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Abstract. In this note, we show that the theory of tracial von Neu-
mann algebras does not have a model companion. This will follow from
the fact that the theory of any locally universal, McDuff II1 factor does
not have quantifier elimination. We also show how a positive solution
to the Connes Embedding Problem implies that there can be no model-
complete theory of II1 factors.

1. Introduction

The model theoretic study of operator algebras is at a relatively young
stage in its development (although many interesting results have already
been proven, see [7], [8], [9]) and thus there are many foundational questions
that need to be answered. In this note, we study the question that appears
in the title: does the theory of tracial von Neumann algebras have a model
companion? (Recall that a theory is said to be model-complete if every
embedding between models of the theory is elementary and a model-complete
theory T ′ is a model companion of a theory T if every model of T embeds into
a model of T ′ and vice-versa.) We show that the answer to this question is:
no! Indeed, we prove that a locally universal, McDuff II1 factor cannot have
quantifier elimination. (See below for the definitions of locally universal and
McDuff.) Since a model companion of the theory of tracial von Neumann
algebras will have to be a model completion as well as the theory of a locally
universal, McDuff II1 factor, the result follows.

We then pose a weaker question: can there exist a model-complete the-
ory of II1 factors? Here, we show that a positive solution to the Connes
Embedding Problem implies that the answer is once again: no!

Another motivation for this work came from considering independence
relations in II1 factors. Although all II1 factors are unstable (see [7]), it is still
possible that there are other reasonably well-behaved independence relations
to consider. Indeed, the independence relation stemming from conditional
expectation is a natural candidate. In the end of this note, we show how the
failure of quantifier elimination seems to pose serious hurdles in showing that
conditional expectation yields a strict independence relation in the sense of
[1].
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We thank Dima Shlyakhtenko for patiently explaining Brown’s work when
we posed the question to him of the existence of non-extendable embeddings
of pairsM⊂ N into Rω. (See the proof of Theorem 2.1 below.)

Throughout, L denotes the signature for tracial von Neumann algebras
and R denotes the hyperfinite II1 factor. We recall that R embeds into any
II1 factor. We will say that a von Neumann algebra is Rω-embeddable if it
embeds into RU for some U ∈ βN \ N. If M is Rω embeddable, then M
embeds into RU for all U ∈ βN\N; see Corollary 4.15 of [8]. For this reason,
we fix U ∈ βN \ N throughout this note.

2. Model Companions

In the proof of our first theorem, we use the crossed product construction
for von Neumann algebras; a good reference is [4, Chapter 4].

Theorem 2.1. Th(R) does not have quantifier elimination.

Proof. It is enough to find separable, Rω-embeddable tracial von Neumann
algebras M ⊂ N and an embedding π : M → RU that does not extend to
an embedding N → RU . Indeed, if this is so, let N1 be a separable model of
Th(R) containing N . Then π does not extend to an embedding N1 → RU ;
since RU is ℵ1-saturated, this shows that Th(R) does not have QE.

In order to achieve the goal of the above paragraph, we claim that it is
enough to find a countable discrete group Γ such that L(Γ) isRω-embeddable,
an embedding π : L(Γ)→ RU , and α ∈ Aut(L(Γ)) such that there exists no
unitary u ∈ RU satisfying (π ◦α)(x) = uπ(x)u∗ for all x ∈ L(Γ). (We should
remark that we are using the usual trace on L(Γ) and that Aut(L(Γ)) refers
to the group of ∗-automorphisms preserving this trace.) First, we abuse no-
tation and also use α to denote the homomorphism Z → Aut(L(Γ)) which
sends the generator of Z to the aforementioned α. Set M = L(Γ) and
N = M oα Z. Then N is a tracial von Neumann algebra. Moreover, we
have that N is Rω-embeddable if and only ifM is—in fact, this is true for
any crossed product algebraMoαG where G is amenable [2, Prop. 3.4(2)].
Now suppose, towards a contradiction, that π were to extend to an embed-
ding π̃ : N → RU . If u ∈ L(Z) ⊂Moα Z is the generator of Z, then setting
ũ = π̃(u) ∈ RU , we would have that ũπ(x)ũ∗ = π(uxu∗) = π(α(x)) for all
x ∈ M, contradicting the fact that π ◦ α is not unitarily conjugate to the
embedding π in RU .

An explicit construction of Γ, π and α as above has already appeared in
the work of N. P. Brown [6]. Indeed, by Corollary 6.11 of [6], we may choose
Γ = SL(3,Z) ∗ Z and α = id ∗θ for any nontrivial θ ∈ Aut(L(Z)).

�

We say that a separable II1 factor S is locally universal if every separable
II1 factor embeds into SU . (By [8, Corollary 4.15], this notion is independent
of U .) In [9], it is shown that a locally universal II1 factor exists. The Connes
Embedding Problems (CEP) asks whether R is locally universal.
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We say that a separable II1 factor M is McDuff if M ⊗ R ∼= M . For
example, R is McDuff as is M ⊗ R for any separable II1 factor M . By
examining Brown’s argument in [6], we see that the only properties of R that
are used (other than it being finite) is that L(Γ) (for Γ as in the previous
proof) is Rω-embeddable and that R is McDuff. We thus have:

Corollary 2.2. If S is a locally universal, McDuff II1 factor, then Th(S)
does not have QE.

Let T0 be the theory of tracial von Neumann algebras in the signature
L. T0 is a universal theory; see [8]. Let T be the theory of II1 factors,
a ∀∃-theory by [8]. Moreover, since every tracial von Neumann algebra is
contained in a II1 factor, we see that T0 = T∀. Thus, an existentially closed
model of T0 is a model of T .

By [9, Proposition 3.9], there is a set Σ of ∀∃-sentences in the language of
tracial von Neumann algebras such that M is McDuff if and only if M |= Σ.
Since every II1 factor is contained in a McDuff II1 factor (as M ⊆M ⊗R),
it follows that an existentially closed II1 factor is McDuff.

We can now prove our main result:

Theorem 2.3. T0 does not have a model companion.

Proof. Suppose that T is a model companion for T0. Since T0 is univerally
axiomatizable and has the amalgamation property (see [4, Chapter 4]), we
have that T has QE.

Fix a separable model S of T . Then S is a locally universal II1 factor.
Indeed, given an arbitrary separable II1 factorM , we have a separable model
S1 |= T containing M . Since SU is ℵ1-saturated, we have that S1 embeds
into SU , yielding an embedding of M into SU . Meanwhile, since T is the
theory of existentially closed models of T0, we see that S is McDuff. Thus,
by Corollary 2.2, T does not have QE, a contradiction.

�

3. Model Complete II1 Factors

While we have proven that the theory of tracial von Neumann algebras
does not have a model companion, at this point it is still possible that there
is a model complete theory of II1 factors. In this section, we show that a
positive solution to the CEP implies that there is no model-complete theory
of II1 factors.

We begin by observing the following:

Lemma 3.1. Every embedding R → Rω is elementary.

Proof. This follows from the fact that every embedding R → Rω is unitarily
equivalent to the diagonal embedding; see [10]. �

Remark. Lemma 3.1 implies that R is the unique prime model of its the-
ory. Indeed, to show that R is a prime model of its theory, by Downward
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Löwenheim-Skolem (DLS), it is enough to show that wheneverM ≡ R is sep-
arable, then R elementarily embeds into M . Well, since RU is ℵ1-saturated,
we have that M elementarily embeds into RU . Composing an embedding
R →M with the elementary embeddingM → RU and applying Lemma 3.1,
we see that the embedding R →M is elementary.

Proposition 3.2. Suppose that M is an Rω-embeddable II1 factor such that
Th(M) is model-complete. Then M ≡ R.

Proof. Without loss of generality, we may assume that M is separable. Fix
embeddings i : R → M and j : M → RU . By Lemma 3.1, the composition
j◦i : R → RU is elementary. Notice now that we have elementary embedding
iU : RU →MU and jU : MU → (RU )U , whose composition is the elementary
embedding (j ◦ i)U = jU ◦ iU : RU → (RU )U . Iterate this procedure, and
letting Rn (resp. Mn) denote the nth iterated ultrapower of R (resp. M),
we get a chain of embeddings

R0 = R ↪→M0 = M ↪→ R1 ↪→M1 ↪→ R2 ↪→M2 ↪→ · · ·

such that all embeddings Rn ↪→ Rn+1 are elementary (being iterated ul-
trapowers of the elementary embedding of R into RU ) and all embeddings
Mn ↪→ Mn+1 are elementary (as Th(M) is model complete). Let M∞ =⋃
n<ωRn =

⋃
n<ωMn. Then M ≡M∞ ≡ R. �

Remark 3.3. Proposition 3.2 provides immediate examples of non-model
complete theories of II1 factors. Indeed, for m ≥ 2, the von Neumann group
algebra of the free group on m generators, L(Fm), is Rω-embeddable but
not elementarily equivalent to R (see 3.2.2 in [9]), whence Th(L(Fm)) is not
model-complete. It is an outstanding problem in operator algebras whether
or not L(Fm) ∼= L(Fn) for allm,n ≥ 2. A weaker, but still seemingly difficult,
question is whether or not L(Fm) ≡ L(Fn) for all m,n ≥ 2. (An equivalent
formulation of this question is whether or not there is U ∈ βN \ N such
that L(Fm)U ∼= L(Fn)U )?) Suppose this latter question has an affirmative
answer. Then we see that the theory of free group von Neumann algebras is
not model-complete, mirroring the corresponding fact that the theory of free
groups is not model-complete. However, the natural embeddings Fm → Fn,
for m < n, are elementary. Assuming L(Fm) ≡ L(Fn), are the natural
embeddings L(Fm)→ L(Fn), for m < n, elementary?

Remark 3.4. The property being exploited in the proof of Proposition 3.2
is that any embedding of R into a tracial von Neumann algebra with the
same theory is elementary. The usual reason for this phenomenon is that
the given theory is model complete, but, by Corollary 3.5 below, we know
that, assuming a positive solution to the Connes Embedding Problem, this is
not true for the theory of R. In the realm of C*-algebras, all UHF algebras
(direct limits of matrix algebras) and strongly self-absorbing algebras (D for
which there is an isomorphism φ : D → D ⊗D such that φ and idD ⊗ 1 are
approximately unitarily equivalent) have the property that any embedding
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of them into a model of their theory is elementary. It would be interesting
to know if the theory of any of these algebras is model complete.

Corollary 3.5. Assume that the CEP has a positive solution. Then there is
no model-complete theory of II1 factors.

Proof. Suppose that T is a model-complete theory of II1 factors. By the
positive solution to the CEP and Proposition 3.2, T = Th(R). Meanwhile,
a positive solution to the CEP implies that T∀ = T0, whence T is a model
companion for T0, contradicting Theorem 2.3. �

4. Concluding Remarks

Theorem 2.1 presents a major hurdle in trying to understand the model
theory of II1 factors. In particular, it places a major roadblock in trying to
understand potential independence relations in theories of II1 factors. In-
deed, although any II1 factor is unstable (see [7]), one might wonder whether
the natural notion of independence stemming from noncommutative proba-
bility theory might show that some II1 factor is (real) rosy (see [1] for the
definition of rosy theory). More precisely, fix some “large” II1 factor M and
consider the relation |̂ on “small” subsets of M given by A |̂

C
B if and

only if, for all a ∈ 〈AC〉, E〈C〉(a) = E〈BC〉(a). Here, 〈∗〉 denotes the von
Neumann subalgebra generated by ∗ and E〈∗〉 is the conditional expectation
(or orthogonal projection) map E〈∗〉 : L2M → L2〈∗〉. In trying to verify
some of the natural axioms for an independence relation (see [1]), one runs
into trouble when trying to verify the extension axiom: If B ⊆ C ⊆ D
and A |̂

B
C, can we find A′ realizing the same type as A over C such that

A′ |̂
B
D? If M = RU and “small” means “countable,” then it seems quite

likely that one could find an A′ with the same quantifier-free type as A over
C that is independent from D over B as quantifier-free types are deter-
mined by moments. Without quantifier-elimination, it seems quite difficult
to prove the extension property for this purported notion of independence.
(The question of whether or not the independence relation arising from con-
ditional expectation yields a strict independence relation was also discussed
in [5].)
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