recall that a theory is model-complete if all of its models are existentially
closed models of T . In [16], the authors show that if CEP holds, then
Th(R) is not model-complete; in [14], the authors show that Th(R) is not
model-complete without assuming CEP. We now show that KEP implies
Th(O2) is not model-complete. The argument follows the same strategy as
the argument in [14]; the dependence on KEP is needed to ensure that taking
a crossed product by Z retains Oω2 -embeddability.

Proposition 5.9. If KEP holds, then Th(O2) is not model-complete.

Proof. Let B be a separable model of Th(O2). We claim that all embeddings
of B into Oω2 are unitarily conjugate. If this is the case, then by Proposition
4.4, the unique embedding (up to unitary conjugacy) is tubular. Since this
embedding is also elementary, we get that B is nuclear, whence isomorphic
to O2, contradicting that Th(O2) is not ω-categorical.

We now prove the claim. Suppose that f, g : B → Oω2 are embeddings.
Let (bi)i∈N be a countable dense subset of B. It suffices to find, for any
i ∈ N, a unitary u in Oω2 such that d(u∗f(bj)u, g(bj)) < 1

i for all j ≤ i.
Since f and g are elementary (as Th(O2) is model-complete), we have that
tpO

ω
2 (f(b1) · · · f(bi)) = tpO

ω
2 (g(b1) · · · g(bj)), whence there is an elementary

extension O′2 of Oω2 and an automorphism α of O′2 such that α(f(bj)) = g(bj)
for j ≤ i. By model-completeness, O′2 is an e.c. model of its theory; by KEP,
we have that α is approximately inner, and by elementarity, the desired
unitary exists in Oω2 . �

Recall that a model complete theory T is the model companion of another
theory T0 if every model of T embeds in a model of T0 and every model of
T0 embeds in a model of T . If T0 is universally axiomatizable (e.g., when T0

is the theory of unital C∗ algebras), then the model companion of T0 exists
if and only if the class of e.c. models of T is an axiomatizable class.

Corollary 5.10. KEP implies that the theory of unital C∗ algebras does not
have a model companion.

Proof. Suppose that T is a model companion for the theory of C∗ algebras.
Since the class of unital C∗ algebras has the amalgamation property, T has
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quantifier-elimination. Since any two models of T have a common substruc-
ture, namely C, we see that T is complete. By KEP, O2 is e.c., whence a
model of T . Thus, T = Th(O2), contradicting the fact that KEP implies
that Th(O2) is not model-complete. �

There are two goals that we have not achieved outright: proving that
Th(O2) is not model-complete and showing that O2 is the only exact model
of its theory. The following proposition shows that at least one of these goals
is going to be achieved.

Proposition 5.11. If Th(O2) is model-complete, then B⊗O2 6≡ O2 for any
simple, exact, nonnuclear B.

Proof. Suppose that B is simple, exact, and nonnuclear. We then have that
B ⊗ O2 embeds into O2. If B ⊗ O2 were elementarily equivalent to O2,
then that embedding would be elementary, whence, as B ⊗ O2 is simple,
we would have that B ⊗O2 is nuclear as well, whence B would be nuclear,
a contradiction. (To see that B is nuclear, just compose with a slice map.
Alternatively, if B ⊗ O2 is nuclear and elementarily equivalent to O2, then
B ⊗O2

∼= O2, whence B is nuclear.) �

Proposition 5.12. Suppose that A is a simple, purely infinite, Oω2 -embeddable
C∗ algebra with trivial K0 such that Th(A) is ∀∃-axiomatizable (e.g., Th(A)
is model complete). Then A ≡ O2.

Proof. This follows from the usual “sandwiching” trick. By [25, Proposition
4.2.3(ii)], we have that O2 ↪→ A. Now embed A ↪→ Oω2 and do the union of
chains argument as in, for example, Proposition 3.2 in [16]. The union will
be elementarily equivalent to both O2 and A. �

We now offer one possible approach for obtaining an answer to Question
5.5. Let us say that a C∗ algebra A is stably presented if there are a finite
set of generators G and a finite set of weakly stable relations R such that
A = C∗(G|R). (See [3, II.8.3])

Lemma 5.13. Suppose that A is simple, stably presented, and Bω-embeddable
for some nuclear B. Then A is exact.

Proof. By assumption, there is a ∗-homomorphism A → B. Since A is
simple, this ∗-homomorphism is an embedding; since B is nuclear, it follows
that A is exact. �

Proposition 5.14. O2 is the only stably presented model of its theory.

Proof. Suppose that A is a stably presented model of Th(O2). It is enough
to show that any two embeddings f, g : A→ Oω2 are unitarily conjugate, for
then the unique (elementary) embedding of A into Oω2 is tubular, whence A
is nuclear and hence isomorphic to O2. Let x1, . . . , xk denote the generators
of A and, for i = 1, . . . , k, let (yi,n)•, (zi,n)• ∈ Oω2 denote f(xi) and g(xi).
By weak stability, we may assume that, for each n, y1,n, . . . , yk,n generates
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a copy of A in O2; likewise, that z1,n, . . . , zk,n generates a copy of A in
O2. Since A is simple, we get embeddings fn, gn : A → O2 obtained by
defining fn(xi) := yi,n, gn(xi) := zi,n. Moreover, by correcting that each
fn and gn send 1A to a projection that is within 1 of the identity of O2,
we may assume that each fn and gn are unital embeddings. Since any two
unital embeddings of A in O2 are approximately unitarily conjugate (see [25,
Theorem 6.3.8(ii)]), we get unitaries un ∈ O2 such that, for each i = 1, . . . , k,
we have (u∗n)•(yi,n)•(un)• = (zi,n)•. It follows that f and g are unitarily
conjugate. �

Question 5.15. If A is stably presented, is A⊗O2 stably presented?

Question 5.16. Is there a simple, stably presented, nonnuclear A?

If both of these questions have affirmative answers, then for A simple,
stably presented, nonnuclear, we know that A⊗O2 is simple, O2-stable, and
stably presented, whence not a model of Th(O2), answering Question 5.5.

As a caveat to the above questions: note that if A is simple, stably pre-
sented, and Sω-embeddable (e.g., quasi-diagonal), then A is a matrix algebra.

Appendix A. Model-theoretic forcing

We work in a countable signature L and add countably many new constant
symbols C to the language. An L(C)-structure M is said to be canonical if
{cM : c ∈ C} is dense in M .

We fix a class K of structures and let K(C) denote the class of all structures
(M,ac)c∈C0 , where C0 is a finite subset of C. We treat such structures as
L(C0)-structures in the natural way.

Conditions are now finite sets of the form {ϕ1 < r1, . . . , ϕn < rn}, where
each ϕi is an atomic L(C)-sentence and there isM ∈ K(C) such that ϕMi < ri
for each i = 1, . . . , n. The partial order on conditions is reverse inclusion.
If p is a condition and ϕ is an atomic sentence of L(C), we define fp(ϕ) :=
min{r ≤ 1 |ϕ < r ∈ p}, with the understanding that min(∅) = 1. For a
condition p and an L(C)-sentence ϕ, we define the value Fp(ϕ) ∈ [0, 1] by
induction on ϕ.

• Fp(ϕ) = fp(ϕ) if ϕ is atomic.
• Fp(¬ϕ) = ¬ infq⊇p Fq(ϕ).
• Fp(1

2ϕ) = 1
2(ϕ).

• Fp(ϕ+ ψ) = Fp(ϕ) + Fp(ψ). (Truncated addition)
• Fp(infx ϕ(x)) = infc∈C Fp(ϕ(c)).

If r ∈ R and Fp(ϕ) < r, we say that p forces that ϕ < r, and write
p  ϕ < r.

Definition A.1. We say that a nonempty setG of conditions is generic if the
union of two elements of G is once again an element of G and for every L(C)-
sentence ϕ and every r > 1, there is p ∈ G such that Fp(ϕ) + Fp(¬ϕ) < r.
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It is proven in [2] that generic sets always exist. If G is generic and ϕ is
an L(C)-sentence, set ϕG := infp∈G Fp(ϕ).

Theorem A.2 (Generic Model Theorem). Let MG
0 denote the term algebra

T (C) equipped with the natural interpretation of the function symbols and
interpreting the predicate symbols by PM

G
0 (~τ) := P (~τ)G. Let MG be the

completion of MG
0 . Then MG is an L(C)-structure such that, for all L(C)-

sentences ϕ, we have ϕMG
= ϕG.

We say that an L-structure N is finitely generic for K if there is a generic
set G of conditions such that M is isomorphic to the L-reduct of MG. Note
that finitely generic structures exist as generic sets of conditions exist.

The following is a special case of the Omitting Types Theorem proven
in [2]. By a finite piece of K we mean a finite set of inequalities of the
form ϕ < r where ϕ is quantifier-free and such that the set of inequalities is
satisfiable in some structure in K.

Theorem A.3 (Omitting Types Theorem). Let (ϕn | n < ω) be a sequence
of L-sentences such that, for each n < ω, ϕn is of the form

sup
x1

· · · sup
xm(n)

ψn(x1, . . . , xm(n)),

where
ψn(x1, . . . , xm(n)) :=

∧
k<ω

inf
y1
· · · inf

yi(n,k)
σn,k(~xn, ~yn,k),

and where σn,k is quantifier-free, ~xn = x1, . . . , xm(n), and ~yn,k = y1, . . . , yi(n,k).
Let (rn | n < ω) be a sequence of real numbers such that, for every finite piece
p of K and every ~cn ∈ Cm(n), the set p ∪ {ψn(~cn) < rn} is satisfiable in K.
Then there exists a canonical L(C)-structure M such that ϕMn ≤ rn for every
n < ω. In fact, M is of the form MG for some generic set G.

In Section 3, we needed to know that generic models of ∀∃-axiomatizable
theories are e.c. models of the theory. The remainder of this appendix is
devoted to establishing this fact.

It will convenient for this discussion to slightly alter the definition of
atomic diagram of M . We set D(M) to be the set of conditions σ < r,
where σ is an atomic L(M)-sentence with σM = 0 and r ∈ (0, 1].

Lemma A.4. If T is a ∀∃-axiomatizable theory and K is the class of models
of T , then a structure finitely generic for K belongs to K.

Proof. Suppose that supx infy ϕ(x, y) = 0 is an axiom of T . Suppose that
M is isomorphic to the L-reduct of MG. Fix c ∈ C; it is enough to
show that (infy ϕ(c, y))M

G
= 0. Suppose, towards a contradiction, that

(infy ϕ(c, y))M
G

= ε > 0. Take p ∈ G such that

Fp(inf
y
ϕ(c, y)) + Fp(¬ inf

y
ϕ(c, y)) < 1 +

ε

2
.
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It follows that infq⊇p Fq(infy ϕ(c, y)) ≥ ε
2 . Now take N |= T ∪ p. Fix d ∈ C

not occurring in p. By redefining the interpretation of d in N if necessary,
we may assume that ϕ(c, d)N < ε

2 (since N |= T ). There is then a finite
fragment q of D(N) such that q |= ϕ(c, d) < ε

2 ; since N |= p, we may
as well assume that p ⊆ q. Suppose that G′ is generic set containing q;
then ϕ(c, d)M

G′
< ε

2 . It follows that there is q′ ⊇ q from G′ such that
Fq′(ϕ(c, d)) < ε

2 , a contradiction. �

Actually the above proof showed the following fact:

Corollary A.5. For any theory T , if M is finitely generic for the class of
models of T , then M |= T∀∃.

It will be convenient to introduce the analog of weak forcing:

Definition A.6. Fwp (ϕ) = supq⊇p infq′⊇q Fq′(ϕ).

Lemma A.7. If T is ∀∃-axiomatizable andM is finitely generic for the class
of models of T , then M is an e.c. model of T .

Proof. Suppose that M ⊆ N with N |= T and ϕ(x) is an L(C)-formula.
Suppose that (infx ϕ(x))N = r. Without loss of generality, r < 1. Fix ε > 0.
We must show that (infx ϕ(x))M < r+ε. Without loss of generality, we may
assume that M is the reduct of MG for some generic G. Suppose, towards
a contradiction, that (infx ϕ(x))M ≥ r + ε. Fix p ∈ G such that

Fp(inf
x
ϕ(x)) + Fp(¬ inf

x
ϕ(x)) < 1 +

ε

2
.

Our assumption then implies that Fp(¬ infx ϕ(x)) < 1 − r − ε
2 , whence

infq⊇p Fq(infx ϕ(x)) ≥ r + ε
2 .

Pick a constant c not appearing in either p or ϕ. Consider the L(C)-
structure N ′ obtained from N by interpreting constants appearing in p and
ϕ asM does while interpreting c in such a way so that ϕ(c)N

′
< r+ ε

2 . Notice
then that D(N ′) ∪ T |= ϕ(c) < r + ε

2 . By our choices and compactness, we
may choose a finite q ⊆ D(N ′) with p ⊆ q′ such that q ∪ T |= ϕ(c) < r + ε

2 .
We claim that Fwq (infx ϕ(x)) < r+ ε

2 . Indeed, fix q
′ ⊇ q. Consider generic G′

containing q′. By Lemma A.4. MG′ |= T , whence we have ϕ(c)M
G′
< r+ ε

2 .
This implies that there is q′′ ∈ G containing q′ such that Fq′′(ϕ(c)) < r+ ε

2 .
We have now arrived at the desired contradiction as

Fwq (inf
x
ϕ(x)) ≥ inf

q′⊇q
Fq′(inf

x
ϕ(x)) ≥ inf

q′⊇p
Fq′(inf

x
ϕ(x)) ≥ r +

ε

2
.

�

Appendix B. Operator spaces and systems in continuous logic

We first show how to axiomatize operator systems in continuous logic.
We work in the version of continuous logic presented in [12]. We think of an
operator system as a many sorted structure with sorts:
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• Mn(S), n ≥ 1, for the matrix algebras over S with domains of quan-
tification intended to be with respect to the matrix norm induced by
the matrix order;
• Cn, n ≥ 1, for the cones of positive elements, with domains of quan-
tification those inherited from Mn(S);
• Mm,n(C) for matrices over the complex numbers with domains of
quantification with respect to the operator norm;
• R≥0 with domains of quantification as usual.

Note that we use a separate sort for the algebras over S as the metric on
them is not merely the max metric induced by the metric on S.

Here are the symbols:
• The constant symbols 0, 1 ∈ S with domain D1(S);
• The function symbols

+ : Mn(S)×Mn(S)→Mn(S) and ∗ : Mn(S)→Mn(S).

• The function symbols l : C×Mn(S)→Mn(S).
• The function symbols fm,n : Mm,n(C)×Mm(S)→Mn(S) (intended
to be for fm,n(A,X) := A∗XA).
• The function symbols + : Cn → Cn, k : R≥0 × Cn → Cn and

gm,n : Mm,n(C)× Cm → Cn.
• Inclusions in : Cn →Mn(S).
• Function symbols hn : Mn(S)→M2n(S), intended to be for

hn(X) :=
(
I X
X∗ I

)
.

• Function symbols πijn : Mn(S)→ S, intended to be projection func-
tions. Likewise for scalar matrices.
• Predicate symbols ‖ · ‖n : Mn(S)→ R≥0.
• Function symbols for scalar matrix addition, multiplication and ad-
joint. Constant symbols for 1 and i.

In order to axiomatize operator systems in this language, we will need to
know the following two easy facts:

Lemma B.1. Suppose that S is a concrete operator system.
(1) If A ∈Mn(S), then

‖A‖ −. 1 ≤ d
((

I A
A∗ I

)
, C2n

)
≤
√

2(‖A‖ −. 1).

(2) If A ∈ Cn, then d(A,−Cn) = ‖A‖.

Proof. (1) This basically follows from a slightly more careful analysis of the
proof of [23, Lemma 3.1(i)]. Indeed, for x, y ∈ H, we have〈(

I A
A∗ I

)(
x
y

)
,

(
x
y

)〉
= 〈x, x〉+ 〈Ay, x〉+ 〈x,Ay〉+ 〈y, y〉.
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Now if ‖A‖ ≤ 1, then the right hand side of the above display is positive.
We may thus suppose that ‖A‖ > 1. Fix ε > 0 such that ‖A‖ − ε > 1 and
take y ∈ H with ‖y‖ = 1 such that ‖Ay‖ ≥ ‖A‖− ε. Set x := −Ay/‖Ay‖ so
that 〈Ay, x〉 = ‖Ay‖. Fix E ∈ C2n. We then have〈((

I A
A∗ I

)
− E

)(
x
y

)
,

(
x
y

)〉
≤ 2− 2‖Ay‖.

On the other hand,∣∣∣∣〈(( I A
A∗ I

)
− E

)(
x
y

)
,

(
x
y

)〉∣∣∣∣ ≤ 2
∥∥∥∥( I A
A∗ I

)
− E

∥∥∥∥ .
Thus, ∥∥∥∥( I A

A∗ I

)
− E

∥∥∥∥ ≥ ‖Ay‖ − 1 ≥ ‖A‖ − ε− 1.

The first inequality now follows by letting ε go to 0. For the other inequality,

set r := ‖A‖ and note that
(

I r−1A
r−1A∗ I

)
∈ C2n and that

d

((
I A
A∗ I

)
,

(
I r−1A

r−1A∗ I

))
=
∥∥∥∥( 0 (1− r−1)A

(1− r−1)A∗ 0

)∥∥∥∥ ≤ √2(r−1).

For (2), suppose that A,B ∈ Cn. Then, since A+B is hermitian, we have
that

d(A,−B) = ‖A+B‖ = sup{〈(A+B)x, x〉 : ‖x‖ = 1}.
Fix ε > 0 and take x ∈ H such that 〈Ax, x〉 > ‖A‖ − ε. We then have

d(A,−B) ≥ 〈〈(A+B)x, x〉 ≥ ‖A‖ − ε+ 〈Bx, x〉 ≥ ‖A‖ − ε.

We thus have d(A,−Cn) ≥ ‖A‖. But 0 ∈ Cn, so d(A,−Cn) = ‖A‖. �

Here are the axioms for Topsys:
• Each Mn(S) is a ∗-v.s. and the operations on Mn(S) are those in-
duced from S. For example, πijn (A + B) = πijn (A) + πijn (B) and
πijn (A∗) = πjin (A)∗.
• Axioms saying that each fm,n is interpreted as it should be.
• Axioms saying that each in is an isometric inclusion.
• supA∈Cn d(in(A), in(A)∗) = 0.
• Axioms saying that the operations of addition and scalar multiplica-
tion on Cn agree with those in Mn(S).
• Axioms saying that each hn is interpreted as it should be.
•

sup
A∈Mn(S)

max
(

(‖A‖n −. 1)−. d(hn(A), C2n), d(hn(A), C2n)−.
√

2(‖A‖n −. 1)
)

= 0.

• supA∈Cn supB∈Cn(‖A‖ −. d(A,−B)) = 0.
• Axioms saying that ‖ · ‖n is a seminorm.
• supA,B∈Mn(S) |d(A,B)− ‖A−B‖n| = 0.
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Note that a model of the axioms is naturally a matrix ordered ∗-vector
space. Moreover, it follows from the axioms that 1 is a matrix order unit.
Indeed, given X ∈Mn(S)h, there is r ∈ R>0 such that ‖X‖n ≤ r. It follows

that ‖1
rX‖n ≤ 1, so hn(1

rX) ∈ C2n whence
(
rI X
X rI

)
∈ C2n. By conjugating

with the vector of all I’s, we have that n(rI + X) ∈ Cn, whence it follows
that rI +X ∈ Cn.

It is not immediately clear that we get that 1 is an archimedean matrix
order unit. However, having an archimedean matrix order unit is only used to
show that the seminorms induced from the matrix order are actually norms
and that each Cn is closed in the topology induced by the norm. However, the
first fact follows from the connection between the seminorm and the metric
and the latter fact follows from the fact that Cn is required to be complete
as it is a sort in a metric structure.

Recall that an abstract operator system is a matrix-ordered ∗-vector space
with an archimedean matrix order unit. The Choi-Effros Theorem (see [23,
Theorem 13.1]) says that the notions of abstract operator system and con-
crete operator system coincide.

Theorem B.2. Every (abstract) operator system S is, in a natural way,
a model M(S) of Topsys. Conversely, every model of Topsys is an operator
system. The map S 7→M(S) is an equivalence of categories between the cat-
egory of operator systems with complete order isomorphisms and the category
of models of Topsys with (model-theoretic) isomorphisms.

Proof. By Lemma B.1, every concrete operator system is naturally a model
of Topsys; now use Choi-Effros. Conversely, a model of Topsys satisfies every
axiom for being an abstract operator system except perhaps for 1 being an
archimedean matrix order unit. However, since each Cn is closed, we can run
the proof of Choi-Effros and get that the model is completely order isomor-
phic to a concrete operator system, whence 1 must have been archimedean.
The rest is obvious. �

For operator spaces, one plays a similar, but even easier game. We have
sorts for

• Mm.n(V ), m,n ≥ 1, for the matrix algebras over V with domains of
quantification intended to be with respect to the matrix norms;
• Mp,q(C) for matrices over the complex numbers with domains of
quantification with respect to the operator norm;

Here are the symbols:
• The constant symbol 0 ∈ V with domain D1(V );
• The function symbol + : Mm,n(V )×Mm,n(V )→Mm,n(V ).
• The function symbols l : C×Mm,n(V )→Mm,n(V ).
• The function symbols

fp,m,n,q : Mp,m(C)×Mm,n(V )×Mn,q(C)→Mp,q(V )



ON KIRCHBERG’S EMBEDDING PROBLEM 39

(intended to be for fp,m,n,q(A,X,B) := AXB).
• Function symbols πijm,n : Mm,n(V ) → V , intended to be projection
functions. Likewise for scalar matrices.
• Function symbols ⊕m,n,p,q : Mm,n(V )×Mp,q(V )→Mm+p,n+q(V ).
• Predicate symbols ‖ · ‖m,n : Mm,n(V )→ R≥0.
• Predicate symbols ‖ · ‖m,n : Mm,n(C)→ R≥0.
• Function symbols for scalar matrix addition, multiplication and ad-
joint. Constant symbols for 1 and i.

Here are the axioms Tmns for matrix normed spaces:
• Each Mm,n(V ) is a vector space and the operations on Mm,n(V ) are
those induced from V .
• Axioms saying that each fp,m,n,q is interpreted as it should be.
• Axioms saying that ‖ · ‖m,n is a seminorm.
• supA,B∈Mm,n(V ) |d(A,B)− ‖A−B‖m,n| = 0.
• Axioms that tell us the norm of an element of Cn.
• supA∈Mm,n(C) supx∈Cn(‖Ax‖ −. (‖A‖ · ‖x‖)) = 0.
• For each r ∈ R>0,

sup
A∈Mm,n(C)

min
(
‖A‖ −. r, inf

x
max(‖x‖ −. 1, (r‖x‖ −. ‖Ax‖)

)
= 0.

• supA,X,B (‖fp,m,n,q(A,X,B)‖p,q −. (‖A‖p,m · ‖X‖m,n · ‖B‖n,q)) = 0.
The axioms for Tops are the axioms for Tmns plus the following axioms:
• supX,Y |‖X ⊕ Y ‖m+p,n+q −max(‖X‖m,n, ‖Y ‖p,q)| = 0.

Then by Ruan’s Theorem (see [23, Theorem 13.4]), we have:

Theorem B.3. Every (abstract) operator space V is, in a natural way, a
model M(V ) of Tops. Conversely, every model of Topsys is an operator space.
The map V 7→M(V ) is an equivalence of categories between the category of
operator spaces with complete isometries and the category of models of Tops

with (model-theoretic) isomorphisms.

Appendix C. Definability of the operator norm

In this appendix, we prove that the matrix norm on Mn(A) is definable
in the C∗ algebra A. All of this material is due to Martino Lupini and we
thank him for allowing us to include this material here.

Suppose that A is a C∗ algebra. We consider An as a Hilbert A-module
by giving it the usual A-module structure and defining

〈~x, ~y〉 =
∑

x∗i yi

In particular the norm on An is defined by

‖~x‖ =
∥∥∥∑x∗ixi

∥∥∥1/2
.

An element (aij) ofMn (A) defines an element T(aij) of B (An) by ordinary
matrix multiplication. The operator norm on B (An) defines a C*-norm on
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Mn (A). This C*-norm has to agree with the usual (complete!) C*-norm on
Mn (A).

Finally, set

Xn,A := {(~x, ~y) ∈ A2n
1 : max

(∥∥∥∑x∗ixi

∥∥∥ ,∥∥∥∑ y∗i yi

∥∥∥) ≤ 1}.

Proposition C.1. If A is a C*-algebra and (aij) ∈Mn (A) then

‖(aij)‖ = sup
(~x,~y)∈Xn,A


∥∥∥∥∥∥
∑
i∈n

∑
j∈n

x∗i aijyj

∥∥∥∥∥∥
 .

Proof. First observe that if x1, . . . , xn ∈ A are such that∥∥∥∑x∗ixi

∥∥∥ ≤ 1,

then for every j we have

0 ≤ x∗jxj ≤
∑
i∈n

x∗ixi ≤ 1,

whence xj belongs to the unit ball of A. It now follows that

‖(aij)‖ =
∥∥∥T(aij)

∥∥∥
= sup

{∥∥∥T(aij) (yk)
∥∥∥ : (yk) ∈ An, ‖(yk)‖ ≤ 1

}
= sup

(~x,~y)∈Xn,A

{∥∥∥〈(xh) , T(aij) (yk)
〉∥∥∥}

= sup
(~x,~y)∈Xn,A


∥∥∥∥∥∥
∑
i∈n

∑
j∈n

x∗i aijyj

∥∥∥∥∥∥
 .

In order to show that the operator norm on Mn(A) is definable, we must
show thatXn,A is definable, whence quantifying over it preserves definability.
Towards this end, it suffices to show that the relation ‖

∑
x∗ixi‖ ≤ 1 is

a stable relation. Suppose that x1, . . . , xn ∈ A are such that ‖
∑
x∗ixi‖ ≤

(1 + ε)2. Defining yi := xi
1+ε , we see that ‖

∑
i∈n y

∗
i yi‖ ≤ 1 and ‖yi − xi‖ ≤ ε,

as desired. �
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