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Syndeticity
Nonstandard analysis

1. Introduction and preliminaries

1.1. Sumsets and piecewise syndeticity

The earliest result on the relationships between density of sequences, sum or difference 
sets, and syndeticity is probably Furstenberg’s theorem mentioned in [7, Proposition 
3.19]: If A has positive upper Banach density, then A −A is syndetic, i.e. has bounded 
gaps. The proof of the theorem is essentially a pigeonhole argument.

In [9] Jin shows that if A and B are two subsets of N with positive upper Banach 
densities, then A +B must be piecewise syndetic, i.e. for some m, A +B+[0, m] contains 
arbitrarily long intervals. Jin’s proof uses nonstandard analysis. In [11], this result is 
extended to abelian groups with tiling structures. In [9,11] the question as to whether 
this result can be extended to any countable amenable group is posed, and in [2] a positive 
answer to the above question is proven. It is shown that if A and B are two subsets of a 
countable amenable group with positive upper Banach densities, then A ·B is piecewise 
Bohr, which implies piecewise syndeticity. In fact, a stronger theorem is obtained in the 
setting of countable abelian groups: A set S is piecewise Bohr if and only if S contains 
the sum of two sets A and B with positive upper Banach densities. Jin’s theorem was 
generalized to arbitrary amenable groups in [5]. At the same time, several new proofs of 
the theorem in [9] have appeared. For example, an ultrafilter proof is obtained in [1]. A 
more quantitative proof that includes a bound based on the densities is obtained in [4]
by nonstandard methods, and in [3] by elementary means.

However, there has not been any progress on extending the theorem in [9] to lower 
asymptotic density or upper asymptotic density instead of upper Banach density. Of 
course, if A and B have positive lower (upper) asymptotic densities then they have 
positive Banach density, so A +B must be piecewise syndetic. In this paper we show that 
there is significant uniformity to the piecewise syndeticity in the sense that there are a 
large density of points in the sumset with no gap longer than some fixed m. Furthermore, 
this can be extended to all finite dimensions. Specifically we show the following:

Theorem 1. Suppose that A and B are subsets of Zd. For m, k ∈ N, set

Sm,k(A,B) := {z ∈ Zd : z + [−k, k]d ⊆ A + B + [−m,m]d}.

Then:

1. If A has positive upper density α and B has positive Banach density, then there exists 
an m such that, for all k, Sm,k(A, B) has upper density at least α (Theorem 14).
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2. If A has positive lower density α and B has positive Banach density, then for any 
ϵ > 0, there exists an m such that, for all k, Sm,k(A, B) has lower density at least 
α− ϵ (Theorem 19).

3. Assuming the dimension d = 1, if A has positive lower density α, and B has positive 
lower density β, then there exists an m such that, for all k, Sm,k(A, B) has upper 
density at least min(α + β, 1) (Theorem 22).

We also show how the results in parts (1) and (2) of the previous theorem are optimal, 
that is, one cannot necessarily find m such that, for all k, Sm,k(A, B) has (upper or lower) 
density at least α. In part (3), we actually show something a bit stronger and the proof 
uses Mann’s theorem in an integral way.

The nonstandard methods used in this paper include a new Lebesgue density theorem 
for “cuts” in the nonstandard integers. In [13] a quasi-order-topology, with respect to 
each additive cut, was defined on a hyperfinite interval [0, H] of integers. Motivated by 
the duality1 of the ideal of null sets and the ideal of meager sets of real numbers, and 
the fact that the sum of two sets with positive Lebesgue measure can never be meager 
(because it always contains a non-empty open interval), a question was raised in [13]: 
Is the sum of any two sets with positive Loeb measure in a hyperfinite interval [0, H]
non-meager in the sense of the quasi-order-topology? A positive answer to the question 
above led to Jin’s result about piecewise syndeticity. Here we study these cuts in d
dimensions and prove the following result: If H ∈ ∗N\N, U is a subset of [1, H] that is 
closed under addition, U = (−U) ∪ {0} ∪ (U), and E is an internal subset of [−H, H]d
then almost all points x in E + Ud are points of density in the sense that

lim inf
ν>U

µx+[−ν,ν]d
((

E + Ud
)
∩ (x + [−ν, ν]d)

)
= 1,

or, equivalently, to clarify the meaning of lim inf in this setting:

sup
ξ>U

inf
U<ν<ξ

µx+[−ν,ν]d
((

E + Ud
)
∩ (x + [−ν, ν]d)

)
= 1,

where µx+[−ν,ν]d is the Loeb measure on x + [−ν, ν]d. Here, as in the rest of the paper, 
when we write that an element is greater than an initial segment we mean that it is 
larger than every element in that segment. For example U < ν means that for all u ∈ U , 
u < ν. We use the density theorem above in the case that U = N to obtain many of 
the aforementioned standard results. In Section 2 we introduce the notion of “points of 
density” of a set and “points of syndeticity” of a set in nonstandard models of the natural 
numbers, and state the version of the Lebesgue density theorem needed for the standard 

1 The ideal of null sets N is the collection of all subsets of R with Lebesgue measure 0 and the ideal of 
meager sets M is the collection of all meager subsets of R, where a set is called meager if it is a countable 
union of nowhere dense sets. N and M are dual ideals in the sense that R is the union of a meager set and 
a null set.



4 M. Di Nasso et al. / Advances in Mathematics 278 (2015) 1–33

results in this paper (although the proof is deferred to Section 6). The main result proved 
in this section is Theorem 8 which states that the sum of a point of density of an internal 
set X and a point of density of an internal set Y must be a point of syndeticity of the 
sumset X + Y . These results together imply a sort of “monad version” of Jin’s theorem. 
In the next three sections we prove the three parts of Theorem 1.

In Section 6 we prove a version of the Lebesgue density theorem that applies to all 
additive cuts in the nonstandard model. This theorem implies the version used for the 
standard results in this paper as a special case.

A word about notation: In an effort to clarify standard vs. nonstandard sets and 
elements, we will reserve H, I, J, K, L, M, N for infinite hypernatural numbers, while 
ν, ξ, ζ will denote (possibly standard) hypernatural numbers; Lower case letters denote 
elements of Z or Zd and their nonstandard extensions; A and B will be reserved for 
standard subsets of N (we do not include 0 in N), Z, or Zd; E, R, S, T, X and Y will be 
used for subsets of ∗Zd, with E only used for internal sets. If (an)n∈N is a sequence, and 
ν is an infinite hypernatural number, we denote by aν the value at ν of the nonstandard 
extension of the sequence (an)n∈N. We use µ for measure, d for density functions, and d
for dimension. Here the values of d are only natural numbers. Despite these conventions 
the location of elements and sets is usually noted at the time, at the risk of redundancy, 
but in the interest of clarity.

1.2. Standard concepts of density and structure on sequences

In this paper we consider the following notions of density for a subset A of Zd:

• the lower (asymptotic) density

d(A) := lim inf
n→∞

|A ∩ [−n, n]d|
(2n + 1)d ;

• the upper (asymptotic) density

d(A) := lim sup
n→∞

|A ∩ [−n, n]d|
(2n + 1)d ;

• the Schnirelmann density

σ(A) := inf
n

|A ∩ [−n, n]d|
(2n + 1)d ;

• the (upper) Banach density

BD(A) := lim
n→∞

sup
x∈Zd

|A ∩ (x + [−n, n]d)|
(2n + 1)d .
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In the particular case of d = 1 these are the usual notions of density for sequences 
of integers. It follows immediately from the definition that for any ϵ > 0 there exists an 
m ∈ N such that

σ(A ∪ [−m,m]d) ≥ d(A) − ϵ.

Moreover it is useful to note that if BD(A) > 0 then for any ϵ > 0 there exists m ∈ N
such that

BD(A + [−m,m]d) > 1 − ϵ.

When d = 1 this is the content of Theorem 3.8 in [8].
We will refer to the following combinatorial notions of largeness for a subset A of Zd:

• A is syndetic iff there exists m ∈ N such that A + [−m, m]d = Zd;
• A is thick iff there are arbitrarily large hypercubes completely contained in A, i.e. 

for all k ∈ N there exists z ∈ Zd such that

z + [−k, k]d ⊆ A;

• A is piecewise syndetic iff there exists m ∈ N such that A + [−m, m]d is thick, i.e. 
for all k ∈ N there exists z ∈ Zd such that

z + [−k, k]d ⊆ A + [−m,m]d.

Thus, A is piecewise syndetic iff it is the intersection of a syndetic set and a thick 
set.

While defining the densities on sets of the form [−n, n]d is natural, all of our results 
involving the notion of upper or lower syndeticity can be easily adapted to the setting 
where one considers arbitrary Følner sequences. Of particular interest for all of our results 
is the case in which d = 1 where the interval [−n, n] is replaced by [1, n]. This is the 
classical setting for the study of densities of subsets of natural numbers. To underscore 
the importance of that case and to improve clarity, almost all of our examples are specific 
to this case, although all theorems and proofs will be given in d dimensions wherever 
possible.

It is not difficult to show that BD(A) = 1 iff A is thick; more precisely, if for some 
k ∈ N every cube z + [−k, k]d is not contained in A, then BD(A) ≤ (2k+1)d−1

(2k+1)d . On the 
other hand, for every r < 1 there exist sets of lower density at least r that are not 
piecewise syndetic. Indeed, if n is sufficiently large and
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B =
∞⋃

j=n

⋃

x∈Zd\{0}

(
(j!)x + [1, (j − 1)!]d

)
,

then Zd\B is an example of such a set.

1.3. Nonstandard preliminaries

We use nonstandard analysis to derive our results and we assume that the reader is 
familiar with elementary nonstandard arguments. For an introduction to nonstandard 
methods aimed specifically toward applications to combinatorial number theory see [10]. 
Throughout this paper, we always work in a countably saturated nonstandard universe.

We make extensive use of the concept of Loeb measure. Here we will always be starting 
with the counting measure on some internal subset E of [−H, H]d where H is some 
element in ∗N \N . Often E itself is [−H, H]d, but it may also be a set of the form 
x + [−J, J ]d where x ∈ Zd and J ∈ ∗N \N . For every internal D contained in E, the 
measure of D relative to E is defined to be µE(D) := st( |D|

|E| ), where st is the standard 
part mapping. This defines a finitely additive measure on the algebra of internal subsets 
of E, which canonically extends to a countably additive probability measure on the 
σ-algebra of Loeb measurable subsets of E, and we will also write µE for this extension. 
If D is defined on a larger set than E then we will write simply µE(D) for µE(D ∩ E).

We will make frequent use of the well-known proposition below, which gives nonstan-
dard equivalents for the standard density properties. Proofs are included for convenience.

Proposition 2. If A is a subset of Zd then we have the following nonstandard equivalents 
of the standard asymptotic densities:

1. if d(A) ≥ α then for all K ∈ ∗N\N there exists an H ∈ ∗N\N such that H < K and 
µ[−H,H]d(∗A) ≥ α. Conversely, if there exists H ∈ ∗N\N such that µ[−H,H]d(∗A) ≥ α

then d(A) ≥ α;
2. d(A) ≥ α iff for all H ∈ ∗N\N µ[−H,H]d(∗A) ≥ α;
3. if BD(A) ≥ α then for all K ∈ ∗N\N there exists J ∈ [0,K] \N and x ∈ [−K, K]d

such that µx+[−J,J]d(∗A) ≥ α. Conversely if there exists J ∈ ∗N\N and x ∈ ∗Zd such 
that µx+[−J,J]d(∗A) ≥ α, then BD(A) ≥ α.

Proof.

1. If d(A) ≥ α then there exists a sequence ni → ∞ such that for all i ∈ N

|A ∩ [−ni, ni]d|
(2ni + 1)d ≥ α− 1

i
.

Pick an infinite hypernatural number J such that nJ < K, and observe that 
µ[−nJ ,nJ ](∗A) ≥ α. Conversely suppose that there exists an H ∈ ∗N\N such that 



M. Di Nasso et al. / Advances in Mathematics 278 (2015) 1–33 7

µ[−H,H]d(∗A) ≥ α. Given any ϵ > 0 and any m ∈ N one can deduce by transfer that 
there is a natural number n > m such that

|A ∩ [−n, n]d|
(2n + 1)d ≥ α− ϵ.

Therefore d(A) ≥ α.
2. d(A) ≥ α iff for any ϵ > 0 there exists nϵ ∈ N such that for all n > nϵ

|A ∩ [−n, n]d|
(2n + 1)d ≥ α− ϵ.

By transfer, this is true iff for all H ∈ ∗N\N and every standard ϵ > 0

|∗A ∩ [−H,H]d|
(2H + 1)d ≥ α− ϵ,

which is equivalent to µ[−H,H]d(∗A) ≥ α.
3. If BD(A) ≥ α then there exists a sequence ji, with ji → ∞ and points xi ∈ Zd such 

that for all i ∈ N

|A ∩ (xi + [−ji, ji]d)|
(2ji + 1)d ≥ α− 1/i.

We can pick an infinite hypernatural number L such that jL < K and xL < K. We 
may now let J = jL and x = xL. Conversely if there exist J ∈ ∗N\N and x ∈ ∗Zd

such that µx+[−J,J]d(∗A) ≥ α, then given any ϵ > 0 and any m ∈ N one can deduce 
by transfer that there is are natural numbers j and x such that j > m and

|A ∩ (x + [−j, j]d)|
(2j + 1)d ≥ α− ϵ.

This witnesses the fact that BD(A) ≥ α. ✷

2. Points of density

If E is an internal subset of ∗Zd and x ∈ ∗Zd define

dE(x) = lim inf
ν>N

µx+[−ν,ν]d
((

E + Zd
)
∩ (x + [−ν, ν]d)

)

= sup
H>N

inf
N<ν<H

µ[−ν,ν]d
((

(E − x) + Zd
)
∩ [−ν, ν]d

)
.

Definition 3. If dE(x) = 1 we say that x is a point of density of E, and we write DE for 
the set of points of density of E.
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We note that DE is not, in general, internal and that DE + Zd ⊆ DE . It is easy to see 
by countable saturation that for r ∈ [0, 1] and x ∈ ∗Zd, dE (x) ≥ r if and only if there 
is H > N such that for every N < ν < H

µx+[−ν,ν]d
((

E + Zd
)
∩ (x + [−ν, ν]d)

)
≥ r.

The classical Lebesgue density theorem for Rd says that if E is a Lebesgue measurable 
set in Rd then almost every point in E is a Lebesgue point of density of E, i.e. almost 
every x ∈ E has the property that

lim
ϵ→0

λ(E ∩ (x + (−ϵ, ϵ)d))
(2ϵ)d = 1.

Theorem 4 below can be regarded as an analogue of this classical result. It implies, in 
particular, that an internal set of positive Loeb measure relative to some interval always 
has points of density.

Theorem 4. If E ⊆ [−H, H]d is internal then the set DE of points of density of E is 
Loeb measurable, and µ[−H,H]d(DE) = µ[−H,H]d(E + Zd).

We will use Theorem 4 in Sections 3 and 5 below, but we postpone the proof of 
Theorem 4 to Section 6. In that section we will consider a similar notion of density point 
for arbitrary cuts and prove, in Corollary 28, a more general version of Theorem 4, which 
can be regarded as a Lebesgue density theorem for measure spaces induced by cuts in 
the nonstandard integers.

It is worth noting that the Loeb measure in the usual sense does not satisfy a similar 
analogue of the Lebesgue density theorem. For example the set of even numbers smaller 
than H has relative Loeb measure 1/2 on every infinite interval. Theorem 4 says that 
if we identify points that are a finite distance apart, then the Loeb measure on that 
quotient space does have a density theorem very similar to that of the Lebesgue measure. 
Proposition 5 highlights a way in which the theorem is even stronger than it is for 
Lebesgue measure, where sets might have no interval about a point of density that 
actually achieves relative measure 1.

Proposition 5. If E is an internal subset of [−H, H]d then x is a point of density of E if 
and only if there exists ν > N such that for all N < K < ν,

µx+[−K,K]d
((

E + Zd
)
∩ (x + [−K,K]d)

)
= 1.

Proof. Suppose that dE(x) = 1. Then from the definition there exist νj > N such that 
for all N < K < νj ,

µx+[−K,K]d
((

E + Zd
)
∩ (x + [−K,K]d)

)
≥ 1 − 1/j.
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By countable saturation we can find ν > N less than all the νj . The converse is immedi-
ate. ✷

We can characterize points of density in terms of standard density functions on sub-
sets of Zd that are centered around nonstandard points. In order to do so we need to 
approximate the “+Zd” part of the statement by considering how a set intersects with 
larger and larger “blocks.”

Given a subset A of Zd (or an internal subset of ∗Zd) and n ∈ N (or ∗N) we define 
the n-block sets A[n] and A[n] of A by

x ∈ A[n] iff (nx + [0, n− 1]d) ∩A ̸= ∅

and

A[n] = nA[n] + [0, n− 1]d.

We note that A[n] and A[n] have the same asymptotic densities, but are “scaled” 
differently, with A[n] on the same scale as A. In fact, A ⊆ A[n], which consists of a 
union of [0, n − 1]d blocks whose position is determined by the elements of A[n]. More 
specifically

x ∈ A[n] iff (nx + [0, n− 1]d) ∩A ̸= ∅ iff nx + [0, n− 1]d ⊆ A[n].

Thus, blocks of the form nx + [0, n − 1]d containing any element of A are “completely 
filled in” to form A[n].

If E is internal the set E + Zd is, in general, external, but its properties can often 
be approximated by the internal sets E[n] or E + [−n, n]d for large finite n or “small” 
elements of ∗N\N. The following observations are all straightforward and will be useful:

• If j ∈ N and J ∈ ∗N\N and E ⊆ [−H, H]d is internal, then

µ[−H,H]d(E[j]) ≤ µ[−H,H]d(E + Zd) ≤ µ[−H,H]d(E[J]).

• For any internal E ⊆ [−H, H]d

lim
i→∞

(µ[−H,H]d(E[i])) = lim
i→∞

(µ[−H,H]d(E + [−i, i]d)) = µ[−H,H]d(E + Zd).

• For A ⊆ Zd

lim
i→∞

(d(A[i])) = lim
i→∞

(d(A[i])) = lim
i→∞

(d(A + [−i, i]d)),

and

lim
i→∞

(d(A[i])) = lim
i→∞

(d(A[i])) = lim
i→∞

(d(A + [−i, i]d)).
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The limits in the statement above always exist, even though it is not true that i < j

implies that the upper and lower densities of A[j] are at least those of A[i]. For example 
in one dimension, if A consists of all numbers that are 0,1, or 2 mod 6 then d(A[2]) =
d(A[2]) = 2/3 while d(A[3]) = d(A[3]) = 1/2. However, it is easy to see that for all 
i and for all ϵ > 0 there exists l such that for all j > l, d(A[j]) ≥ d(A[i]) − ϵ and 
d(A[j]) ≥ d(A[i]) − ϵ. Thus limi→∞(d(A[i])) and limi→∞(d(A[i])) always exist. Of course, 
limi→∞(d(A + [−i, i]d)) clearly always exists.

Proposition 6. Let r be a standard real number between 0 and 1, and E be an internal 
subset of ∗Zd. If x ∈ ∗Zd, then dE (x) > r if and only if σ((E −x)[n] ∩Zd) > r for some 
n ∈ N. In particular x is a point of density of E if and only if for every r ∈ (0, 1) there 
is n ∈ N such that σ

(
(E − x)[n] ∩ Zd

)
> r.

Proof. Suppose that σ((E − x)[n] ∩ Zd) ≤ r for every n ∈ N. Fix an arbitrary strictly 
positive standard real number ϵ, and pick a sequence (ln)n∈N in N such that

∣∣(E − x)[n] ∩ [−ln, ln]d
∣∣

(2ln + 1)d < r + ϵ

for every n ∈ N. Observe that (ln)n∈N is a divergent sequence of natural numbers. Let H
be an arbitrary infinite hypernatural number, and pick an infinite hypernatural number 
ν such that lν < H. We have that

µ[−lν ,lν ]d
(
E − x + Zd

)
≤ µ[−lν ,lν ]d

(
(E − x)[ν]

)

≈

∣∣∣(E − x)[ν] ∩ [−lν , lν ]d
∣∣∣

(2lν + 1)d < r + ϵ.

Since ν could be an arbitrarily small element in ∗N\N, this shows that dE(x) ≤ r + ϵ. 
Since this is true for every standard real number ϵ, dE (x) ≤ r. Conversely suppose that 
σ((E − x)[n]) ≥ r + ϵ for some strictly positive standard real number ϵ. Thus for every 
k ∈ N

∣∣∣(E − x)[n] ∩ [−k, k]d
∣∣∣

(2k + 1)d
≥ r + ϵ.

If H is an infinite hypernatural number, then by overspill there is an infinite ν < H such 
that

µ[−ν,ν]d
(
(E − x) + Zd

)
≥

∣∣∣(E − x)[n] ∩ [−ν, ν]d
∣∣∣

(2ν + 1)d
≥ r + ϵ,

witnessing the fact that dE (x) ≥ r + ϵ. ✷
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Definition 7. If E is an internal subset of ∗Zd and x ∈ ∗Zd we say that x is a point of 
syndeticity of E iff there exists a finite m such that x + Zd ⊆ E + [−m, m]d.

Equivalently, since E + [−m, m]d is internal, x is a point of syndeticity of E iff there 
exists m ∈ N and K ∈ ∗N\N such that x + [−K, K]d ⊆ E + [−m, m]d. We will write SE

for the set of all points of syndeticity of E. Like DE , SE is, in general, not internal, and 
SE + Zd ⊆ SE .

Theorem 8. Suppose that X, Y are internal subsets of ∗Zd and a, b ∈ ∗Zd. If dX (a) = 1
and dY (b) = 1 then a + b is a point of syndeticity of X + Y .

Proof. By Proposition 5 there exists ν > N such that

µ[−ν,ν]d
((

X − a + Zd
)
∩ [−ν, ν]d

)
= 1

and

µ[−ν,ν]d
((

−Y + b + Zd
)
∩ [−ν, ν]d

)
= 1.

If ξ ∈
[
−ν

2 ,
ν
2
]d then

µ[−ν,ν]d
((

−Y + b + ξ + Zd
)
∩ [−ν, ν]d

)
≥ 1

2d

and hence
(
−Y + b + ξ + Zd

)
∩
(
X − a + Zd

)
̸= ∅.

This means that there are x ∈ X, y ∈ Y and u, v ∈ Zd such that

a + b + ξ + u = x + y + v.

This shows that

a + b +
[
−ν

2 ,
ν

2
]d

⊂ X + Y + Zd.

Thus

a + b +
[
−ν

2 ,
ν

2
]d

is contained in the increasing union of internal sets
⋃

m∈N
(X + Y + [−m,m]d).
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By saturation, it follows that

a + b +
[
−ν

2 ,
ν

2
]d

⊆ X + Y + [−m,m]d

for some m ∈ N. Now

a + b + Zd ⊆ a + b +
[
−ν

2 ,
ν

2
]d

⊆ X + Y + [−m,m]d,

and hence a + b is a point of syndeticity of X + Y . ✷

Proposition 9. Let E be an internal subset of [−H, H]d. Then SE is µ[−H,H]d-measurable. 
Moreover, if µ(SE) = α > 0 then for all (standard) ϵ > 0 there exists a (standard) m ∈ N
such that for all (standard) k ∈ N,

µ[−H,H]d({z ∈ [−H,H]d : z + [−k, k]d ⊆ E + [−m,m]d}) ≥ α− ϵ.

Proof. For each i ∈ N let

Si
E =

{
x ∈ [−H,H]d : x + Zd ⊆ E + [−i, i]d

}
.

Then

SE =
∞⋃

i=1
Si
E .

Each Si
E is measurable since

Si
E =

⋂

z∈Zd

(E + [−i, i]d + z),

and so is a countable intersection of internal sets. This shows that SE is measurable, as 
it is a countable union of measurable sets. By countable additivity of the Loeb measure, 
and the fact that the Si

E form a nested sequence of sets, there must exist an m such that

µ[−H,H]d (Sm
E ) ≥ α− ϵ.

This m must now satisfy the statement, since for any k,

{z ∈ [−H,H]d : z + [−k, k]d ⊆ E + [−m,m]d}

is an internal set that contains Sm
E . ✷

The proposition above is false if we replace the conclusion

µ[−H,H]d({z ∈ [−H,H]d : z + [−k, k]d ⊆ E + [−m,m]d}) ≥ α− ϵ
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with

µ[−H,H]d({z ∈ [−H,H]d : z + [−k, k]d ⊆ E + [−m,m]d}) ≥ α,

as the example below shows (in one dimension). In this example the gaps are arbitrarily 
large, but only on relatively small intervals.

Example 10. We define a standard sequence A by:

A =
∞⋃

j=1

(
j⋃

i=1
(i · N) ∩

[
2j − 2j−i, 2j − 2j−i−1]

)
.

Then it is easy to see that for any infinite H, µ[1,H](S∗A) = 1, but that for any given 
natural number m,

µ[1,H]({a ∈ [1, H] : [a, a + k] ⊂ ∗A + [0,m]}) ≤ 1 − 1
2m .

3. Upper syndeticity and sumsets

Suppose that α is a positive real number less than or equal to 1. We say that a subset 
A of Zd is:

• lower syndetic of level α iff there exists a natural number m ∈ N such that for all 
k ∈ N,

d({z ∈ Zd : z + [−k, k]d ⊆ A + [−m,m]d}) ≥ α;

• upper syndetic of level α iff there exists a natural number m ∈ N such that for all 
k ∈ N,

d({z ∈ Zd : z + [−k, k]d ⊆ A + [−m,m]d}) ≥ α;

• strongly upper syndetic of level α iff for any infinite sequence S ⊆ N, there exists 
m ∈ N such that for any k ∈ N

lim sup
n∈S

1
(2n + 1)d

∣∣{z ∈ [−n, n]d : z + [−k, k]d ⊆ A + [−m,m]d
}∣∣ ≥ α.

In accordance with previous definitions, if any of the above holds with m = 0 we may 
replace the word “syndetic” with the word “thick.” Thus a subset A of Zd is:

• lower thick of level α iff for all k ∈ N,

d({z ∈ Zd : z + [−k, k]d ⊆ A}) ≥ α;
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• upper thick of level α iff for all k ∈ N,

d({z ∈ Zd : z + [−k, k]d ⊆ A}) ≥ α.

We note that there is no need for the notion of “strongly upper thick,” since it would be 
equivalent to that of “lower thick.” We also note that lower syndeticity of level α implies 
strong upper syndeticity of level α, which in turn is stronger than upper syndeticity of 
level α. It is also trivial that a lower thick set of level α is, in particular, lower syndetic 
of level α; the same fact holds for upper syndeticity of level α.

The set C given in Example 17 in the next section shows that “strong upper syndeticity 
of level α” is a notion that lies strictly between lower and upper syndeticity of level α. 
In that example the set C is upper syndetic of level 1, strongly upper syndetic of level 
1
2 , but not of level α if α > 1

2 , and is not lower syndetic of level α for any α > 0.
Observe that replacing the upper density with the Banach density in the definition of 

upper syndetic of level α would make the notion trivialize, since every piecewise syndetic 
set would satisfy that condition with α = 1.

Proposition 11. Let H ∈ ∗N\N, and S be a measurable subset of [−H, H]d with the 
property that µ[−H,H]d(S + Zd) = µ[−H,H]d(S) = α > 0. Then for each standard k ∈ N

µ[−H,H]d({x ∈ S : x + [−k, k]d ⊆ S}) = α.

Proof. Define

γ = µ[−H,H]
({

x ∈ S : x + [−k, k]d " S
})

.

Observe that

µ[−H,H]d
(
S + Zd

)
≥ µ[−H,H]

(
S + [−k, k]d

)
≥ µ[−H,H] (S) + γ

(2k + 1)d
.

Here the (2k + 1)d term comes from the fact that a single point in

(
S + [−k, k]d

)
\S

witnesses that x + [−k, k]d " S for at most (2k + 1)d elements x of S. Since

µ[−H,H]d
(
S + Zd

)
= µ[−H,H]d (S)

by assumption, this implies that γ = 0. The conclusion follows. ✷

Corollary 12 is straightforward but will be useful, and follows immediately from the 
previous result.



M. Di Nasso et al. / Advances in Mathematics 278 (2015) 1–33 15

Corollary 12. Let H ∈ ∗N \N , and S be a measurable subset of [−H, H]d with the property 
that µ[−H,H]d(S) = 1. Then for each standard k ∈ N

µ[−H,H]d({x ∈ S : x + [−k, k]d ⊆ S}) = 1.

Proposition 13. Let A be a subset of Zd. If limi→∞(d(A[i])) = d(A) = α > 0 then A is 
upper thick of level α.

Proof. By Proposition 2 there exists an H ∈ ∗N\N such that

µ[−H,H]d(∗A) = α,

and since limi→∞(d(A[i])) = α it must be that for all i ∈ N

µ[−H,H]d(∗A[i]) = α,

for if there were any finite i and any H ∈ ∗N\N for which µ[−H,H]d(∗A[i]) > α, that 
would imply that limi→∞(d(A[i])) > α. We now have that for all j ∈ N there exists 
ij > j such that

α− 1/j ≤

∣∣∣∗A[ij ] ∩ [−H,H]d
∣∣∣

(2H + 1)d ≤ α + 1/j.

By overspill there exists a J in [1, H] such that iJ/H is infinitesimal and

α− 1/J ≤

∣∣∣∗A[iJ ] ∩ [−H,H]d
∣∣∣

(2H + 1)d ≤ α + 1/J,

so that

µ[−H,H]d(∗A[iJ ]) = α.

The set ∗A[iJ ] consists of a union of hypercubes of the form (iJ )x + [0, iJ − 1]d. Let 
N = ⌊H/iJ⌋, and

K =
∣∣∣
{
x ∈ [−N,N ]d : (iJ)x + [0, iJ − 1]d ⊆ ∗A[iJ ]

}∣∣∣ .

Then, since iJ is infinitesimal compared to H, and every hypercube of the form (iJ)x +
[0, iJ − 1]d is either completely contained in ∗A[iJ ] or is disjoint from it we may conclude 
that

st
(

K

(2N + 1)d

)
= µ[−H,H]d(∗A[iJ ]) = α.
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But K is also equal to
∣∣{x ∈ [−N,N ]d : (iJ)x + [0, iJ − 1]d ∩ ∗A

}
̸= ∅

∣∣ .

Since µ[−H,H]d(∗A) = α, this implies that on almost every such cube

µ(iJ )x+[0,iJ−1]d(∗A) = 1.

By Corollary 12, for each standard k ∈ N

µ(iJ )x+[0,iJ−1]d({x ∈ ∗A : x + [−k, k]d ⊆ ∗A}) = 1.

Summing over all the N blocks that intersect ∗A now yields the desired result. ✷

The analogous result does not hold for lower density. There exist sets A ⊆ Zd such 
that limi→∞(d(A[i])) = d(A) = α > 0 but A is not lower thick of level β for any β > 0. 
See the remarks after Example 15 below. However the proof above can easily be adapted 
to show that if d(A) = α > 0 and limi→∞(d(A[i])) = α, then A is lower thick of level α.

Theorem 14. Let A and B be subsets of Zd with the property that d(A) = α > 0 and 
BD(B) > 0. Then A + B is upper syndetic of level α.

Proof. If limi→∞(d(A[i])) = α then by Proposition 13 A itself is upper thick of level α, 
so A + B is certainly upper thick of level α.

So, it suffices to assume that there exists i ∈ N such that d(A[i]) > α. This implies 
that there exists H ∈ ∗N\N such that

µ[−H,H]d(∗A + Zd) ≥ µ[−H,H]d(∗A[i]) > α.

Let ϵ > 0 be less than µ[−H,H]d(∗A + Zd) − α. Since BD(B) > 0 there exist arbitrarily 
large standard j such that for some k ∈ Zd

∣∣B ∩ (k + [−j, j]d)
∣∣

(2j + 1)d > BD(B)/2.

Let ν ∈ [1, H]\N be such that ν/H is infinitesimal. By Proposition 2 there exists J ∈
∗N\N and k ∈ [−H, H]d such that

∣∣∗B ∩ (k + [−J, J ]d)
∣∣

(2J + 1)d > BD(B)/2,

and |k| and J are less than ν. Along with Theorem 4, this shows that there is a point 
of density b of ∗B such that |b|

H is infinitesimal. Then by Proposition 8 every point in 
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b + D∗A + Zd is a syndetic point of ∗(A + B), and since |b| is infinitesimal to H, almost 
all elements of b + (D∗A ∩ [−H, H]d) are in [−H, H]d. By Theorem 4 we know that

µ[−H,H]d(D∗A) = µ[−H,H]d(∗A + Zd) > α + ϵ,

so that

µ[−H,H]d(S∗(A+B)) ≥ µ[−H,H]d(∗A + Zd) > α + ϵ.

By Proposition 9 there must exist a standard m ∈ N such that for all (standard) k ∈ N

µ[−H,H]d
({

z ∈ [−H,H]d : z + [−k, k]d ⊆ ∗(A + B) + [−m,m]d
})

≥ α.

By the nonstandard characterization of upper asymptotic density (Proposition 2) we 
obtain the desired result. ✷

The theorem above is, in general, the best possible, as is shown in the example below 
in one dimension, with densities defined on [1, n] rather than [−n, n].

Example 15. Let

A =
∞⋃

n=1
[2n, 2n + 2n−1] and B =

∞⋃

n=1
[n!, n! + n].

then

d(A) = 1/2 = d({n : [n, n + k] ⊆ A + B + [0,m]}))

for all m and k, and

d(A) = 2/3 = d({n : [n, n + k] ⊆ A + B + [0,m]}))

for all m and k (note that these densities would be 1/4 and 1/3 if we defined the densities 
on [−n, n] as in our general definition).

We note that if A is the set from Example 15, and the set C is defined to 
equal A ∩ [(2n)!, (2n + 1)!) on all [(2n)!, (2n + 1)!), and (2N)∩[(2n + 1)!, (2n + 2)!)
on all [(2n + 1)!, (2n + 2)!), then C is an example of a set with the property that 
limi→∞(d(C [i])) = d(C) > 0 but C is not lower thick of level β for any β > 0.

In Example 15 where the results are sharp we note that the densities are the same 
for A as they are for every A[j] for j finite, and the conclusion holds with m = 0. 
This suggests the following slightly stronger version of the theorem above. The proof is 
immediate from the proof of the theorem above.
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Corollary 16. Let A and B be subsets of Zd with the property that d(A) = α > 0 and 
BD(B) > 0. Let α′ = limi→∞(d(A[i])). If α′ > α then A +B is upper syndetic of level r
for any r < α′. If α = α′ then A + B is upper thick of level α.

Combining ideas from Example 10 and Example 15 it is easy to see that Corol-
lary 16 cannot be improved to allow r to equal α′. The set A from Example 10 has 
limi→∞(d(A[i])) = 1, and if we add that set to the set B from Example 15 then A + B

is not upper syndetic of level 1.

4. Lower syndeticity and sumsets

In this section we focus on how the previous theorem can be improved if the set A
has the stronger property of positive lower density. In the proof of Theorem 14 we used 
the fact that if C ⊆ Zd is such that for some H ∈ ∗N\N

µ[−H,H]d (S∗C) > α,

then C is upper syndetic of level α. The analogous result for lower density is far from 
true, as Example 17 shows (in one dimension).

Example 17. The set C constructed below has the property that almost all points in ∗C
(on any infinite interval) are points of syndeticity of ∗C, and d(C) = 1/2. However, for 
any m

d{n ∈ N : n + [−2m, 2m] ⊆ A + [0,m]} = 0.

Let si be the sequence 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5 . . . , and let C ⊆ N be such that:

on [i!, (i + 1)!), n ∈ C iff n ≡ {0, 1, .., si − 1}mod 2si.

Thus, on [i!, (i +1)!), C consists of blocks of length si, with the blocks alternating between 
being completely contained in C and not intersecting C. We note that for any given m, 
if we let H = (I + 1)! and sI be such that 2m < sI < 3m then

µ[1,H] ({n ∈ ∗N : n + [−2m, 2m] ⊆ ∗C + [0,m]}) = 0.

We also note that the only points in ∗C\C that are not points of syndeticity are those 
that are within a standard distance of an endpoint of one of the intervals of nonstandard 
length.

Example 17 shows that we cannot use the same proof technique from Section 3 if 
we want to prove an analogous result with a conclusion involving lower density. These 
techniques do allow us to conclude strong upper syndeticity.
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Theorem 18. Let A and B be subsets of Zd with the property that d(A) = α > 0 and 
BD(B) > 0. Then A + B is strongly upper syndetic of level α.

Proof. Let S ⊆ N be any sequence going to infinity. Let H = sI , where I ∈ ∗N \N . Since 
d(A) = α we know that µ[−H,H]d(∗A) ≥ α. If

µ[−H,H]d(∗A + Zd) = µ[−H,H]d(∗A),

then by Proposition 11, for each standard k ∈ N

µ[−H,H]d({x ∈ ∗A : x + [−k, k]d ⊆ ∗A}) = α,

and we may let m = 0.
If

µ[−H,H]d(∗A + Zd) > µ[−H,H]d(∗A),

then by arguments identical to those used in the proof of Theorem 14, there must exist 
m ∈ N such that for all k ∈ N

µ[−H,H]d
({

z ∈ [−H,H]d : z + [−k, k]d ⊆ ∗(A + B) + [0,m]d
})

≥ α.

The result now follows by transfer, since for this m, any ϵ > 0 and any i, k ∈ N there 
exists j > i such that

1
(2sj + 1)d

∣∣{z ∈ [−sj , sj ]d : z + [−k, k]d ⊆ A + B + [0,m]d
}∣∣ ≥ α− ϵ. ✷

In fact it is not true that the conclusion in the theorem above can be improved to 
“A + B is lower syndetic of level α” (see Example 20 below). The following theorem is 
the strongest conclusion we can make involving lower syndeticity.

Theorem 19. Let A and B be subsets of Zd with the property that d(A) = α > 0 and 
BD(B) > 0. Then for any ϵ > 0, A + B is lower syndetic of level α− ϵ.

Proof. Without loss of generality, let ϵ < α/2. So we can assume that α− ϵ > ϵ. Choose 
m ∈ N sufficiently large so that BD(B + [−m, m]d) > 1 − ϵ. Let Bm = B + [−m, m]d. It 
suffices to show that for any H ∈ ∗N # N and any k ∈ N,

µ[−H,H]d
({

x ∈ [−H,H]d : x + [−k, k]d ⊆ ∗(A + B) + [−m,m]d
})

≥ α− ϵ.

We first note that by a pigeonhole argument we can prove that if x, y, x +y ∈ [−H, H]d
are such that
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d((∗A− x) ∩ Zd) + d((∗Bm − y) ∩ Zd) > 1, (1)
then (x + y + Zd) ∩ [−H,H]d ⊆ ∗(A + Bm). (2)

This is true because if x and y satisfy (1) then any x′ ∈ x + Zd and y′ ∈ y + Zd also 
satisfy this condition, so that ∗A− x′ and y′ − ∗Bm must intersect.

Now for any n ∈ N, let

Sn =
{
x ∈ ∗A ∩ [−H,H]d : |(x + [−n, n]d) ∩ ∗A)|

(2n + 1)d
>

ϵ

2

}

and

S =
∞⋂

N=1

∞⋃

n=N

Sn.

Similarly define

Tn =
{
x ∈ ∗A ∩ [−H,H]d : |(x + [−n, n]d) ∩ ∗A)|

(2n + 1)d
<

2ϵ
3

}

and

T =
∞⋃

N=1

∞⋂

n=N

Tn.

It is now easy to verify the following Facts:

1. ∗A\S ⊆ T .
2. If x ∈ [−H, H]d, then x ∈ S implies d((∗A−x) ∩Zd) ! ϵ/2 and d((∗A−x) ∩Zd) > ϵ/2

implies x ∈ S.
3. If x ∈ ∗A∩ [−H, H]d, then x ∈ T implies d((∗A−x) ∩Zd) " 2ϵ/3 and d((∗A−x) ∩Zd) <

2ϵ/3 implies x ∈ T .
4. If x, y ∈ ∗A ∩ [−H, H]d and x − y ∈ Zd, then x ∈ S if and only if y ∈ S and x ∈ T if 

and only if y ∈ T .

We show that µ[−H,H]d(T ) " 2ϵ/3. Suppose that µ[−H,H]d(T ) = γ > 2ϵ/3. By the 
Birkhoff Ergodic Theorem the asymptotic density of T − x exists for almost all x (see 
e.g. [10] pages 23 and 24 for more details on a similar argument using this theorem). So 
there exists an x ∈ T such that d((T − x) ∩ Zd) ≥ γ. By Fact 4, we have that

(∗A− x) ∩ Zd = (T − x) ∩ Zd.

Therefore, d((∗A− x) ∩ Z) = γ > 2ϵ/3, which contradicts that x ∈ T by Fact 3.
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By Fact 1 µ[−H,H]d(S) ! α− 2ϵ/3 > α− ϵ. Let t ∈ [−H, H]d be such that ∥t∥ /H ≈ 0
and d(∗Bm ∩ (t + Zd)) > 1 − ϵ. By (1)–(2), we have that

(∗(A + B) + [−m,m]d) ∩ [−H,H]d

= (∗A + ∗Bm) ∩ [−H,H]d ⊇ (t + S + Zd) ∩ [−H,H]d.

Consequently for any k ∈ N, the measure of

(
{x ∈ [−H,H]d : x + [0, k]d ⊆ ∗(A + B) + [−m,m]d}

)

is at least the measure of S + Zd, which is greater than or equal to α− ϵ.
This completes the proof. ✷

Example 20 shows (in one dimension) that we may not replace α − ϵ with α in the 
conclusion of the previous theorem.

Example 20. Sets A, B ⊆ N can be constructed so that they satisfy that d(A) = 1/2, 
BD(B) ! 8/9, and for any m ∈ N there exists k ∈ N such that

d({x ∈ N : x + [0, k] ⊆ A + B + [0,m]}) < 1
2 .

Proof. We construct A first. Let f(n, p) = 10(n2+p)2 . Notice that f(n, p) < f(n + 1, 0)
for any n and p " n, and f(N, p)/(f(N, p +1) −f(N, p)) ≈ 0 and f(N, N)/(f(N+1, 0) −
f(N, N)) ≈ 0 for any hyperfinite N and p " N .

For each p ∈ N let rp = 10p−2
2(10p−1) . Notice that rp < 1

2 when p is finite and rp → 1
2 as 

p → ∞. The number rp satisfies that rp + 1
10p (1 − rp) = 1

2 .
For each n ∈ N and each p = 1, 2, . . . n − 1, let

Cn,p = C ′
n,p ∪ C ′′

n,p

where C ′
n,p = [f(n, p), f(n, p) + ⌊rp(f(n, p + 1) − f(n, p))⌋]

and C ′′
n,p = (10pN) ∩ [f(n, p) + ⌊rp(f(n, p + 1) − f(n, p))⌋ , f(n, p + 1)],

i.e. Cn,p ⊆ [f(n, p), f(n, p + 1)] is the union of an interval of length ⌊rp(f(n, p + 1) −
f(n, p))⌋ and an arithmetic progression of difference 10p and length

⌊ 1
10p (1 − rp)(f(n, p + 1) − f(n, p))

⌋
.
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Let Cn,n = 2[f(n, n), f(n + 1, 0)]. Let

A =
∞⋃

n=1

n⋃

p=0
Cn,p.

Clearly, d(A) = 1/2.
Now we construct B.
For each p ∈ N let Ep =

⋃∞
k=1

(
k102p − [1, 10p]

)
, Dp = N # Ep, and D =

⋂∞
p=1 Dp. 

Let Fn = D ∩ [0, 102n − 1]. We list the following Facts:

1. Every interval of length 102p contains a gap of D with length at least 10p.
2. Also d(D) ! 1 −

∑∞
p=1

1
10p = 8/9.

3. Fn = Dn ∩ [0, 102n − 1].
4. For any p′ " p

k102p + Dp′ ∩ [0, 102p − 1] = Dp′ ∩ [k102p, (k + 1)102p − 1].

5. For any p′ < p′′ " p,

k102p + 102p′′ + Fp′ ⊆ 102pN + Fp.

6. For any n ≥ p,

[k102p, (k + 1)102p − 1] ∩Dn ⊆ k102p + Fp.

7. 102pN + D = 102pN + Fp.

Let

B =
∞⋃

n=2
(f(n, 0) + Fn).

Clearly, BD(B) ! d(D) ! 8/9. For each hyperfinite integer N and 1 " p < N , let 
u = max ∗B ∩ [0, f(N, p)]. We have that u/f(N, p) ≈ 0. The set B is a union of Fn’s 
translated by rapidly increasing powers of 10. It is important to observe that

102nN + B ⊆ 102nN + Fn.

This is true because by Fact 5, we have that

• if f(n′, 0) ≥ 10n, then

k102n + f(n′, 0) + Fn′ = k′102n + Fn′ ⊆ 102nN + Fn;
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• if f(n′, 0) = 10(n′)4 < 102n, then

k102n + f(n′, 0) + Fn′ = k′10(n′)4 + Fn′ = k′′102(n′+1) + Fn′ ⊆ 102nN + Fn.

Now we show that the sets A and B are what we want.
Given any m ∈ N, choose a p ∈ N sufficiently large so that 10p > 2m. Let H =

f(N, 2p + 1). Then (f(N, 2p + 1) − f(N, 2p))/H ≈ 1. Let u = maxB ∩ [1, H]. We also 
have u/H ≈ 0. So

(∗A + ∗B + [0,m]) ∩ [0, f(N, 2p + 1)]
⊆ [0, f(N, 2p) + ⌊r2p(f(N, 2p + 1) − f(N, 2p))⌋ + u + m]

∪ (C ′′
N,2p + ∗B ∩ [0, u] + [0,m]).

Note that (C ′′
N,2p + ∗B ∩ [0, u]) ∩ [1, H] ⊆ (C ′′

N,2p + F2p) ∩ [1, H] and every interval of 
length 102p contains a gap of length 10p in (C ′′

N,2p +F2p) ∩ [1, H]. Since 10p > 2m, every 
interval of length 102p in [f(N, 2p) +⌊r2p(f(N, 2p + 1) − f(N, 2p))⌋+u +m, f(N, 2p +1)]
is not entirely in ∗(A + B) + [0, m]. So we can choose k = 102p so that

{x ∈ [1, H] : x + [0, k] ⊆ ∗(A + B) + [0,m]}
⊆ [1, f(N, 2p) + ⌊r2p(f(N, 2p + 1) − f(N, 2p))⌋ + u].

Hence

µ[1,H]({x ∈ [1, H] : x + [0, k] ⊆ ∗(A + B) + [0,m]})

≈ 1
H

(f(N, 2p) + ⌊r2p(f(N, 2p + 1) − f(N, 2p)) + u)⌋

≈ r2p <
1
2 . ✷

5. Syndeticity for the sum of two sets of positive lower density

In this section we focus only on the dimension 1 case, where the results from Section 4
can be improved under the assumption that both sets have positive lower density. The 
results use Mann’s theorem about the additivity of Schnirelmann density [17] and thus 
do not generalize to n dimensions in a straightforward way. For the remainder of the 
section the dimension is 1 and the density functions are defined on intervals of natural 
numbers starting at 1, as in the classical setting.

Mann’s theorem asserts that if A and B are subsets of N such that σ(A) = α and 
σ(B) = β, then

σ((A ∪ {0}) + (B ∪ {0})) ≥ min{α + β, 1}.
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This guarantees that for any n

|((A ∪ {0}) + (B ∪ {0})) ∩ [1, n]|
n

≥ min{α + β, 1}.

So the result can at once be thought of as pertaining to either infinite sets or finite sets 
of natural numbers up to some n.

We first need the proposition below.

Proposition 21. Let A ⊆ N be such that d(A) = α > 0. Then for any H ∈ ∗N\N and 
any ϵ > 0 there exists an internal E ⊆ ∗A ∩D∗A ∩ [1, H] such that σ(E − e) ≥ α− ϵ for 
some e ∈ [1, H], with e/H < ϵ.

Here by σ(E − e) we mean the Schnirelmann density of the internal set E − e on 
[1, H − e], i.e. infh∈H−e

|(E−e)∩[1,h]|
h .

Proof. We will write DA for ∗A ∩ D∗A. Since DA is Loeb measurable on any interval, 
and Loeb measurable sets are approximable from below by internal sets, for each n ∈ N
there exists an internal set En such that

En ⊆ DA ∩ [(H/2n), (H/2n−1)]

and

µ[1,H](En) > (1 − ϵ/4)µ[1,H](DA ∩ [(H/2n), (H/2n−1)]).

Let m ∈ N be such that

1/2m < ϵ and let E =
2m⋃

n=1
(En).

Then E is internal and E ⊆ DA ∩ [1, H] = ∗A ∩D∗A ∩[1, H].
By Theorem 4 and Proposition 2

µ[1,H](DA ∩ [1,K]) ≥ α(K/H) for all N <K < H.

Note that for any n < m, if x ∈ [(H/2n), (H/2n−1)] then

µ[1,H](E ∩ [(H/2n), x]) ≥ µ[1,H](DA ∩ [(H/2n), x]) − (ϵ/4)(1/2n−1 − 1/2n)
≥ µ[1,H](DA ∩ [(H/2n), x]) − (ϵ/4)(x/H),

and

µ[1,H](E ∩ [1, (H/2n)]) > (1 − ϵ/4)µ[1,H](DA ∩ [1, (H/2n)]) − 1/22m.
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We now have:

µ[1,H](E ∩ [1, x])

= µ[1,H](E ∩ [1, (H/2n)]) + µ[1,H](E ∩ [(H/2n), x])

> (1 − ϵ/4)µ[1,H](DA ∩ [1, (H/2n)]) − 1/22m +

+ µ[1,H](DA ∩ [(H/2n), x]) − (ϵ/4)(x/H)

≥ µ[1,H](DA ∩ [1, x]) − ϵ/4(µ[1,H](DA ∩ [(H/2n), x]) + x/H) − ϵ/2m

≥ αx/H − ϵ/4(x/H + x/H) − (ϵ/2)x/H

≥ αx/H − ϵx/H.

This means that the largest element u in [1, H] such that

|E ∩ [1, u]| < (α− ϵ)u

is less than (1/2m)H. Let e = u + 1. We note that e must be an element of E, and that 
for all e < x < H

|E ∩ [e + 1, x]| ≥ (α− ϵ)(x− e)

by the maximality of u. Thus σ(E − e) ≥ α− ϵ on [1, H − e], and all the statements in 
the conclusion are satisfied. ✷

Theorem 22. Let A and B be subsets of N with the property that d(A) = α > 0, and 
d(B) = β > 0. Then A + B is strongly upper syndetic of level min{α + β, 1}.

Proof. If α + β > 1 then A + B contains all but finitely many positive integers, hence 
the conclusion holds trivially with m = 0. So, we suppose that α + β ≤ 1.

Let S ⊆ N be any sequence going to infinity. Let H = sI , where I ∈ ∗N \N .
By transfer (as in the proof of Theorem 18) it suffices to show that there exists m ∈ N

such that for all k ∈ N

µ[1,H] ({z ∈ [1, H] : z + [−k, k] ⊆ ∗(A + B) + [−m,m]}) ≥ α + β.

By Proposition 21, for each n ∈ N there exists an internal set EA,n and an ∈ EA,n

such that

• σ(EA,n − an) ≥ α− 1/n on [1, H − an],
• EA,n ⊆ ∗A ∩D∗A ∩ [1, H], and
• an/H < 1/n.
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Similarly, for each n ∈ N there exists EB,n and bn ∈ EB,n such that

• σ(EB,n − bn) ≥ β − 1/n on [1, H − bn],
• EB,n ⊆ ∗B ∩D∗B ∩ [1, H], and
• bn/H < 1/n.

By Mann’s theorem,

σ(EA,n − an + EB,n − bn) ≥ α + β − 2/n on [1, H − (an + bn)],

i.e.

|(EA,n − an + EB,n − bn) ∩ [1, H − (an + bn)]|
H − (an + bn) ≥ α + β − 2/n.

This implies that

µ[1,H] (EA,n − an + EB,n − bn) ∩ [1, H − (an + bn)]) ≥ (α + β − 2/n)(1 − 2/n).

Thus

µ[1,H](EA,n + EB,n) ≥ (α + β − 2/n)(1 − 2/n) ≥ α + β − 4/n.

Since each EA,n is in ∗A∩D∗A and each EB,n is in ∗B ∩D∗B , by Theorem 8 we know 
that every EA,n + EB,n is contained in ∗(A + B) ∩ S∗(A+B), so that

µ[1,H](∗(A + B) ∩ S∗(A+B)) ≥ α + β.

Now, if

µ[1,H](S∗(A+B)) > α + β

then the result follows by Proposition 9. If, on the other hand,

µ[1,H](S∗(A+B)) = α + β

then, since S∗(A+B) = S∗(A+B) + Z, it must be that

α + β ≤ µ[1,H](∗(A + B) ∩ S∗(A+B)) ≤ µ[1,H]((∗(A + B) ∩ S∗(A+B)) + Z)
≤ µ[1,H](S∗(A+B) + Z) = µ[1,H](S∗(A+B)) = α + β.

Thus, the set ∗(A + B) ∩ S∗(A+B) satisfies the hypotheses of the set S in Proposition 11
(in one dimension). This implies that for each standard k ∈ N
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µ[1,H]({x ∈ ∗(A + B) : x + [−k, k] ⊆ ∗(A + B)} = α + β,

and the result follows with m = 0. ✷

Question. Under the same hypotheses as in the theorem above, can we conclude that 
for any ϵ > 0 the sumset A + B is lower syndetic of level min{α + β − ϵ, 1}?

Currently the strongest conclusion that can be made involving lower density is the 
result below.

Theorem 23. Let A and B be subsets of N with the property that d(A) = α > 0, and 
d(B) = β > 0. Then for any ϵ > 0 and any increasing function f : N → N, there exists 
mf ∈ N such that

d({n ∈ N : ∃ m < mf , n + [−f(m), f(m)] ⊆ A + B + [−m,m]})

is at least min{α + β − ϵ, 1}.

We note that here mf depends only on the function, but that m may depend on n.

Proof. As before, if α + β > 1 the result is immediate, so we assume that α + β ≤ 1
and suppose, for the sake of contradiction, that for some ϵ > 0 no such mf exists. Then 
there exists r < α + β such that for all m0 ∈ N there exist arbitrarily large n ∈ N such 
that for all m < m0

|{z ∈ [1, n] : z + [−f(m), f(m)] ⊆ A + B + [−m,m]}| < rn.

By overspill there exist M, H ∈ ∗N\N such that for all m < M

|{z ∈ [1, H] : z + [−f(m), f(m)] ⊆ ∗(A + B) + [−m,m]}| < rH,

so that

µ[1,H] ({z ∈ [1, H] : z + [−f(m), f(m)] ⊆ ∗(A + B) + [−m,m]}) ≤ r.

But, as in the proof of the previous theorem, we know that for any fixed H ∈ ∗N\N
there exists m ∈ N such that for all k ∈ N

µ[1,H]({z ∈ [1, H] : z + [−k, k] ⊆ ∗(A + B) + [−m,m]}) ≥ α + β,

and this contradiction completes the proof. ✷
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6. A Lebesgue density theorem for nonstandard cuts

The goal of this section is to prove an analogue of the Lebesgue density theorem for 
measures induced by arbitrary cuts in ∗N. Let H ∈ ∗N\N. A cut U in [1, H] is an initial 
segment of [1, H] that is closed under addition. Cuts in this context were introduced 
in [13], and some of the topological properties of the quotient space [1, H] under the 
equivalence relation x ≡ y iff |x− y| ∈ U were explored. For a given cut U in [1, H], 
we let U = (−U) ∪ {0} ∪ (U). A U -monad of [−H, H]d is a set of the form x + Ud, 
where x ∈ [−H, H]d and x + Ud ⊆ [−H, H]d. The main result in this section is really 
about the behavior of Loeb measure on the space of monads of various cuts, i.e. the 
quotient space under the projection that sends x to x + Ud. For any N <K ≤ H there 
is a natural cut of all elements infinitesimal to K, given by UK =

⋂∞
i=1[1, K/i]. Loeb 

measure on the quotient space of [−K, K]d for the cut UK is isomorphic to Lebesgue 
Measure on [−1, 1]d via the measure-preserving mapping that sends x + Ud to st(x/K). 
So, the fact that the Lebesgue density theorem holds for such cuts is immediate from the 
fact that the result holds for Lebesgue measure. Previous standard results were obtained 
by using the density theorem in the space of monads of such UK in [14,15] and [16]. 
In this section we show that there is an analogous density theorem for every cut and 
in every finite dimension. The standard results in this paper are based on the density 
theorem in the case where that U = N.

We begin with a standard combinatorial lemma.

Lemma 24. Suppose that m ∈ N and (Ti)i<n is a collection of subsets of a finite set X
such that for every x ∈ X

1 ≤
∑

i<n

χTi(x) ≤ m

where χTi denotes the characteristic function of Ti. If t ∈ (0, 1) and E ⊂ X is such that

|Ti ∩ E|
|Ti|

≤ t

for every i < n, then

|E|
|X| ≤

mt

1 + (m− 1) t .

Proof. We may assume that each x ∈ E is in only one of the Ti and that each x ∈ X\E
is in m of the Ti since removing elements of E from all but one of the Ti or adding 
elements of X\E to any of the Ti (if that element is in fewer than m of them) maintains 
the hypotheses without changing the conclusion. Then

|E| ≤ t
∑

i<n

|Ti| = t(m(|X|− |E|) + |E|) = t(m |X|− (m− 1) |E|)
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so that

|E| (1 + (m− 1)t) ≤ tm |X|

which yields the desired result. ✷

If E is an internal subset of ∗Zd and x ∈ ∗Zd define

dE(x) := lim inf
ν>U

µx+[−ν,ν]d
((

E + Ud
)
∩
(
x + [−ν, ν]d

))
,

where lim infν>U means supξ>U infU<ν<ξ. Observe that if x ∈ ∗Zd and y ∈ Ud then

dE (x + y) = dE (x− y) = dE(x).

The proof of the next theorem is based on the proof of the Lebesgue density theorem 
given in [6].

Theorem 25. Let H ∈ ∗N\N and E be an internal subset of [−H, H]d. Then

µ[−H,H]d
({

x ∈ E + Ud : dE(x) < 1
})

= 0.

Proof. We will write simply µ for µ[−H,H]d . Until we are able to show that the outer 
measure of 

{
x ∈ E + Ud : dE(x) < 1

}
is 0, it is not clear that the set is measurable. To 

show this, we fix t ∈ (0, 1), and prove that the set

R =
{
x ∈ E + Ud : dE(x) < t

}

has outer measure 0. For any ϵ > 0 we may pick an internal subset D of [−H, H]d
containing R such that

µ (D) ≤ µ∗(R) + ϵ.

We will show that

µ (D) ≤ ϵ

1 − 4dt
(4d−1)t+1

,

which can be made arbitrarily small by making ϵ small. This yields the desired result 
since R ⊆ D.

Define

R+ =

⎧
⎨

⎩x ∈ E : ∃z ∈ [1, H], x + [−z, z]d ⊂ D and

∣∣∣E ∩ (x + [−z, z]d)
∣∣∣

(2z + 1)2
< t

⎫
⎬

⎭
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and observe that R+ is an internal subset of E containing R ∩ E. We can now cover 
every point x in D by open hypercubes of the form (x + (−y, y)d), such that

∣∣R+ ∩ (x + (−y, y)d)
∣∣

(2y + 1)2
≤ t,

by letting y = z + 1
2 if x ∈ R+ and y = 1

2 if x ∈ D \R+ . By the Besicovitch Covering 
Theorem (see, for example, [12, page 483]) there exists a hyperfinite sequence (Si)i∈I of 
these hypercubes such that for every x ∈ D

1 ≤
∑

i∈I

χSi(x) ≤ 4d.

An application of Lemma 24 shows that

|R+|
|D| ≤ 4dt

(4d − 1)t + 1 .

It follows that

µ (D) ≤ µ (R+) + ϵ

≤ 4dt
(4d − 1)t + 1µ (D) + ϵ

and hence

µ (D) ≤ ϵ

1 − 4dt
(4d−1)t+1

as desired, showing that the outer measure is 0.
By the completeness of the Loeb measure we obtain the desired result. ✷

Suppose that U is a cut in [1, H]. We say that a subset S of [−H, H]d is U -hereditarily 
measurable iff for every x ∈ [−H, H]d and every U < ν < H,

(S + Ud) ∩ (x + [−ν, ν]d) is µx+[−ν,ν]d-measurable.

For x ∈ [−H, H]d and S ⊆ [−H, H]d U -hereditarily measurable we define:

dUS (x) = lim inf
ν>U

µx+[−ν,ν]d
(
(S + Ud) ∩ (x + [−ν, ν]d)

)
.

We note that since S is hereditarily measurable dUS is well-defined. If U = N and S is 
internal this definition agrees with the definition given in Section 2. Equivalently, we 
adopt the convention that if U = N we simply write dS(x) for dN

S(x). As in Section 2 we 
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say that x is a point of density of S iff dUS (x) = 1, and we write DU
S for the set of all 

points of density of S with respect to the cut U .
We say that a cut U has countable cofinality iff there exists an increasing sequence 

xn ∈ ∗N such that 
⋃

n∈N[1, xn] = U , and that U has countable coinitiality iff there exists 
a decreasing sequence xn ∈ ∗N such that

⋂

n∈N
[1, xn] = U.

Proposition 26. For any cut U in [1, H], every internal set contained in [−H, H]d is 
U -hereditarily measurable.

Proof. Since any internal set intersected with any x + [−ν, ν]d is internal, it suffices 
to show that for any internal set E, E + Ud is µx+[−ν,ν]d-measurable. We will simply 
write µ for µx+[−ν,ν]d . If U has countable cofinality then E + Ud is a countable union of 
internal sets of the form E± [1, xn]d and so is measurable. If U has countable coinitiality 
then E + Ud is a countable intersection of internal sets of the form E ± [1, xn]d and so 
is measurable. So, we assume that U has neither countable coinitiality nor countable 
cofinality. Let

γ = inf
{
µ
(
E + [−K,K]d

)
: K > U

}

and

δ = sup
{
µ
(
E + [−K,K]d

)
: K < U

}
.

It suffices to show that γ = δ. Assume the contrary, that γ > δ. Let Kn > U be 
decreasing such that

µ(E + [−Kn,Kn]d) < γ + 1/n

for all n ∈ N. Since the coinitiality of U is uncountable, there exists K ′ > U such that

for any K ≤ K ′ and K > U, µ(E + [−K,K]d) = γ.

Symmetrically, we can find a K ′′ < U such that

for any K ≥ K ′′ and K < U, µ(E + [−K,K]d) = δ.

Let η = 1
2(γ + δ), and let

X =
{
K ∈ [K ′′,K ′] :

∣∣E + [−K,K]d
∣∣ /(2ν + 1)d ≤ η

}
.
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Then X is internal and U ∩ [K ′′, K ′] ⊆ X. So, X ∩ ([K ′′,K ′] # U) is nonempty. Let 
K ≤ K ′ and K > U be such that

µ
(
E + [−K,K]d

)
≈

∣∣E + [−K,K]d
∣∣ /(2ν + 1)d ≤ η.

This contradicts the fact that γ > η. ✷

Proposition 27. Let H ∈ ∗N\N, U be a cut in [1, H], and S ⊆ [−H, H]d be hereditarily 
measurable. Then the set

{
x ∈ S + Ud : dS(x) < 1

}

has Loeb measure zero relative to [−H, H]d.

Proof. Fix an ϵ > 0. Since S + Ud is measurable there exists E ⊆ S + Ud such that E is 
internal and µ[−H,H]d(S \E ) < ϵ. Then

{
x ∈ S + Ud : dS(x) < 1

}
⊆

{
x ∈ E + Ud : dE(x) < 1

}
∪ (S + Ud \E ).

It follows that the outer measure of
{
x ∈ S + Ud : dS(x) < 1

}

is at most ϵ. Since ϵ is arbitrary, the outer measure is 0, and the result follows by the 
completeness of the Loeb measure. ✷

Corollary 28 is a generalization of Theorem 4.

Corollary 28. If E is an internal subset of [−H, H]d and U is a cut in [1, H] then DU
E is 

µ[−H,H]d-measurable, and µ[−H,H]d(DU
E) = µ[−H,H]d(E + Ud).

Proof. DU
E = (E + Ud)\ 

{
x ∈ E + Ud : dE(x) < 1

}
, and the conclusion follows. ✷

It would be interesting to know if the results of Section 3 and Section 4 generalize to 
more general amenable groups.

It would also be interesting to know if the density theorem in the space of monads of 
cuts other than U = N or some UK can be used to obtain new standard results.
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