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Abstract. We show that any subset of the natural numbers with positive logarithmic
Banach density contains a set that is within a factor of two of a geometric progression,
improving the bound on a previous result of the authors. Density conditions on
subsets of the natural numbers that imply the existence of approximate powers of
arithmetic progressions are developed and explored.

1. Introduction

In [1], the authors introduced a measure space, obtained by taking a quotient of a

Loeb measure space, that has the property that multiplication is measure-preserving and

for which standard sets of positive logarithmic density have positive measure. The log

Banach density of a standard set (see Section 2 below for the definition) was also intro-

duced, and this measure space framework was used, in conjunction with Furstenberg’s

Recurrence Theorem, to obtain a standard result about the existence of approximate

geometric progressions in sets of positive log Banach density. In this paper, we im-

prove the bounds of approximation of this result by using Szemerédi’s Theorem together

with a “logarithmic change of coordinates.” More specifically, in Proposition 3.1, we

show that if A is a standard subset of the natural numbers, then the Banach density of

{dlog2(x)e : x ∈ A} is greater than or equal to the log Banach density of A. This allows

us to use Szemerédi’s Theorem to show that every set of positive Banach log density

contains a set which is “within a factor of 2” of being a geometric sequence; Theorem

3.3 provides a precise version of this statement. We also explore a family of densities

on the natural numbers, the (upper) r-Banach densities for 0 < r ≤ 1, which have the

property that positive 1/m-Banach density implies the existence of approximate mth

powers of arithmetic progressions, in a sense made precise in Theorem 3.7. (This fam-

ily of densities was introduced in [1], although BDm(A) in that paper corresponds to

BD1/m(A) here.)

In Section 2 we establish some properties of the log Banach density and the r-Banach

densities, most notably that the log Banach density of a set A is always less than or
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equal to every r-Banach density of A, and that if r < s then the r-Banach density of A

is less than or equal to the s-Banach density of A (Theorem 2.12). These inequalities

can both be strict. In fact, it is easy to see that the log Banach density of a set A

could be 0 while every r-Banach density of A is 1, and in Example 2.13 we see that if

r < s then it is possible to have the r-Banach density of a set A be 0 while the s-Banach

density of A is 1.

In Section 3 we establish the aforementioned approximation results and provide ex-

amples to show that the level of approximation is optimal.

We use nonstandard methods, which simplifies a number of the arguments. For an

introduction to nonstandard methods aimed specifically toward applications to combi-

natorial number theory, see [3].

1.1. Acknowledgements. This work was initiated during a week-long meeting at the

American Institute for Mathematics on August 4-8, 2014 as part of the SQuaRE (Struc-

tured Quartet Research Ensemble) project “Nonstandard Methods in Number Theory.”

The authors would like to thank the Institute for the opportunity and for the Institute’s

hospitality during their stay.

2. r-density and logarithmic density

Convention 2.1. In this paper, N denotes the set of positive natural numbers. For

any real numbers a ≤ b, we set [a, b] := {x ∈ N : a ≤ x ≤ b}. We make a similar

convention for the intervals (a, b], [a, b), and (a, b).

We recall some well-known densities on N.

Definition 2.2. Suppose that A ⊆ N and 0 < r ≤ 1.

• The upper r-density of A is defined to be

dr(A) := lim sup
n→∞

r

nr

∑
x∈A∩[1,n]

1

x1−r
.

• The lower r-density of A is defined to be

dr(A) := lim inf
n→∞

r

nr

∑
x∈A∩[1,n]

1

x1−r
.

Note that d1(A) and d1(A) are simply the usual upper and lower asymptotic densities

of A, respectively. For that reason, we omit the subscript r when r = 1.

Definition 2.3. Suppose that A ⊆ N. Then:

• The upper logarithmic density of A is defined to be

ld(A) := lim sup
n→∞

1

lnn

∑
x∈A∩[1,n]

1

x
.
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• The lower logarithmic density of A is defined to be

ld(A) := lim inf
n→∞

1

lnn

∑
x∈A∩[1,n]

1

x
.

The following result establishing relationships amongst the above densities was proven

in [2].

Fact 2.4. For A ⊆ N and 0 < r < s ≤ 1, we have

ds(A) ≤ dr(A) ≤ ld(A) ≤ ld(A) ≤ dr(A) ≤ ds(A).

In working with these densities, we often use the following elementary estimates

(established using an integral approximation): for any a < b in N, we have

b−1∑
x=a

1

x1−r
≤ br − ar

r
≤

b∑
x=a+1

1

x1−r
.

Theorem 2.5. For A ⊆ N and 0 < r ≤ 1, we have

dr(A) ≥ 1−
(
1− d(A)

)r
.

Proof. Set α := d(A) and take H ∈ ∗N \ N such that N
H ≈ α, where N := |∗A ∩ [1, H]|.

Set ε := N
H − α, so ε is a (possibly negative) infinitesimal. We now have

dr(A) ≥ st

 r

Hr

∑
x∈ ∗A∩[1,H]

1

x1−r


≥ st

 r

Hr

∑
x∈ (H−N,H]

1

x1−r


≥ st

(
r

Hr
· H

r − (H −N)r

r

)
= st(1− (1− (α+ ε))r)

= 1− (1− α)r. �

Corollary 2.6. If d(A) > 0, then dr(A) > 0 for all 0 < r ≤ 1.

Remark 2.7. It is easy to construct a set A ⊆ N with d(A) = 1 and ld(A) = 0. As a

consequence of the theorem above, we also have dr(A) = 1 for any 0 < r ≤ 1.

We now introduce the corresponding uniform versions of the above densities.

Definition 2.8. For A ⊆ N and 0 < r ≤ 1, the (upper) r-Banach density of A is defined

to be

BDr(A) := lim
n→∞

sup
k∈N

r

n

∑
x∈A∩[k,(kr+n)1/r]

1

x1−r
.
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Note that BD(A) = BD1(A) is the usual upper Banach density of A. Note also that

dr(A) ≤ BDr(A) from definition.

Definition 2.9. For A ⊆ N, the (upper) log Banach density of A is

`BD(A) := lim
n→∞

sup
k≥1

1

lnn

∑
x∈A∩[k,nk]

1

x
.

Of course one could also define the lower r-Banach density and the lower log Banach

density, but in this paper we only focus on the upper r-Banach density and upper log

Banach density.

The following nonstandard formulation of r-Banach density and log Banach density

follows immediately from the nonstandard characterization of limit.

Proposition 2.10. Let A ⊆ N, 0 < r ≤ 1, and 0 ≤ α ≤ 1.

(1) BDr(A) ≥ α if and only if there are k,N ∈ ∗N with N > N such that

st

 r

N

∑
x∈A∩[k,(kr+N)1/r]

1

x1−r

 ≥ α.
(2) `BD(A) ≥ α if and only if there are k,N ∈ ∗N with N > N such that

st

 1

lnN

∑
x∈∗A∩[k,Nk]

1

x

 ≥ α.
We now establish the uniform version of Fact 2.4 above. The results in [2] do not

immediately apply in the uniform setting. Nevertheless, our proof is inspired by the

arguments from [2], although we argue in the nonstandard model to make the idea more

transparent.

Theorem 2.11. For any A ⊆ N and 0 < r < s ≤ 1, we have

`BD(A) ≤ BDr(A) ≤ BDs(A).

Proof. We first prove that BDr(A) ≤ BDs(A).

Let 0 < α < 1 be such that BDs(A) < α. It suffices to show that β := BDr(A) ≤ α.

By Proposition 2.10, we can find a, b ∈ ∗N such that br − ar > N and

BDr(A) = st

( b∑
n=a

χA(n)

n1−r

)(
b∑

n=a

1

n1−r

)−1 .

Here, χA denotes the characteristic function of (the nonstandard extension of) A. Next

note that if c, d ∈ ∗N are such that ds−cs > N, then Proposition 2.10 once again implies

that

st

( d∑
i=c

χA(i)

i1−s

)(
d∑
i=c

1

i1−s

)−1 ≤ BDs(A) < α.
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Choose m ∈ [a, b] such that mr − ar > N and(
m∑
n=a

1

n1−r

)(
b∑

n=a

1

n1−r

)−1
≈ 0.

(For example, let m = d((br − ar)1/2 + ar)1/re.) Since x 7→ xs − xr is an increasing

function, we have that ms − as ≥ mr − ar. Hence

i∑
n=a

χA(n)

n1−s
< α

i∑
n=a

1

n1−s
for any

i > m. Now we have

b∑
n=a

χA(n)

n1−r
=

b∑
n=a

χA(n)

n1−s
1

ns−r

=

b∑
n=a

χA(n)

n1−s

(
b∑
i=n

(
1

is−r
− 1

(i+ 1)s−r

)
+

1

(b+ 1)s−r

)

=
b∑

n=a

b∑
i=n

χA(n)

n1−s

(
1

is−r
− 1

(i+ 1)s−r

)
+

b∑
n=a

χA(n)

n1−s
1

(b+ 1)s−r

=
b∑
i=a

i∑
n=a

χA(n)

n1−s

(
1

is−r
− 1

(i+ 1)s−r

)
+

b∑
n=a

χA(n)

n1−s
1

(b+ 1)s−r

< α

b∑
i=a

i∑
n=a

1

n1−s

(
1

is−r
− 1

(i+ 1)s−r

)
+ α

b∑
n=a

1

n1−s
1

(b+ 1)s−r

+ (1− α)
m∑
i=a

i∑
n=a

1

n1−s

(
1

is−r
− 1

(i+ 1)s−r

)

= α

b∑
n=a

1

n1−s

b∑
i=n

(
1

is−r
− 1

(i+ 1)s−r

)
+ α

b∑
n=a

1

n1−s
1

(b+ 1)s−r

+ (1− α)

m∑
n=a

1

n1−s

m∑
i=n

(
1

is−r
− 1

(i+ 1)s−r

)

= α
b∑

n=a

1

n1−s
1

ns−r

+ (1− α)
m∑
n=a

1

n1−s
1

ns−r
− (1− α)

m∑
n=a

1

n1−s
1

(m+ 1)s−r

≤ α
b∑

n=a

1

n1−r
+ (1− α)

m∑
n=a

1

n1−r
.

We conclude that β ≤ α since

(
m∑
n=a

1

n1−r

)(
b∑

n=a

1

n1−r

)−1
≈ 0.

In the arguments above, if we let r = 0 and instead require that ln(m)− ln(a) > N,

then we get `BD(A) ≤ BDs(A). �

It is easy to see that the set A =
⋃∞
n=1[n!, 2n!] has the property that `BD(A) = 0

while BDr(A) = 1 for every r ∈ (0, 1]. The following example shows that the r-Banach

densities can also disagree to this extent.
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Example 2.12. For any 0 < r < s ≤ 1 there is a set A ⊆ N such that BDr(A) = 0 and

BDs(A) = 1.

Proof. Let (an) be a sequence of positive integers defined by setting a1 to be any integer

larger than 1 and an+1 := a2n. Let

A =
∞⋃
n=1

[
a1/(rs)n ,

(
a1/sn + 1

)1/r]
.

We show that BDr(A) = 0 and BDs(A) = 1.

Suppose that k,N ∈ ∗N with N > N are such that

BDr(A) = st

 r

N

∑
x∈∗A∩[k,(kr+N)1/r]

1

x1−r

 .

Let ν be the maximal m ∈ ∗N such that

[a1/rsm , (a1/sm + 1)1/r ∩ [k, (kr +N)1/r] 6= ∅.

Note then that

∗A ∩ [k, (kr +N)1/r] ⊆ [k, (
√
aν

1/s + 1)1/r] ∪ [a1/rsν , (a1/sν + 1)1/r].

The latter interval is negligble:

st

 r

N

∑
x∈ [a1/(rs)ν ,

(
a
1/s
ν +1

)1/r
]

1

x1−r

]

= st

 r

N



((

a
1/s
ν + 1

)1/r)r
r

−

((

a
1/s
ν

)1/r)r
r





= st

(
1

N

)
= 0.

Next observe that (
√
aν

1/s+1)1/r < 2(
√
aν)1/rs ≤ 2

√
(kr +N)1/r). If 2

√
(kr +N)1/r) <

k, then the above computation shows that BDr(A) = 0. Thus, we may assume that

2
√

(kr +N)1/r) ≥ k, from which it is readily verified that N > kr. It follows that

BDr(A) ≤ st

 r

N

∑
x∈ [k,2(

√
kr+N)1/r]

1

x1−r


= st

(
r

N

(
2r(
√
kr +N)

r
− kr

r

))
≤ st

(
r

N

(
2r(
√
N +N)

r

))
= 0.
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For showing BDs(A) = 1, it suffices to show that

((
a
1/s
n + 1

)1/r)s
− a1/rn > N when

n > N. Indeed, if N ∈ ∗N \ N is such that

((
a
1/s
n + 1

)1/r)s
− a

1/r
n > N , then ∗A

contains the interval

[a1/rsn , ((a1/rsn )s +N)1/s].

Note that ((
a1/sn + 1

)1/r)s
− a1/rn

=
(
a1/sn + 1

)(
a1/sn + 1

)(s−r)/r
− a1/rn

≥
(
a1/sn + 1

)
a(s−r)/(rs)n − a1/rn

= a
1
s
+ s−r

rs
n + a

s−r
rs
n − a

1
r
n = a

s−r
rs
n .

It remains to observe that a
s−r
rs
n > N because an > N and (s − r)/(rs) is a positive

standard real number. �

3. Polynomial structure and multiplicative structure

In what follows, log denotes log2. For A ⊆ N, set

logA := {dlog xe : x ∈ A}.

We also introduce some convenient notation: for k,N ∈ ∗N and E ⊆ ∗N, set

Lk,N (E) = 1
lnN

∑
x∈E∩[k,Nk] 1/x.

Proposition 3.1. If A ⊆ N, we have BD(logA) ≥ `BD(A).

Proof. Without loss of generality, we can assume that `BD(A) = α > 0. Take k,N ∈ ∗N
with N > N so that st(Lk,N (∗A)) = α. We first claim that we can assume that k and

kN are integer powers of 2. Indeed, choose integers a, b such that 2a−1 < k 6 2a and

2b 6 kN < 2b+1. Note that b− a > N. Observe now that

2a−1∑
x=k

1/x,
Nk∑

x=2b+1

1/x ≤ ln 2,

so

Lk,N (∗A) ≈ 1

lnN

∑
x∈∗A∩[2a,2b]

1/x.

It remains now to notice that ln(2b−1) ≤ lnN ≤ ln(2b−a) + ln 2, whence

1

lnN

∑
x∈∗A∩[2a,2b]

1/x ≈ 1

ln 2b−a

∑
x∈∗A∩[2a,2b]

1/x.

In light of the previous paragraph, we may take a < b in ∗N so that st(L2a,2b−a(∗A)) =

α. For a ≤ i < b, set Ii := [2i + 1, 2i+1]. Observe that dlog(x)e = i + 1 for all x ∈ Ii.
Set I := {i : Ii ∩ ∗A 6= ∅}. We then have:
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|log(∗A) ∩ (a, b]| = |I|

=
∑
i∈I

log(2i+1)− log(2i)

≥ log(e)
∑
i∈I

∑
x∈∗A∩[2i,2i+1)

1

x
.

Recalling that ln(2b−a) = b−a
log(e) , it follows that

BD(log(A)) '
|log(∗A) ∩ (a, b]|

b− a
'

1

ln 2b−a

∑
x∈∗A∩[2a,2b−1)

1

x
= α.

�

We now come to the central notion of this paper.

Definition 3.2. Fix c, r ∈ R>0.

(1) For a, x ∈ R, we say that a is a (c, r)-approximation of x if a ∈ [x, x+ cxr).

(2) For A,X ⊆ R, we say that A is a (c, r)-approximate subset of X if every a ∈ A
is an (c, r)-approximation of some x ∈ X.

Theorem 3.3. Suppose that A ⊆ N is such that `BD(A) > 0. Then for any l ∈ N,
there exist arbitrarily large a, d ∈ N such that the geometric sequence G := {2a(2d)n :

n = 0, 1, . . . , l − 1} is a (1, 1)-approximate subset of A.

Proof. Fix m ∈ N. Since BD(logA) ≥ `BD(A) > 0, the set logA contains an arithmetic

progression {a + nd : n = 0, 1, . . . , l − 1} with a, d > m. Fix n ∈ {0, 1, . . . , l − 1} and

take x ∈ A and θ ∈ [0, 1) such that a+nd = log x+ θ. Then x ≤ 2a+nd = 2θx < 2x. �

The following example shows that we cannot improve upon the level of approximation

in the previous theorem.

Example 3.4. For each ε > 0, there is A ⊆ N such that ld(A) = ld(A) > 0 and no

positive integer power of 2 is a (1− ε, 1)-approximation of any element of A.

Proof. Choose δ > 0 such that (2− ε)2δ < 2. Set

A :=
∞⋃
n=1

[2n + 1, 2n+δ].

Note that the interval [2n+δ, (2− ε)2n+δ] does not contain any positive integer power of

2 as 2n+1 6 (2 − ε)2n+δ implies that 2 ≤ (2 − ε)2δ. It follows that no power of 2 is a

(1 − ε, 1) approximation of any element of A. We leave it to the reader to show that

ld(A) = ld(A) ≥ δ. �

Our next example shows that one cannot prove Theorem 3.3 under the weaker as-

sumption of positive Banach density.
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Example 3.5. Let α < 1. Fix a j such that (j − 1)/j > α. Let u0 = 2, ui+1 > (jui)
3,

and set

A =
∞⋃
i=1

[ui, jui].

Then d(A) > α. For any n ∈ N, there exists an m ∈ N such that there does not exist

3-term geometric progression G = {a, ar, ar2} with a, r > m and G is an (n − 1, 1)-

approximate subset of A.

For a proof of the claim in the previous example, one can consult our paper [1].

For A ⊆ N and 0 < r ≤ 1, set

Ar := {dxre : x ∈ A}.

One proves the following proposition in a manner similar to the proof of Proposition

3.1

Proposition 3.6. For any A ⊆ N, we have BD(Ar) ≥ BDr(A).

Theorem 3.7. Suppose A ⊆ N and m ∈ N are such that BD1/m(A) > 0. Then for

any ε > 0 and l ∈ N, there exist arbitrarily large a, d ∈ N such that {(a + nd)m : n =

0, 1, . . . , l − 1} is an (m+ ε, m−1m )-approximate subset of A.

Proof. Fix p ∈ N. Since BD(A1/m) ≥ BDm(A) > 0, there are a, d > p such that

{a + nd : n = 0, 1, . . . , l − 1} ⊆ A1/m. Choose a sufficiently large so that, for any

z ≥ a− 1, we have

εzm−1 >

(
m

m− 2

)
zm−2 +

(
m

m− 3

)
xm−3 + · · ·+mx+ 1.

Fix n ∈ {0, 1, . . . , l − 1} and take x ∈ A and θ ∈ [0, 1) such that a + nd = x1/m + θ.

Since x1/m > a− 1, we have

x 6 (a+ nd)m = (x
1
m + θ)m = x+ (m+ ε)x

m−1
m θ

+θ

(
−εx

m−1
m +

(
m

m− 2

)
x
m−2
m θ +

(
m

m− 3

)
x
m−3
m θ2 + · · ·+ θm−1

)
< x+ (m+ ε)x

m−1
m .

Hence (a+ nd)m is an
(
m+ ε, m−1m

)
-approximation of x ∈ A. �

The next example shows that there is not much room left to improve upon the level

of approximation in the previous theorem.

Example 3.8. For any ε > 0, there exists a δ > 0 and there exists a set A ⊆ N such

that d1/m(A) = d1/m(A) = δ and such that, for any a ∈ N, am is not an
(
m− ε, m−1m

)
-

approximation of any element in A.



10 DI NASSO ET. AL.

Proof. Fix 0 < δ < ε/m and set A :=
∞⋃
n=1

[nm + 1, (n + δ)m). Suppose, towards a

contradiction, that am ∈ [x, x + (m − ε)x(m−1)/m) for some x ∈ [nm + 1, (n + δ)m). It

follows that n+ 1 ≤ a, whence

((n+ δ) + (1− δ))m = (n+ 1)m 6 (n+ δ)m + (m− ε)(n+ δ)m−1.

Hence m(n+ δ)m−1(1− δ) 6 (m− ε)(n+ δ)m−1, which implies that δm ≥ ε, a contra-

diction. We leave it to the reader to check that d1/m(A) = d1/m(A) = δ. �

Corollary 2.6 and Theorem 3.7 immediately imply:

Corollary 3.9. Suppose that A ⊆ N is such that d(A) > 0. Then for any l,m ∈ N and

ε > 0, there exists arbitrarily large a, d ∈ N such that {(a+ nd)m : n = 0, 1, . . . , l} is an(
m+ ε, m−1m

)
-approximate subset of A.

We should remark that the conclusions of approximate structure really are necessary.

For example, if A is the set of all square-free numbers, then d(A) > 0 but A does not

contain any 3-term geometric progression or any m-th power of an integer greater than

1 with m ≥ 2.
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