MODEL-THEORETIC ASPECTS
OF THE GURARIJ OPERATOR SYSTEM

ISAAC GOLDBRING AND MARTINO LUPINI

ABSTRACT. We establish some of the basic model theoretic facts about the Gurarij
operator system GS recently constructed by the second-named author. In particular,
we show: (1) GS is the unique separable 1-exact existentially closed operator system;
(2) GS is the unique separable nuclear model of its theory; (3) every embedding of
GS into its ultrapower is elementary; (4) GS is the prime model of its theory; and
(5) GS does not have quantifier-elimination, whence the theory of operator systems
does not have a model companion. We also show that, for any ¢ € N, the theories of
Mg-spaces and Mg-systems do have a model companion, namely the Fraissé limit of
the class of finite-dimensional Mg-spaces and M -systems respectively; moreover we
show that the model companion is separably categorical. We conclude the paper by
showing that no C* algebra can be existentially closed as an operator system.

1. INTRODUCTION

The Gurarij Banach space G is a Banach space first constructed by Gurarij in [15].
It has the following universal property: whenever X C Y are finite-dimensional Banach
spaces, ¢ : X — G is a linear isometry, and ¢ > 0, there is an injective linear map
¥ Y = G extending ¢ such that ||1||[[+»"!|] < 1 + €. The uniqueness of such a space
was first proved by Lusky in [26] and later a short proof was given by Kubis and Solecki
in [21].

Model-theoretically, G is a relatively nice object. Indeed, Ben Yaacov [I] showed
that G is the Fraissé limit of the class of finite-dimensional Banach spaces (yielding yet
another proof of the uniqueness of G). Moreover, Ben Yaacov and Henson [3] showed
that the theory of G is separably categorical and admits quantifier-elimination; since
every separable Banach space embeds in G, it follows that the theory of G is the model-
completion of the theory of Banach spaces. (On the other hand, it is folklore that the
theory of G is unstable, so perhaps the nice model-theoretic properties of G end here.)

In [27], Oikhberg introduced a noncommutative analog of G which he referred to
as (no surprise) a noncommutative Gurarij operator space. Here, “noncommutative”
refers to the fact that we are considering operator spaces, the noncommutative analog of
Banach spaces. (In Section 2, a primer on operator spaces—amongst other things—will
be given.) A Gurarij operator space satisfies the noncommutative analog of the defining
property of G mentioned above, where the completely bounded norm replaces the usual
norm of linear maps and the finite-dimensional spaces are further assumed to be 1-exact.
Approximate uniqueness of a Gurarij operator space was proven by Oikhberg in [27].

Precise uniqueness of the Gurarij operator space was later proven in [23] by realizing
the Gurarij operator space (henceforth referred to as NG) as the Fraissé limit of the class
of finite-dimensional 1-exact operator spaces. In [24], the second author established the
existence and uniqueness of the Guarij operator system GS, which is the Fraisé limit
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of the class of finite-dimensional 1-exact operator systems. In this paper, we establish
some of the main model-theoretic facts about GS. We summarize these as follows:

Theorem 1.1.

(1) GS is the unique separable 1-exact existentially closed operator system;

2) GS is the unique separable nuclear model of its theory;
) every embedding of GS into its ultrapower is elementary;

) GS is the prime model of its theory;

) GS does not have quantifier-elimination, whence the theory of operator systems
does not have a model companion.

(

(3
(4
(5

We do not know whether the analogous statements hold for NG. The proofs in the
operator system case rely strongly on Choi’s characterization of completely positive
linear maps with domain M, [10]; see also [29, Theorem 3.14]. Such a characterization
has no counterpart for (not necessarily unital) completely bounded maps, as pointed
out in [29 page 114].

The notion of My-space is an intermediate generalization of Banach spaces where only
matrix norms up to order g are considered; likewise, there is the notion of Mg -system
(also called g-minimal operator system). The classes of finite-dimensional Mg -spaces
(resp. My-systems) have Frissé limits, called G, (resp. Gj). We show that the theory of
Gy (resp. the theory of Gy) is the model-completion of the theory of My-spaces (resp.
M-systems) and is separably categorical.

We conclude the paper by proving that no existentially closed operator system can be
completely order isomorphic to a C*-algebra. While this fact was proven for GS itself
in [24], our proof here is somewhat more elementary and covers all existentially closed
operator systems.

We assume that the reader is familiar with continuous logic as it pertains to operator
algebras (see [12] for a good primer). In the following all the quantifiers are supposed to
range in the unit ball. If X is an operator space or an operator system, its closed unit
ball is denoted by Ball(X). In Section 2, we describe all of the necessary background
on operator spaces and operator systems.

Acknowledgments. We would like to thank Timur Oikhberg for pointing out a mis-
take in the original version of this paper.

2. PRELIMINARIES

2.1. Operator spaces and M -spaces. If H is a Hilbert space, let B (H) denote the
space of bounded linear operators on H endowed with the pointwise linear operations
and the operator norm. One can identify M,, (B (H)) with the space B (H®™), where
H®" is the n-fold Hilbertian sum of H with itself. A (concrete) operator space is a closed
subspace of B (H). If X is an operator space, then the inclusion M,, (X) C M,, (B (H))
induces a norm on M,, (X) for every n € N. If X, Y are operator spaces, ¢ : X — Y isa
linear map, and n € N, then the n-th amplification ¢(™ : M, (X) — M, (Y) is defined
by
[2i;] = (¢ (@i5)] -

A linear map ¢ is completely bounded if sup,, H(ﬁ(”) H < 400, in which case one defines the

completely bounded norm ||¢|| ., := sup,, qu(”) H We say that ¢ is completely contractive

if (™ is contractive for every n € N and completely isometric if ¢(™ is isometric for
every n € N.

IfgeN, a,p e My, and z € M;(X) we denote by a.z.8 the element of M, (X)
obtained by taking the usual matrix product. The matrix norms on an operator space



MODEL-THEORETIC ASPECTS OF THE GURARIJ OPERATOR SYSTEM 3

satisfy the following relations, known as Ruan’s axioms: for every ¢,k € N and x €
M, (X) we have

z 0

0 0

and for every ¢,n € N, oy, 5; € My and z; € M, (X) for i =1,2,...,n, we have

n n n
> aiaiBi > o) > BB
i—1 i=1

i=1

where «;.z;.f; denotes the usual matrix multiplication. Ruan’s theorem [31] asserts
that, conversely, any matricially normed vector space X with matrix norms satisfying
Ruan’s axioms is linearly completely isometric to a subspace of B (H); see also [30),
§2.2]. We will regard operator spaces as structures in the language for operator spaces
Lops introduced in [13, Appendix BJ. It is clear that the class of operator spaces, viewed
as Lops-structures, forms an axiomatizable class by semantic considerations [12, §2.3.2].
Using Ruan’s theorem, concrete axioms for the class of operator spaces are given in [13]
Theorem B.3].

A finite-dimensional operator space X is said to be I-exact if there are natural num-
bers k, and injective linear maps ¢, : X — My, such that ||¢n|lellén |l — 1 as
n — oo. An arbitrary operator space is 1-exact if all its finite-dimensional subspaces
are l-exact. It is well known that a C*-algebra is exact if and only if it is 1-exact when
viewed as an operator space. We mention in passing that the l-exact operator spaces
do not form an axiomatizable class, even amongst the separable ones.

For ¢ € N, an My-space is a vector space X such that M, (X) is endowed with a
norm satisfying Equation for every n € N, oy, 5; € My, and z; € M, (X) for
it =1,2,...,n. Clearly an M -space is canonically an M,-space for n < ¢ via the upper-
left corner embedding of M, (X) into M, (X). Let Tz, be the reduct of the language of
operator spaces where only the sorts for M, ,,, for n,m < 2q and M, ,, (X) for n,m <gq
are retained. Once again, by syntactic considerations, it is straightforward to verify
that M,-spaces form an axiomatizable class in the language Tz,. One can write down
explicit axioms using Equation .

If 9 : X — Y is a linear map between Mg -spaces, then ¢ is said to be g-bounded if
@ . M, (X) — M, (X) is bounded. In such a case one sets lell, = H(é(q)H. A linear

map ¢ is then said to be g-contractive if ¢(@ is contractive and g-isometric if ¢@ is
isometric.

It is shown in [22, Théoreme 1.1.9] that any M,-space can be concretely represented
as a subspace of C (K, M,) for some compact Hausdorff space K. Here C (K, M,) is
the space of continuous functions from K to M, endowed with the M -space structure
obtained by canonically identifying M, (C (K, M,)) with C (K, M, ® M,), where the
latter is endowed with the uniform norm.

An Mg-space X admits a canonical operator space structure denoted by MIN, (X)
[22, 1.3]. The corresponding operator norms are defined by

= [zl (X) >
Mq+k(X) !

< , (2.1)

max i

2] = sup [ ()
¢

for n € N and x € M, (X), where ¢ ranges over all g-contractive linear maps ¢ :
X — M,. The MIN, operator space structure on X is characterized by the following
property: the identity map X — MIN, (X) is a g-isometry, and for any operator space
Y and linear map ¢ : Y — X, the map ¢ is g-bounded if and only if ¢ : Y — MIN, (X)
is completely bounded, in which case [|¢: Y — X|| = [[¢ : ¥ — MINg (X)||.
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We will call an operator space of the form MIN, (X) a MIN,-space. It is clear that
semantically there is really no difference between M,-spaces and MIN,-spaces. How-
ever there is a syntactical difference between these two notions as they correspond to
regarding these spaces as structures in two different languages. We will therefore retain
the two distinct names to avoid confusion.

It follows from the characterizing property of the functor MIN, that MIN,-spaces are
closed under subspaces, isomorphism, and ultraproducts. (For the latter, one needs to
observe that the ultraproduct of a family of g-bounded maps from X to M, is again a
g-bounded map from X to M,.) Therefore, MIN,-spaces form an axiomatizable class
in the language of operator spaces. Furthermore the functor MINj is an equivalence of
categories from M,-spaces to MIN-spaces. It follows from Beth’s definability theorem
[12, §3.4] the that the matrix norms on M, (X) for n > ¢ are definable in the language
of My-spaces.

2.2. Operator systems and M,-systems. Suppose that X is an operator space. An
element u € X is a unitary if there is a linear complete isometry ¢ : X — B (H) such
that ¢ (u) is the identity operator on H. It is shown in [§] that if X is a C*-algebra,
then this corresponds with the usual notion of unitary. Theorem 2.4 of [§] provides the
following abstract characterization of unitaries: u is a unitary of X if an only if, for
every n € N and x € M, (X), one has that

o

where wu,, denotes the diagonal matrix in M, (X) with u in the diagonal entries. A
unital operator space is an operator space with a distinguished unitary. The abstract
characterization of unitaries shows that unital operator spaces form an axiomatizable
class in the language Ty, obtained by adding to the language of operator spaces a
constant symbol for the unit.

If X is an Mg-space, then we say that an element u of M, is a unitary if there is a
linear g-isometry ¢ : X — C (K, M,) mapping the distinguished unitary to the function
constantly equal to the identity of M,. Observe that u is a unitary of X if and only
if it is a unitary of MIN, (X). In fact, if u is a unitary of X and ¢ : X — C (K, M,)
is a unital linear g-isometry, then ¢ : MIN, (X) — C (K, M,) is a unital complete
isometry. If ¢ : C'(K,M,) — B(H) is a unital complete isometry, then ¢ o1 wit-
nesses the fact that u is a unitary of MIN, (X'). Conversely suppose that u is a unitary
of MIN, (X). It follows from the universal property that characterizes the injective
envelope of an operator space [, §4.3] that the injective envelope I (MIN, (X)) is
a MIN,-space. Since the C*-envelope C} (MIN, (X),u) of the unital operator space
MIN, (X) with unit w can be realized as a subspace of I (MIN, (X)) by [7, §4.3],
it follows that C} (MINy (X),u) is an Mg-space. Equivalently C} (MINg (X),u) is a
g-subhomogeneous C*-algebra [6, IV.1.4.1]. Therefore there is an injective unital *-
homomorphism v : C¢ (MIN, (X),u) = @y, C (K, My) for some compact Hausdorff
space K; see [6, IV.1.4.3]. B

Moreover the proof of [8, Theorem 2.4] shows that an element u of an My-space X is
a unitary if and only if

Uq
|

A unital My-space is an M-space with a distinguished unitary. Let T}, the language
of Mgy-spaces with an additional constant symbol for the distinguished unitary. Then
the abstract characterization of unitaries in Mg -spaces provided above together with

2

[[un =] ||* = — 1+ ||z]?,

2 2
=1+4+|=|".

2
Uy T -
H [ q } Hng(MINq(X)) Mag(MINg (X))
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the fact that the matrix norms on MIN, (X) are definable show that unital M,-spaces
form an axiomatizable class in the language of unital M -spaces.

An operator system is a unital operator space (X, 1) such that there exists a linear
complete isometry ¢ : X — B (H) with ¢ (1) = 1 and ¢ [X] a self-adjoint subspace of
B (H). By [8, Theorem 3.4], a unital operator space is an operator system if and only
if for every n € N and for every x € X there is y € Y such that ||y|| < |[z|| and

nl «
y nl

This shows that operator systems form an axiomatizable class in the language of unital
operator spaces.

The representation of an operator system X as a unital self-adjoint subspace of X
induces on X an involution x — z* and positive cones on M, (X) for every n € N. A
linear map between operator systems is positive if it maps positive elements to positive
elements, and completely positive if all its amplifications are positive. In the following
we will abbreviate “unital completely positive” with uep. A unital linear map between
operator systems is completely positive if and only if it is completely contractive, and in
such a case it is necessarily self-adjoint. Therefore by Beth’s definability theorem again,
the involution and the positive cones are definable. Explicitly x € M, (X) is positive if
and only if

2
<1+n? (2.2)

has norm at most 1 [29, Lemma 3.1]. Moreover the adjoint of x is the element y of
X that minimizes the left-hand side of Equation An alternative axiomatization of
operator systems in terms of the unit, the involution, and the positive cones is suggested
in [I3, Appendix B]. Since in turn the matrix norms are definable from these items, these
two axiomatizations are equivalent.

The operator system analog OMIN, of MIN, has been introduced and studied in
[33]. It is shown there that OMIN, has entirely analogous properties as MIN,, when one
replaces operator spaces with operator systems, and (complete) contractions with unital
(completely) positive maps. An My-system (also called g-minimal operator system in
[33]) is a unital My-space X such there is a unital g-isometry ¢ : X — C (K, M) such
that the image of ¢ is a self-adjoint subspace of C (K, M;). Equivalently, X is an M-
system if and only if X is a unital My-space such that MIN, (X) is an operator system.
The above axiomatizations of operator systems in the language of unital operator spaces
and of unital Mg -spaces in the language of unital M -spaces show that M,-systems are
axiomatizable in the language of unital M,-spaces. Again Beth’s definability theorem
shows that the all the matrix norms as well as the positive cones and the involution are
definable.

2.3. Gy, Gy, NG, and GS. It is shown in [23 §3] that the class of finite-dimensional
M-spaces is a Fraissé class in the sense of [I]. The corresponding Fraissé limit G, is a
separable Mg -space that is characterized by the following property: whenever £ C F
are finite-dimensional Mg,-spaces, f : & — G4 is a linear g-isometry, and € > 0, then
there is a linear extension g : F' — G, of f such that Hqu Hg‘lHq < 1+e¢; see [23] §3.3].
Similarly, it is shown in [24] §4.5] that finite-dimensional M, -systems form a Fraissé
class. The corresponding limit is a separable M -system Gy which is characterized by
the same property as G, where one replaces operator spaces with operator systems and
linear maps with unital linear maps; see [24, Proposition 4.9].

The class of finite-dimensional 1-exact operator spaces is shown to be a Fraissé class
in [23, §4]. The corresponding limit is the (noncommutative) Gurarij operator space
NG, characterized by the property that given finite-dimensional 1-exact operator spaces
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ECF, a hnear complete isometry ¢ : £ — NG and € > 0, there exists an injective
linear map ¢ : F — NG extending ¢ such that ||@||e||¢*||es < 1+e. Similarly the class
of finite-dimensional 1-exact operator systems is shown to be a Fraissé class in [24] §3].
The corresponding limit is the Gurarij operator space GS, characterized by a similar
property as NG where one replaces operator spaces with operator systems and linear
maps with unital linear maps.

At this point, it is worth recording the following;:

Proposition 2.1. Both Th(NG) and Th(GS) have a continuum of nonisomorphic sep-
arable models.

Proof. Every operator space admits a completely isometric embedding into [[;, M,,, the
operator space ultraproduct of matrix algebras. Furthermore M,, admits a completely
isometric embedding into NG by universality. Henceforth any separable operator space
embeds into a separable model of the theory of NG. Suppose now, towards a contradic-
tion, that x < ¢ and (Z;);<, enumerate all of the separable models of the theory of NG
up to complete isometry. Let Z = @,_,. Z;. If X is any separable operator space, then
X embeds into some Z; and hence embeds into Z. It follows that Z is an operator space
of density character x that contains all separable operator spaces. This contradicts the
fact that for n > 3 the space of n-dimensional operator spaces has density character
¢ with respect to the completely bounded distance, which is the main result of [19] as
formulated in [30], Corollary 21.15 and subsequent remark. The assertion about GS can
be proved in the same way, after observing that any separable operator space embeds
into a separable operator system. O

Let Aut (NG) be the automorphism group of NG, i.e. the group of surjective linear
complete isometries a : NG — NG, endowed with the topology of pointwise convergence.
The homogeneity property of NG implies that every point in the unit sphere of NG has
dense orbit under the action of Aut (NG). Therefore it follows from Proposition 2.1 and
[4, Theorem 2.4] that Aut (NG) is not Roelcke precompact; see [4, Definition 1.1].

3. THE OPERATOR SPACES G, AND THE OPERATOR SYSTEMS Gy

3.1. The operator spaces G,. The following amalgamation result is proved in [23,
Lemma 3.1]; see also [25, Lemma 2.1].

Lemma 3.1. If X C X and Y are Mg-spaces, and f : X — Y is a linear injective
q-contraction such that Hffl Hq < 146, then there exists an My-space Z and q-isometric
linear maps 1 : X2z and j:Y — Z such that Hi|X —joqu <4.

Arguing as in the proof of [21, Theorem 1.1], where [2I, Lemma 2.1] is replaced by

Lemma 3.} shows that G, has following homogeneity property: whenever X is a finite-
dimensional subspace of Gq and ¢ : X — GS is a linear map such that [|¢[|, <1+4

and H(b*1||q < 1+ 0, there exists a linear surjective g-isometry a : G, — G4 such that
lgx =&, <o
Proposition 3.2. Th(G,) is separably categorical.

Proof. Suppose that I/ C F' are finite-dimensional M,-spaces, where I has dimension
k and F has dimension m > k. Fix also a normalized basis @ = (ai,...,am) of F
such that (aq,...,ax) is a basis of E. For 1 < n < m we let X,, denote those n-tuples
(oa,...,0p) from M, such that

; @ €
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Note that X, is a compact subset of M, whence definable. We then let g, (71, ..., 7n)
denote the formula

sup
(0‘17 70¢n)€Xn

where a -~ b denotes the maximum of a — b and 0. For the sake of brevity, we write

Qx| =~ 1,1~

Nan(Z) instead of ng,(x1,...,2,); no confusion should arise as the subscript indicates
what the free variables are. Furthermore define 0z (x1,..., %k, y1,-..,Ym) to be the
formula

Zﬂz

max { Ngm(¥),  sup
(B1ye-sBL)EX

- 277(1 k( )} :
We now let 0z, denote the sentence

sup min {1 =gk (Z), inf 6Ogr(Z, yj’)} :
L1,k 4 ’ Yy Um
Claim 1: a@k = 0.

Proof of Clalm 1: Suppose that bq,...,b; are elements in the unit ball of G, such
that na7k(b) < 1. Fix 6 € (0, %] such that 73, 4(b) < 8. Define the linear map f : E — Gy
by f(ai) = b; for i < k. Observe that [|f], <1+ d and Hf_luq < 14 24. Therefore
by the above mentioned homogeneity property of G, there exists a linear g-isometry
q : F' — Gy such that Hg|E — qu < 24. Let ¢; = g(a;) for 1 < i < m and observe that
o(b,c) = 0.

Claim 2: If Z is a separable Mg -space for which ag i = 0 for each k < m and a as
above, then Z is g-isometric to Gy.

Proof of Claim 2: Suppose that f: E — Z is a linear g-isometry, dim(F) = k, F is
an m-dimensional Mg -space containing £, and € > 0 is given. Fix a normalized basis
@=(a,...,an) of F for which ai,...,a is a basis of E, and n € (0, §) small enough.

Set b; :f(az) for i <k. Sincenak(b)—Oand aﬂk—O there are ¢; € Z for 1 <i<m

such that 6% (b (b, ) < n. Therefore the linear map g : F' — G, defined by g (a;) = ¢; for
1 <i < m is such that ||g[|, <1+mn, 1Hq <1+2n, and H9|E - qu <1+mn. The
“small perturbation argument” —see [9, Lemma 12.3.15] and also [30}, §2.13]—allows one
to perturb g to a linear map that extends f while only slighlty changing the g-norms
of g and its inverse. Upon choosing 1 small enough, this shows that Z satisfies the
approximate homogeneity property that characterizes G. U

We now give an alternate proof of the preceding theorem using the Ryll-Nardzewski
Theorem [2, Theorem 12.10]. For the definition of approzimately oligomorphic action,
see [4, Definition 2.1].

Proposition 3.3. Suppose that ¢ € N. Then the action of Aut (G,) on the unit ball
Ball (G4) of G4 is approzimately oligomorphic.
Proof. Observe that the quotient space Ball (G,) //Aut (G,) is isometric to [0,1] and

hence compact. We need to show that the quotient space Ball (G,)" //Aut (G,) is
compact for every k € N. This is essentially shown in [23, Proposition 3.5]. We de-
note by [a1,...,a| the image of the tuple (ai,...,ar) of Ball ((G}q)lc in the quotient

Ball (Gq)k //Aut (G4). Suppose that [agn), ce a,(cn)] is a sequence in Ball (G,)* //Aut (G,).

After passing to a subsequence we can assume that, for every aq,...,a; € M, the se-
quence

Ha1®a§") +-~+Ozn®a,(€")
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converges. This implies that the convergence is uniform on the unit ball of M,. Suppose
that ai,...,ar € G4 are such that

lon ® a1 + - 4+ an @ ag| :ligl’)a1®a§n)+-~~+an®a§€n)

Then [23| Proposition 3.4] shows that [ay,...,ax] is the limit of

(ot af”] )neN

in Ball (Gq)k //Aut (G,). This shows that every sequence has a convergent subsequence
and hence such a space is compact. O

It follows from Proposition and [4, Theorem 2.4] that the automorphism group
Aut (Gg), i.e. the group of surjective g-isometric linear maps « : G; — G, is Roelcke
precompact for every ¢ € N. The Roelcke compactification of a Roelcke precompact
group is described model-theoretically in [4, §2.2].

3.2. Quantifier-elimination. Recall from [2, Proposition 13.2] the following test for
quantifier-elimination:

Fact 3.4. Suppose that, whenever M,N =T, Mo, Ny are finitely generated substruc-
tures of M and N respectively, ® : My — Ny is an isomorphism, p(Z) is an L-formula,

and @ € My, we have

pM(@) = oV (2(a)).
Then T admits quantifier-elimination.
Proposition 3.5. Th(G,) has quantifier-elimination.

Proof. This follows immediately from the above quantifier-elimination test and the ho-
mogeneity and separable categoricity of Gy. U

3.3. The operator systems Gy. Proceeding as in Subsection and using the char-
acterization of Gy given in [24, §4.5], one can prove similarly as above the following
facts.

Proposition 3.6. Th(G};) 1s separably categorical
Corollary 3.7. Th(G}) has quantifier-elimination.

Remark. One can also prove the analogue for Gy of Proposition In this case one
needs to use results from [24] and in particular [24, Lemma 3.8].

4. THE GUARIJ OPERATOR SYSTEM GS

In this section, we establish the model theoretic properties of the Gurarij operator
system announced in the introduction. We first need an introductory subsection on
lifting ucp maps.

4.1. Perturbation and ucp maps.

Lemma 4.1. Suppose that X and Y are operator systems and ¢ : X — Y is a unital
linear map such that ||¢p|| < 1+ 9. If x € Ball(X) is self-adjoint, then ||Im (¢ (z))|| <
8+ /3. If x is moreover is positive, then Re (¢ (z)) + $ > 0.

Proof. The first assertion follows from [24, Lemma 3.1]. The second assertion can be
proved in a similar fashion. Indeed, we can assume, without loss of generality, that

Y = C, whence ¢ is a unital linear functional. Observe that the spectrum o (z) of x is
contained in the closed disc of center % and radius % Therefore o(x — %) is contained
in the closed disc of center 0 and radius % Hence Hx — %H < % It follows that

¢ (x) — 5| <5 (1+), 0
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Lemma 4.2. Suppose that'Y is an operator system and ¢ : My — Y is a unital linear
map such that ||¢||q < 1+ 6. Then there exists a ucp map v : My, — Y such that

1 = ¢ll, < 3670 +2¢°V/5.

Proof. We can assume, without loss of generality, that ¢ is an isometry. Let b be
the image under ¢ of the matrix [e;;] € M, (M,), where e;; € M, are the matrix
units. Lemma shows that there exists a positive element a € M, (Y) such that
b—al <25+ V6. If 4o : My — A is the linear map such that g (e;;) = a;; then 1
is completely positive by Choi’s theorem [29]. Furthermore by the small perturbation
argument, we have |[¢g — ¢|| ., < %q25 + ¢*V/6; see also [I3, Proposition 2.40]. Let 7 be

the normalized trace on M, and define ¢ : M, — Y by
¥ () = o (x) +7(2) (Yo (1) = 1).
It follows that 1 is a ucp map such that [|[v — ¢|| ., < 2|10 — ¢l < 3¢5 +2¢>°V5. O

Observe that, in the previous lemma, if H(b*1||cb < ﬁ and § < i, then ||¢]|,, <

4470 +2¢*V/6 < 5¢°V6 and [[U7Y| , < s < s

Lemma 4.3. Suppose thatY is an operator system and ¢ : My — Y is a linear map such
that ||¢ll, <1+0 <2 and ||¢(1) — 1| < 6. Then there exists a ucp map ¢ : My =Y

such that || — ¢|| , < 10¢*V/5.
Proof. Let ¢g : My — Y be defined by

¢ (x) +7(x)(1-¢(1)).
Then g0 — 6]l < 1+6 and hence [[dolly, < 6], +0 < 1425 < 2. Therefore, by the
previous lemma, there exists a ucp map v : M, — Y such that [[¢ — ¢ol|,, < 5¢*V/26
and hence ||¢ — ¢||, < 5¢2v/26 + 6 < 10¢%V/6. O

Suppose that X is an operator system and (Y;,) is a sequence of operator systems.
If ¢ : X — [, Yn is a ucp map, then a ucp lift for ¢ is a sequence (¢,) of ucp maps
from X to Y, such that, for every = € X, (¢, (z)) is a representative sequence for ¢ (x);
in formulas ¢(z) = (¢, (x))®. Here, and in the rest of this section, all ultrafilters are
assumed to be nonprincipal ultrafilters on N.

Corollary 4.4. If ¢ : My — [, Y is a ucp map, then ¢ has a ucp lift.

Observe that, by Smith’s Lemma [32, Theorem 2.10], if ¢ is a complete order embed-
ding and (¢g) is a ucp lift for ¢, then limy_,y H(b,jlucb =1.

Corollary 4.5. If ¢ : GS — [],; Y, is a ucp map, then ¢ has a ucp lift.

Proof. 1t is observed in [24, §4.3] that GS can be realized as the direct limit of a se-
quence of full matrix algebras with complete order embeddings as connecting maps.
Furthermore, it is a particular case of |25, Theorem 3.3] that, for every n € N, there
exist a complete order embedding 1 of M,, into GS and a ucp projection of GS onto the
range of 7. It follows from these facts and the homogeneity property of GS given by
[24) Theorem 4.4] that one can find a sequence (X}) of subsystems of GS such that, for
every k € N, the following conditions hold:
(1) U,,>p Xn is dense in GS;

(2) X}, is completely order isomorphic to a full matrix algebra;
(3) X} is the range of a ucp projection Py of GS; and
(4) every element of X}, is at distance at most 27% from some element of X} 1.

For k € N, ¢x, is a ucp map and hence, by Corollary admits a ucp lift (¢ ).
Finally, for n € N, define ¢,, := ¢, 0 P,. It remains to observe that (¢,) is a ucp lift
for ¢. O
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Corollary 4.6. If o : GS — GSY is a complete order embedding, then o has a ucp
lift (o) made of complete order automorphisms a, : GS — GS. In particular, o is an
elementary embedding.

Proof. Let (Xj) be an increasing sequence of subsystems of GS with dense union such

that X is completely order isomorphic to My, . Let (¢,) be a ucp lift of a. Then, as

mentioned above, for any k € N, we have lim,,_,j ’(qbn)f)(lk“ , = 1. Therefore, by the
Ci

homogeneity property of GS, one can find complete order automorphisms «, : GS — GS

such that lim,_ |[(ay — ¢n)| X, H = 0 for any k& € N. Therefore («,) is also ucp lift of
Q. |

Remark 4.7. Strongly self-absorbing C* algebras also enjoy the property that any em-
bedding of them into their ultrapower is elementary. However, they have this property
for a completely different reason, namely that any such embedding is unitarily conjugate
to the diagonal embedding.

4.2. GS is the prime model of its theory. The main goal of this subsection is to
prove Theorem asserting that GS is the prime model of its theory.

Suppose that ¢ < n are positive integers. Let @ = (ag,...,a,2_1) be a basis for
M,, such that ag = 1 and span{ao,...,a,2_;} is a subsystem of M,, completely order
isomorphic to M. Let ng,(x1, ... ;Tq2_1) be the formula

271 271
sup max Zoq@xi =~ 1,1~ Zoq@xi
(@0, 02 1)€Xa,q i=0 =0
where x9 = 1 and X3, is the (compact) set of tuples ay, ..., a2y € M, such that
¢°—1
Z a; ®ag|| = 1.
i=0
Let g q(z1,..., 221,41, ..,Yn2_1) be the formula
¢*-1 2
max 7,5 () , sup i@ (@i —y)|| = 25¢ (%)

(ao,...,aq271)€X§7q i=0
where yo = 1. Finally let o5, be the sentence

1
supmin{;nak(f), inf 95q(f;g)}-
7 4 ’ YlyeYp2—1

Lemma 4.8. Suppose that X is an operator system. Then O'éfq = 0 if and only if, for
any 0 € (0, %], any € > 0, and any unital linear map ¢ : span{ao, ...,a.2_1} — X such
that |||, <140 and delﬂcb < ﬁ, there exists a ucp map ¥ : M, — X such that

|07, <1+e and |9 — ¢l < 5¢*V3.

Proof. One implication is obvious and the other one follows from Lemma 4.2 O
Remark 4.9. It follows form the homogeneity property of GS that Ug’j = 0.
Theorem 4.10. GS is the prime model of its theory.

Proof. In light of the fact that by Corollary [.6] every embedding of GS into its ultra-
power is elementary, it suffices to show that GS embeds into any model of its theory.
Towards this end, fix an operator system Y that is elementarily equivalent to GS. Let
(Xk) be a sequence of subsystems of GS with dense union such that Xj is completely
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order isomorphic to M,,. Fix also a sequence () of positive real numbers such that
Y kE€k < +oo. Using the fact that Y is a model of the theory of GS and the lemma
above, one can define by recursion on k ucp maps 9 : X — Y such that:

() 05y <1+ 2, aud
(2) || (Wrs1) 3, — Vi < e
Define ¢ : GS — X by setting ¢ (x) = limy_, o0 ¥ (x) for z € |J,, M}, and extending

by continuity. Observe that v is well defined by (2) and it is a complete order embedding
by (1). O

Remark 4.11. Theorem should be compared with [I3 Proposition 5.1], asserting
that O is the prime model of its theory.

4.3. GS does not have quantifier elimination. In this section, we prove that GS
does not have quantifier elimination. In fact, we offer two (very different) proofs. The
first proof relies on the following fact.

Fact 4.12 ([14]). There does not exist a family Ty, n(Zp) of definable predicates in
the language of operator systems (taking only nonnegative values) for which an oper-

ator system E is l-exact if and only if, for every m and every @ € E*m, we have
inf,, TE (@) = 0.

Theorem 4.13. Th(GS) does not have quantifier-elimination.

Proof. Suppose, towards a contradiction, that GS has quantifier elimination. For each
m, let (bym,n)n denote a countable dense subset of (the unit ball of) GS™. Let py, =
thS(bm,n). Since GS is the prime model (whence atomic), each py, ,, is isolated, so the
predicate d(-,pm,) is a definable predicate, meaning that there are formula gofnn(fm)
such that, for all @ (in a monster model of Th(GS)), d(&@, pm,») = limy, gpfmn(é’) uniformly.
Since we are assuming a contrario that Th(GS) has quantifier elimination, we may
further suppose that the formulae 90713%71 are quantifier-free. Since any operator system
embeds into a model of Th(GS), we can thus consider the definable (relative to the
elementary class of operator systems) predicates I'y, n(Zp) = limy wﬁ%n(fm); see [5,
Section 3.2].

We obtain the desired contradiction by showing that an operator system FE is 1-exact
if and only if inf,, T’} | (@) = 0 for all m and all @ € E™.

First suppose that inf, 'Y (@) = 0 for all m and all @ € E™. In order to show
that F is l-exact, it suffices to show that all of its finite-dimensional subsystems are
l-exact. Thus, without loss of generality, we may assume that E is the operator system
generated by @ for some linearly independent tuple @. Fix M | Th(GS) containing
E. Since inf, I‘%{n(d) = inf,, I‘Tb;’n(d) = 0 (as I' is a quantifier-free definable predicate),
we have that tp™ (@) is in the metric closure of the isolated types, whence is itself
isolated. Since isolated types are realized in all models, there is b € GS™ such that
tpM(a@) = thS(l;). It follows that the map a; — b; is a complete isometry, whence FE is
l-exact.

Conversely, suppose that E is 1-exact. Fix @ € E™. We must show that inf, I'5 (@) =
0. Without loss of generality, we may assume that F is separable, whence we may fur-
ther assume that F is a subsystem of GS. Since I' is a quantifier-free definable predicate,
we have that inf, T'}, (@) = inf, F%fn(c_i) =0 as (bm,n) is dense in GS™. O

Corollary 4.14. There is ¢ € N such that GS is not unitally q-isometric to Gy.

Proof. Since any formula in the language of operator systems is a formula in the language
of Mg-systems for some ¢, if GS were unitally g-isometric to Gy for every g, then
quantifier-elimination for Gy would imply quantifier elimination for GS. O
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The second proof that GS does not have quantifier elimination is analogous to the
proof given in [I1] that shows that Oz does not have quantifier-elimination.

The following lemma can be proved in a manner similar to the proof of [I1, Proposition
1.16]; see also [2, Proposition 13.6].

Lemma 4.15. Suppose that X is an operator system. Then the following statements
are equivalent:
(1) X has quantifier elimination;
(2) If Y is a separable operator system elementarily equivalent to X and Yy is a
subsystem of Y, then any complete order embedding of Yy into an ultrapower
XU of X can be extended to a complete order embedding of Y into XY.

A unital C*-algebra A is quasidiagonal if, for every finite subset F' of A and every
€ > 0, there exists n € N and a ucp map ¢ : A — M, such that

16 (ab) =@ (a) o (b)| <e and ¢ (a)ll > [la] —e.

Equivalently A is quasidiagonal if there exits a unital injective *-homomorphism ¢ :
A — M that admits a ucp lift, where M is the ultraproduct [[,, Mp.

We now can give the second proof that the theory of GS does not have quantifier
elimination. Let Fo be the free group on two generators. By a result of Rosenberg
from [I7], the reduced C*-algebra C; (IF3) is not quasidiagonal. However, by a result of
Haagerup and Thorbjorsen from [16], there exists an injective unital *-homomorphism
¢ from C} (F2) to the ultraproduct M := [[,, M,. As mentioned above, it is shown
in [25] that, for every n € N, there exists a complete order embedding 7, : M, — GS
and a ucp projection P, from GS onto the range of n,. Let n = (,)* : M — GSY.
Then no¢ : Cr (F2) — GS is a complete order embedding. Since C} (F3) a unital exact
C*-algebra, one can regard C) (F3) as a subsystem of GS by universality. We claim
that 1 o ¢ has no extension to a linear complete isometry 1 : GS — GSY. Indeed,
if 4 is such an extension, then by Corollary ¥ has a ucp lift (¢,,), whence the
sequence (P, © (¥n)|cs(r,)) 18 @ ucp lift for ¢, contradicting the fact that CF (F2) is not
quasidiagonal. One can then conclude that GS does not have quantifier elimination by

applying Lemma

Remark 4.16. The first proof that Th(GS) does not have quantifier elimination relies
on the work of Junge and Pisier in [19], which (essentially) shows that the set of n-
dimensional 1-exact operator systems is not a Polish space in the weak topology. Instead,
the second proof uses in an essential way the aforementioned deep result of Haagerup
and Thorbjorsen from [16].

4.4. Existentially closed operator systems. Recall that an operator system X is
nuclear if there exist nets p, : X — M, and 7, : My, — X of ucp maps such that
Yo © Po converge pointwise to the identity map of X; see [18, Theorem 3.1]. We also
recall that an operator system X is existentially closed if, whenever Y is an operator
system containing X, ¢(Z,y) is a quantifier-free formula in the language of operator
systems, and @ is a tuple of elements of X, one has that

be]‘a}glf(}’) P(@,0) = beBleILlllf(X) #(@0). (4-1)
The operator system X is positively existentially closed if one merely assumes that
Equation holds for quantifier-free formulas ¢ constructed using only nondecreasing
functions as connectives. Similar definitions can be given for operator spaces.

Note that the formulae 0z, from the proof of Theorem [4.10] are really quantifier-free
definable predicates (as the supremum over a compact set is a limit of maxima over
finer finite nets). Furthermore the category of operator systems admits approzimate
pushouts as in [25, Lemma 3.1]. This can be seen as in [25, Lemma 3.1] by replacing
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M, with B(H). It follows that the proof of Theorem whith the extra ingredient
of approximate pushouts, also shows:

Theorem 4.17. GS embeds into any existentially closed operator system.

The next two results explore what happens when we combine 1-exactness and exis-
tential closedness.

Proposition 4.18. Suppose that X is a 1-exact operator system. Then X is nuclear if
and only if it is positively existentially closed.

Proof. Suppose that X is a nuclear operator system. Let X be a subsystem of Z. Let
¢ (Z,y) be a positive quantifier-free formula in the language of operator systems and a a
tuple in X. Suppose that » > 0 and b € Z is such that ¢ (@,b) < r. Fix € > 0 such that
¢ (d,b) + e < rand § > 0 small enough. Consider the inclusion maps ¢ : (@) — (a,b)
and f : (@) — X. By the implication (3)=(1) of [25, Lemma 3.3], there exists a ucp
map g : (@,b) — X such that ||go ¢ — f|| < d. Thus, for § small enough, we have

¢ (d, g(b) <v(g(9(@),g(b) +e=¢(db)+e<r.

Suppose now that X is a positively existentially closed operator system. We want to
show that X is nuclear. Suppose that ¢ € N, I is a subsystem of My, and f: £ — X is
a ucp map. Fix € > 0. We want to show that there exists a ucp map g : M, — X such
that Hg|E — fH < e. This will imply that X is nuclear by the implication (2)=-(3) in
[25, Lemma 3.3]. Let § > 0 be small enough. Arguing as in the proof of |25, Lemma 3.1]
(where one replaces M, with B (H)) one can show that there exist a ucp map i : M; —
B (H) and a complete order embedding j : X — B (H) such that H’L‘E —jo fH < d. Let
¢ = (co,...,cp_1) be a normalized basis of M, such that (co,...,cr_1) is a basis of E

and let @ = (f (co),..., f(ck—1)) and b= (9(c),--- ,g(cqz_l)). Consider the formula
(Y1, .-, Y,2—1) defined by

2-1
sup Y aiwy =1,
(ao,...,aqgil)exd’q i=0
where X7, is the (compact) set of tuples (ap,...,a,_1) in M, such that
¢°—1

Z o; @ a;|| < 1.
i=0

Consider then the formula 6(z1,...,25—1,¥1,...,Y,2_1) defined by

k-1
Z a; @ (x5 — ;)

1—0

max{n(yl,...,yqz_l), sup

(0, —1)€EX 7 4

where z9 = yo = 1 and X5, is defined as above. Then 6(a, l;) = 0; since X is positively
existentially closed, there exists a tuple d in X such that ¢ a, J) <6. Let ¢y : My — X

be the map sending ag to 1 and a; to d; for i < ¢?; then ¢ is a unital linear map
such that [|¢[[, <1+ 6 and H@Z’\E - qu <. By Lemma one can find a ucp map

g: M, — X such that ||g — || < 5¢*V/3. This concludes the proof that X is nuclear by
[25, Lemma 3.2]. O

We thus see that being positively existentially closed characterizes nuclear operator
systems among the 1-exact operator systems. We now see that being existentially closed
characterizes the Gurarij operator system GS among the separable l-exact operator
Systems.
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Theorem 4.19. Suppose that X is a separable 1-exact operator system. Then X is
existentially closed if and only if X is completely order isomorphic to GS.

Proof. One can prove that if X is an existentially closed operator system, then X is
completely order isomorphic to GS arguing as in the proof of Proposition where
one uses [25, Lemma 3.1] and replaces the formula

2-1
sp || ey 1

(Oé(),...,OéqQ_l)eX[i,q 1=0

with the formula

¢°—1 °-1
sup max g a; @yl ~1,1 g a; @ Y;
(Oéow-»OéqQ,l)eXa,q i=0 i=0

We now show that GS is existentially closed. Suppose that X is an operator system
containing GS. Let @ be a tuple of elements of GS and ¢ (d@,z) be a quantifier-free
formula in the language of operator systems. Since GS is the direct limit of a sequence
of full matrix algebras with unital completely isometric connective maps, without loss
of generality we can assume that the operator system (@) generated by the tuple @ in
GS admits a complete order embedding into M, for some ¢ € N. We may also assume
that ¢ is chosen large enough so that only appear matrix norms up to order ¢ appear in
¢. Suppose that 7 € N and ¢ (d@,b) < r for some b € Ball (X). Consider the complete
order embeddings (@) C MIN, ((@, b)) (inclusion map) and f : (@) C GS. Fix € > 0 such
that ¢ (d,b) + ¢ < r and fix 6 > 0 sufficiently small. By the homogeneity property of
GS, there exists a complete isometry g : MIN, ((d@,b)) — GS such that Hg‘@ — fH < 4.
It is clear that upon choosing § small enough one can ensure that

p(d,g (b)) <¢(g(@),g ) +e=¢p(@b)+e<r.
This concludes the proof that GS is existentially closed. O

Remark 4.20. Once we have established that GS is existentially closed, we obtain
another proof of the fact that separable nuclear operator systems are positively existen-
tially closed. Indeed, suppose that X is separable and nuclear. By [25, Theorem 3.3]
we may assume that X is a subsystem of GS, and there exists a ucp projection ¢ of
GS onto X. It suffices to show that X is positively existentially closed in GS, that is,
whenever ¢(d, x) is a positive quantifier-free formula and @ is a tuple from X, then we
have that
bEBlarlllf(GS) pldb) = beBlz?lf(X) #(@0)-
However if b € Ball(GS) then (@, ¢(b)) < ¢(a,b), whence the desired result follows.

Theorem 3.1 of [I1I] shows that the theory of C*-algebras does not have a model
companion. We now have the same conclusion for the theory of operator systems:

Corollary 4.21. The theory of operator systems does not have a model companion.

Proof. If the theory of operator systems had a model companion, then it would be a
model-completion as the class of operator systems satisfies the amalgamation property;
see [20, §2] and also the proof of Lemma 3.1 in [25] where one replaces M, with B(H).
Since GS would be a model of the model-completion, we would conclude that GS has
quantifier-elimination, contradicting Theorem O

Remark 4.22. In a similar manner, one can show that NG is an existentially closed
operator space. However, since we do not know whether or not NG has quantifier-
elimination, it is still open as to whether or not the theory of operator spaces has
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a model companion. Likewise, we do not know if NG is the only separable 1-exact
existentially closed operator space.

Remark 4.23. Theorem should be compared with [13] Proposition 2.18] asserting
that the Cuntz algebra O, is the only possible existentially closed exact C*-algebra. By
[13, Theorem 3.3], the assertion that O is indeed existentially closed is equivalent to a
positive solution to the Kirchberg embedding problem [13], §3.1].

4.5. Nuclear models of the theory of GS. It follows from [I3, Corollary 2.9] that
Os is the only nuclear model of its theory. A similar assertion holds for the Gurarij
operator system GS.

Lemma 4.24. Suppose that ¢ € N, E C M, is a subsystem of dimension k, and

a= (aog,...,ax—1) is a normalized basis of E with ag = 1. Then there exists a sequence
of formulas O, (1, ..., xK_1) in the language of operator systems such that the following
holds: if X is a nuclear operator system and b = (by,...,bk_1) is a tuple in the unit ball

of X, then for every m € N, if 9%(5) < i, then the unital linear map ¢ : E — X such
that ¢ (a;) = b; for 1 <i <k —1 is invertible and

max {[|@lley - |7 ||, } = 1 < O (D)
Furthermore, if ¢ : E — X is an invertible unital linear map and b= ¢ (d), then

inf 63 (5) < max {[|6. [|67]|,} — 1.

Proof. Suppose that n > g and €is a k-tuple in M,, with ¢g = 1. Denote by (af), o ,a;%l)
the dual basis of (ag,...,ar—1). Let L > 1 be such that |la}|| < L for i < k. Denote
by e;; for i, < n the canonical matrix units of M,, and let ¢, = Zij )\g)eij € M,, for
0 < /¢ <k —1. Consider the formula ugz(x1,...,x5_1) defined by

k—1

. 4

inf sup E Q@ | xp— E )\Ej)yij
=0

[yi]']ec’ﬂ (ao,...,ak,1)€X0—7n 1<4,j<n

where 29 = 1, Xz, is the (compact) set of k-tuples (ap, ..., ar_1) in M, such that

k—1
Z a; Q¢
i=0

and C), is the (definable) set of positive elements of norm at most 1 of M,, (X ). Consider
also the formula ¢z (z1,...,z5_1) defined by

=1,

k—1
E ; Qx4
i=0

max { sup 1=

(a0, yak—1)€EXen

and the formula 7 (x1,...,25_1) defined by

k—1 k—1
sup max E a; @ x; E o] ® ;
(0,0 —1)EX n i=0 i=0

where zg = 1 and X, is the set of tuples (v, ..., ax—1) in M, such that

k—1
E o; @ a;
1=0

;171;

=1.

Let 0z(x1,...,x—1) be the formula
n(xlr..,mk,l)+—100Lk¢@($1w..,xk,1).
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We claim that the collection of formulas 6z satisfies the conclusion of the statement.
Since the space of formulas with parameters from various M,,’s is separable, we can
then just replace the formulas 6z with a countable dense set to obtain a sequence of
formulas as in the statement. .

Suppose thus that X is a nuclear operator system and b is a k-tuple of elements of
X with bp = 0. Let ¢ : E — X be the unital linear map such that ¢ (a;) = b; for
1 < k — 1. Suppose that n > ¢ and ¢'is a k-tuple in M,, with ¢y = 1 such that 95(5) < i.
Fix § € (0,1) and € € (0, 355,7) such that n(b) < & and Ys(b) < e. It follows from
n(b) < & that ¢l < 1+ 8. Furthermore, since § < 1, we have that ¢ is invertible and
H¢_1Hn = Hqﬁ_chb < 1+46. Since ||a|| < L, a straightforward computation shows that

|b}]] < 2L for every i < k — 1, where (bf,...,b},_;) is the dual basis of b. It remains to

-,

show that [|¢||., < 14 0 + 100kLe. Denote by ~ : span(b) — M, the unital linear map

-,

such that 7 (b;) = ¢;. Observe that, since ¥z(b) < e, we have that ||v||, < 1+ ¢ and
there exists a completely positive map pg : M,, — X such that

lpooy—1l, <e,

where ¢ is the inclusion map of span(b) inside X. Define p : M,, — X by
po(z) =p(2)+7(2) (1 —p(1)),

where 7 is the normalized trace of M,,, and observe that p is a unital completely positive
map such that ||[p — pol|4 < |1 — p(1)]] < e. Observe now that

7o dlly =Illvodl, <(1+6)(1+2e) <1+0+4e

and hence ||[povyo¢| ., <14 +4e. Since ||poyo ¢ — ¢, < €, the small perturbation
argument [30, Lemma 2.13.2] shows that ||¢||, < 1+ + 100kLe.

Suppose now that ¢ : E — X is an invertible unital linear map such that ||¢|| , < 149
and ||¢~!|| , < 140. Fix &’,e > 0 such that §'+100kLe < § and max {||¢]|,, [|o7"|| ,} <

§'. Set b= ¢(d@). Since X is nuclear, there exist n € N and ucp linear maps v : X — M,
and p : M, — X such that

H(p oy — idX)|¢[E} Hn <e.

-,

Therefore 0z(b) < ¢’ + 100kLe < 4. O

Theorem 4.25. Suppose that X is a separable nuclear operator system that is elemen-
tarily equivalent to GS. Then X is completely order isomorphic to GS.

Proof. Fix ¢ € N and E C M, be a subsystem. Suppose that @ is a normalized basis
of My with ap = 1 such that ao,...,ar—1 is a basis of E. Suppose that ¢ : ' — X

is a complete order embedding, b = (¢ (ag), ..., (ag_1)), and € € (0, 1. By [24,
Proposition 4.2] and Lemma in order to prove that X is completely order isomorphic
to GS, it is enough to show that there exists a linear map v : M, — X such that

max{[[vz — | I1¢ll, — 1, [, — 1} < 10%kez. (4.2)

Let 0, (21,...,x5_1) for m € N be the formulas obtained from (ay,...,ax—1) as in

-

Lemma Since X is nuclear, there exists m € N such that 6.5 (b) < . Set 6 = 0,,.
Consider the formula n(y1,...,y,2_1) defined by

(ao,..‘,aqzil)EX(;‘q

—1 -1
sup max Zai®yi ~1,1+ Za1®yi|l
i=0 i=0
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where yo = 1 and Xz, is the set of ¢>-tuples (ag, ..., Qg2_1) in My such that

¢°-1
Z o; Qagll = 1.
i=0
Consider also the formula 7(z1,...,2x1,¥1,...,¥Y,2_1) defined by
k—1 2
inf  max sup Z o @ (z; —y)|| = 10°k%0 (Z) ,n(7)
Yioelg2 1 (@0, 0-1)€Xan || =0

where z9 = yo = 1 and Xz, is the set of k-tuples (v, ..., ap—1) in M, such that

k—1
Z a; ¥ ag
i=0

=1.

Let now o be the sentence
1
sup ming 0 (%) - -, inf 7(Z,7),.
L1y Th—1 4 -

Observe that ¢®° = 0 by Lemma and the homogeneity property of GS given by
[24, Theorem 4.4]. Since X is elementarily equivalent to GS, we have that oX = 0.
Therefore, there exists a tuple & in X such that 7(b,&) < e. Let now ¢ : M, — X be
the unital linear map such that 1 (a;) = ¢; for i < ¢. It follows from the fact that
7‘(5, ¢) < e that 1 satisfies Equation ([4.2). O

In [I3], it is asked whether O is the only exact model of its theory; we also do not
know if GS is the only 1-exact model of its theory.

5. EXISTENTIALLY CLOSED C*-ALGEBRAS

As mentioned earlier, it was proven by the second-named author in [24, §4.6] that
GS is not completely order isomorphic to a C*-algebra. Here we generalize this result
by showing that no unital C*-algebra is existentially closed as an operator system.

Lemma 5.1. Suppose that ¢ : X — Y is a complete order embedding between operator
systems. Further suppose that X is existentially closed and uw € X is a unitary. Then
¢ (x) is a unitary.

Proof. Suppose that n € N and consider the formula ¢ (u,z) defined by

. L1117
mm{H[u@In ]|, [“ii ] }||x||2.

X
inf u, T =2
<$IIS1 e )>
by [8, Theorem 2.4]. Therefore

(uiﬂlil ¢ (¢ (u) 796))Y =2,

whence ¢ (u) is a unitary of Y. O

Observe that

A first draft of this paper contained a proof of the next lemma. We thank Thomas
Sinclair for pointing out to us that this lemma follows immediately from Pisier’s Lin-
earization Trick (see, for example, [28, Theorem 19]).



18 ISAAC GOLDBRING AND MARTINO LUPINI

Lemma 5.2. Suppose that ¢ : A — B is a ucp map between unital C*-algebras that
maps unitaries to unitaries. Then ¢ is a x-homomorphism.

We thank Thomas Sinclair for providing a proof for the following lemma.

Lemma 5.3. Suppose that A is a unital C*-algebra and dim(A) > 1. Then there
is a unital C*-algebra B and a complete order embedding ¢ : A — B that is not a
x-homomorphism.

Proof. We first remark that A has a nonpure state. Indeed, since the states separate
points and every state is a linear combination of pure states, we have that the pure
states separate points. Since dim(A) > 1, this implies that there are at least two pure
states, whence any proper convex combination of these two pure states is nonpure.

Secondly, we remark that a nonpure state on A is not multiplicative. Indeed, if ¢ is a
proper convex combination of the distinct pure states ¢; and ¢9, then taking a unitary
u on which ¢; and ¢9 differ, we have that ¢(u) has modulus strictly smaller than 1.

We are now ready to prove the lemma. Suppose that A is concretely represented as
a subalgebra of B(H). Let ¢ be a non-pure state. Then the map

x— (p(x)-1)®dx: A— B(H® H)
is a complete order embedding that is not a x-homomorphism. O
Corollary 5.4. No unital C*-algebra is existentially closed as an operator system.

Proof. This follows immediately from Lemmas , and (noting that existentially
closed operator systems are infinite-dimensional). O

Remark. Lemma remains valid in the operator space category as well (with an
identical proof). As a consequence, we see that if Z is an existentially closed operator
space, then Z has no unitaries. Indeed, if Z is concretely represented as a subspace of
B(H), then the map

r—x®0:Z— B(H®H)

is a complete isometric embedding into a C*-algebra whose image contains no unitaries,
whence, by Lemma 1, Z cannot contain any unitaries. In particular, we see that NG
contains no unitaries, a fact already observed (implicitly) in [27, Proposition 3.2].

Remark. Corollary in particular shows that no unital exact C*-algebra A is exis-
tentially closed as an operator system. We can be a bit more precise about how A fails
to be existentially closed as an operator system. Indeed, since A is exact, by univer-
sality, there is a complete order embedding A — GS. We claim that this embedding
is not existential. Indeed, since GS is existentially closed, if the above embedding were
existential, then A would be existentially closed as an operator system, contradicting

Corollary

Given the above discussion, the following question seems natural:

Question 5.5. Is the class of operator systems unitally completely order isomorphic to
a C*-algebra an elementary class?

We now give a condition that would ensure a positive answer to Question[5.5] Suppose
that (X; : ¢ € I) is a family of operator systems and U/ is an ultrafilter on I. If u; € X;
is a unitary for each 4, then it is clear that (u;)® € [[;, X; is a unitary of [[,, X;.

Question 5.6. With the preceding notation, if u is a unitary in [[,, X;, are there
unitaries u; € X; for which u = (u;)*?

We should note that the analog of Question for C*-algebras has a positive answer
(see [12]).
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Proposition 5.7. If Question[5.6 has a positive answer, then Question[5.5 has a pos-
itive answer.

Proof. Clearly the class of operator systems completely order isomorphic to a C*-algebra
is closed under isomorphisms and ultraproducts. It suffices to check that it is closed
under ultraroots. Towards this end, suppose that X is an operator system for which
XU is a C*-algebra; we need to show that X is a C*-algebra. It suffices to show that X
is closed under multiplication. We first show that the product of any two unitaries in
X remains in X. Suppose that u,v € X are unitaries. By [8], uv € X if and only if the

(1 . . . . .
matrix [v Z] is v/2 times a unitary of My(X). However, the aforementioned matrix

is /2 times a unitary A of Ms(XY); by assumption, A = (A,)®, where each A, is a
unitary in Ma(X). Since unitaries in an operator space form a closed set, we have the
desired conclusion.

In order to finish the proof, it suffices to prove that the linear span of the unitaries
in X are dense in X. Towards this end, fix € X with |lz|| < 4. By [6] §I1.3.2.16],

there are unitaries ui, ..., us € X" for which x = %(ul + -+ 4 us). By assumption, we

may write each u; = (u;,)°®, where each w;, is a unitary of X. It follows that some

subsequence of (%(uln -+ 4 us,)) converges to . O
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