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Abstract. We show that any countable model of a model complete
theory has an elementary extension with a “pseudofinite-like” quasi-
dimension that detects dividing.

1. Introduction

In a pseudofinite structure, every set S has a size |S|, a nonstandard
cardinality. It is reasonable to say that S and T are “similar in size” if
| log |S| − log |T || is bounded (by a natural number). This gives the notion
of fine pseudofinite dimension [3, 2], the quotient of log |S| by a suitable
convex set. García shows [1] that the fine pseudofinite dimension detects
dividing: roughly speaking, if φ(x, b) divides over ψ(x, a) then there is a b′
with tp(b′/a) = tp(b/a) so that the dimension of φ(x, b′) is strictly stronger
than the dimension of ψ(x, a).

We give a limited extension of this to model complete theories in relational
languages (and, via Morleyization, to any theory): any countable model
whose theory is model complete embeds elementarily in a “large” fragment
of a pseudofinite structure in such a way that the notion of dimension pulls
back to the original model; moreover, if φ(x, b) divides over ψ(x, a) then
there is a b′ in an elementary extension with tp(b′/a) = tp(b/a) so that the
dimension of φ(x, b′) is strictly stronger than the dimension of ψ(x, a).

There is a straightforward way to embed a countable structure in a pseudo-
finite structure, namely embedM in an ultraproduct of its finite restrictions.
That being said, this embedding need not be elementary. It is also easy to
obtain a dimension-like function that detects dividing by linearizing the par-
tial order on definable sets given by dividing. The dimension here, however,
is an abelian group, and even a quotient of R∗.

We would like to thank Dario García for useful comments on an earlier
draft of this note.

2. Construction

Let L be a countable first-order relational signature and let T be a com-
plete, model complete theory in L. Set L′ := L ∪ {Vα : α < ω + ω}, where
the Vα are fresh unary relation symbols. For the sake of readability, if M is
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an L′-structure and α < ω+ω, we let Vα(M) denote the interpretation of the
symbol Vα in M . Occasionally we might abuse notation and write a formula
in the form ∀~x ∈ Vα(· · · ) to mean ∀~x(

∧
i Vα(xi) → · · · ). All L′-structures

considered will have the property that the interpretations of the Vα’s will
form a chain: if α < β < ω + ω, then Vα(M) ⊆ Vβ(M).

By a partitioned L-formula we mean a triple (ϕ, ~x, ~y), where ϕ is a L-
formula, ~x and ~y are disjoint finite tuples of variables (taken from some fixed
countably infinite list of variables), and the free variables of ϕ are amongs
those appearing in ~x and ~y. We follow traditional model-theoretic notation
by writing ϕ(~x; ~y) for the partitioned formula (ϕ, ~x, ~y). We let F denote the
set of partitioned quantifier-free L-formulae.

Let (σi : i < ω) denote an enumeration of F × (ω + ω). For i < ω, we
write σi = (ϕi, αi) and sometimes refer to αi by α(σi).

We say that an L′-structure M strongly satisfies σi if, whenever ~a ∈
Vαi(M) is such that there is N ⊇ M with N |= T and ~b ∈ N such that
N |= ϕi(~a;~b), then there is ~c ∈ Vαi+1(M) such that M |= ϕi(~a;~c).

For each n ∈ ω, we define an L′-structureMn |= T∀ with the property that
if i < n, Mn strongly satisfies σi. Let M0 denote a one-element substructure
of a model of T whose unique element satisfies each Vα.

Suppose we have constructedMn−1. Consider the first n pairs σ0, . . . , σn−1

and fix a permutation σr0 , . . . , σrn−1 so that i ≤ j implies that α(σri) ≤
α(σrj ). We construct L′-structures M i

n |= T∀, for i = 0, . . . , n, by recursion
on i in such a way that M i

n strongly satisfies σr0 , . . . , σri−1 . We will then set
Mn := Mn

n .
Let M0

n = Mn−1. Suppose that M i
n has been constructed and set α :=

α(σri) and let ϕ(~x; ~y) be the formula in σri . Enumerate the tuples of length
|~x| in Vα(M i

n) as ~a1, . . . ,~ak. We now recursively construct a sequence of
models M i,j

n ; we begin with M i,0
n = M i

n. Given M i,j
n , we proceed as follows:

• If there is a ~b ∈ Vα+1(M
i,j
n ) such that M i,j

n |= φ(~aj ;~b), then set
M i,j+1
n := M i,j

n ,
• Otherwise, if there is an extension M of M i,j

n and a tuple ~b from
M such that M |= φ(~aj ;~b), then set M i,j+1

n := M i,j
n ∪ {~b} and de-

clare that any element of ~b which is not in Vα+1(M
i,j
n ) belongs to

Vα+1(M
i,j+1
n ) \ Vα(M i,j+1

n ).
• If neither of the first two cases apply, set M i,j+1

n = M i,j
n .

Set M i+1
n := M i,k+1

n . Since Vα(M i+1
n ) = Vα(M i

n), we see that M i+1
n still

strongly satisfies σr0 , . . . , σri−1; moreover, by design, M i+1
n also strongly

satisfies σri , thus finishing the recursive construction.
Fix a nonprincipal ultrafilter U on ω and setM :=

∏
UMn. By definition,

Vα(M) = {x ∈M : M � Vα(x)}. We also set V<ω(M) :=
⋃
n<ω Vn(M) and

V (M) :=
⋃
α<ω+ω Vα(M), both considered as L′-structures in the obvious

way.
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Since T is model-complete, it has a set of ∀∃-axioms. Suppose that
∀~x∃~yϕ(~x; ~y) is such an axiom. Fix α < ω + ω and take i such that σi =
(ϕ(~x; ~y), α). Fix n > i and considerN |= T such thatMn ⊆ N . SinceN |= T
and Mn strongly satisfies σi, we have Mn |= ∀~x ∈ Vα∃~y ∈ Vα+1ϕ(~x; ~y). It
follows that M |= ∀~x ∈ Vα∃y ∈ Vα+1ϕ(~x; ~y). This proves:

Proposition 2.1. V<ω(M) and V (M) are both models of T .

There is no guarantee that Vω(M) nor M are models of T . Note that
V (M) is existentially closed in M . Indeed, M |= T∀ and every model of T
is an existentially closed model of T∀ (by model-completeness of T ).

Lemma 2.2. Suppose that p(~x) is a countable set of existential L-formulae
with parameters from Vα(M) that is finitely satisfiable in V (M) (equivalently,
in M). Then there is ~c ∈ Vα+1(M) such that V (M) |= p(~c).

Proof. Let p′(~x) := p(~x) ∪ {Vα+1(~x)}. Since M is countably saturated, it
suffices to show that p′(~x) is finitely satisfiable in M . Indeed, we then get
~c ∈ Vα+1(M) such that M |= p(~c); since V (M) is existentially closed in M
(as remarked above), we have that V (M) |= p(~c). In addition, since the
formulae in p are existential and, to show that M |= ∃~x ∈ Vα+1∃~zφ(~x, ~z,~a)
it clearly suffices to show M |= ∃~x ∈ Vα+1∃~z ∈ Vα+1φ(~x, ~z,~a), it suffices to
assume that the formulae in p are actually quantifier-free.

We are left with showing the following: if ϕ(~x,~a) is a quantifier-free
formula with parameters from Vα(M) such that V (M) |= ∃~xϕ(~x,~a), then
V (M) |= ∃~x ∈ Vα+1ϕ(~x,~a). Since M |= ∃~xϕ(~x,~a), we get Mn |= ∃~xϕ(~x,~an)
for U-almost all n, where (~an) is a representative sequence for ~a. Fix i such
that σi = (ϕ(~x, ~y), α). SinceMn strongly satisfies σi for n > i, it follows that,
for U-almost all n, we can find ~cn ∈ Vα+1(Mn) such thatMn |= ϕ(~cn,~an). �

Lemma 2.3. Suppose N is a model of T and A ⊆ N is countable. Then
there is A′ ⊆ V<ω(M) such that tpNL (A) = tpV (M)

L (A′).

Proof. Enumerate A = {a0, a1, . . .} and construct A′ ⊆ M ′ inductively:
given a′0, . . . , a

′
n ∈ Vn+1(M) with tpNL (a0, . . . , an) = tpV (M)

L (a′0, . . . , a
′
n), by

the previous lemma and the model-completeness of T (so every type is de-
termined by its existential formulae), there is an a′n+1 ∈ Vn+2(M) with
tpNL (an+1/a0, . . . , an) = tpV (M)

L (a′n+1/a
′
0, . . . , a

′
n). �

We now fix a countable modelN of T and take A = N in the above lemma,
yielding an elementary embedding a 7→ a′ : N → V<ω(M) with image N ′.

Definition 2.4. For an L-formula ϕ(~x), we let ϕω(~x) := ϕ(~x) ∧ Vω(~x).

Lemma 2.5. Suppose that ϕ(~x, ~y) and ψ(~x, ~z) are existential L-formulae.
If N |= ∀~x(ϕ(~x,~a)↔ ψ(~x,~b)), then M |= ∀~x(ϕω(~x,~a′)↔ ψω(~x,~b′)).

Proof. Since a 7→ a′ is elementary, we get V<ω(M) |= ∀~x(ϕ(~x,~a′)↔ ψ(~x,~b′)).
Since V<ω(M) � V (M) (by model-completeness of T ), the same equivalence
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holds in V (M). Finally, if ~c ∈ Vω(M), then M |= ϕω(~c,~a′) if and only if
V (M) |= ϕω(~c,~a′) and likewise with ψω. �

We recall the notion of pseudofinite dimension, especially as considered in
[3, 2]. Since M is an ultraproduct of finite sets, any definable set D has a
nonstandard cardinality |D| in R∗ (the ultrapower of the reals). We let C be
the convex hull of Z in R∗. Then for any definable set X, we can define

δM (X) = log |X|/C,

the image of log |X| in R∗/C ∪{−∞} (where log |X| = −∞ if |X| = 0). This
is the fine pseudofinite dimension.

The fine pseudofinite dimension satisfies the quasi-dimension axioms:
• δM (∅) = −∞ and δM (X) > −∞ implies δM (X) ≥ 0,
• δM (X ∪ Y ) = max{δM (X), δM (Y )},
• For any definable function f : X → Z and every α ∈ R∗/C ∪ {−∞},
if δM (f−1(z)) ≤ α for all z ∈ Z then δM (X) ≤ α+ δM (Z).

One of the features of fine pseudofinite dimension is that if we fix any
definable set X, we may define a measure µX(Y ) on definable Y by µX(Y ) =
st( |Y ||X|) so that δM (Y ) = δM (X) if and only if µX(Y ) ∈ (0,∞).

In light of the lemma above, the following definition makes sense.

Definition 2.6. Suppose X ⊆ Nk is definable. Without loss of generality,
we may suppose that X is defined by ϕ(~x,~a), where ϕ(~x, ~y) is quantifier-
free. We then define δN (X) = δM (ϕω(~x,~a′)), where the latter dimension is
computed in the pseudofinite structure M .

Lemma 2.7. δN (X × Y ) = δN (X) + δN (Y )

Proof. Suppose X and Y are defined by ϕ(~x,~a) and ψ(~y,~b) respectively.
Then X × Y is defined by ρ(~x, ~y,~a,~b) = ϕ(~x,~a) ∧ ψ(~y,~b). Then

δN (X×Y ) = δM (ρω(~x, ~y,~a,~b)) = δM (ϕω(~x,~a))+δM (ψω(~y,~b)) = δN (X)+δN (Y ).

using the pseudofinite axioms for δM . �

δN need not satisfy the final quasi-dimension axiom, however—it is pos-
sible that there are many values z ∈ Zω so that δ(f−1(z)) is large and so
δM (Xω) is large as well, but that none of these are in the image of M , so
δN (X) is large even though δN (f−1(z)) is small for all z ∈ Z.

Nonetheless, there is a connection between δN and dividing, essentially
the one shown by García in [1] for pseudofinite dimension.

Proposition 2.8. Suppose that ψ(x, a) and ϕ(x, b) are existential L-formulae
with parameters from Vω(M) such that ϕ(x, b) implies ψ(x, a) and ϕ(x, b) di-
vides over a. Then there is b# ∈ Vω(M) with b# ≡L,a b and δM (ϕ(x, b#)) <
δM (ψ(x, a)).
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Proof. Assume that no b# exists as in the conclusion. We then use that to
get K ∈ N such that K|ϕω(x, b#)| ≥ |ψω(x, a)| for all b# ∈ Vω(M) with
b# ≡L,a b. In fact, by saturation again, there is χ(x, a) ∈ tpML (b/a) such
that K|ϕω(x, b#)| ≥ |ψω(x, a)| for all b# |= χω(x, a).

Fix L sufficiently large (depending only on k and K) and take (bi)i<L
from V<ω(M) satisfying χω(x, a) and such that {ϕ(x, bi) : i < L} is k-
inconsistent. In particular, we have K|ϕω(x, bi)| ≥ |ψω(x, a)| for all i <
L. As in [1], if L is sufficiently large, we get i1 < . . . < ik < L such
that

⋂k
j=1 µψω(ϕω(x, bij )) > 0. In particular, there is c ∈ Vω(M) such that

M |= ϕω(c, bij ) for all j = 1, . . . , k. It follows that V (M) |= ϕ(c, bij ) for
j = 1, . . . , k, a contradiction. �

In the previous result, if we have ψ(x, a) and ϕ(x, b) formulae with param-
eters from N such that ϕ(x, b) implies ψ(x, a) and ϕ(x, b) forks over a, then
we can apply the previous result with ψ(x, a′) and ϕ(x, b′). It should not be
too surprising that, even in this situation, we need to look in V (M) for the
desired witness to dimension drop as N is usually not saturated enough to
see this dimension drop.

Combining Proposition 2.8 with the remarks made in the previous para-
graph yields the main result of this note:

Theorem 2.9. Suppose that ψ(x, a) and φ(x, b) are existential L-formulae
with parameters from N such that φ(x, b) implies ψ(x, a) and φ(x, b) divides
over a. Then there is an elementary extension N# of N , an extension of
δN to a quasidimension δN# on N#, and b# ∈ N# with b# ≡L,a b and
δN#(φ(x, b#)) < δN#(ψ(x, a)) = δN (ψ(x, a)).

Remark 2.10. Note that a similar argument applies to an arbitrary rela-
tional language by taking L0 and an L0-structure N and letting T be the
theory of the Morleyization of N .

Remark 2.11. Note that the same construction applies, with only the ob-
vious changes, to theories in continuous logic.
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