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Abstract. The end compactification |Γ| of the locally finite graph Γ
is the union of the graph and its ends, endowed with a suitable topol-
ogy. We show that π1(|Γ|) embeds into a nonstandard free group with
hyperfinitely many generators, i.e. an ultraproduct of finitely generated
free groups, and that the embedding we construct factors through an
embedding into an inverse limit of free groups. We also show how to
recover the standard description of π1(|Γ|) given in [DS11a]. Finally, we
give some applications of our result, including a short proof that certain
loops in |Γ| are non-nullhomologous.

1. Introduction

It is a well-known fact that the fundamental group of a finite, connected
graph Γ (viewed as a one-dimensional CW-complex) is a finitely generated
free group. Indeed, fix a spanning tree T of Γ and let e1, . . . , en denote the
chords of T (that is, edges of Γ not in T ) equipped with a fixed orienta-
tion. Then to any loop α, we can consider the word rα on the alphabet
{e±1

1 , . . . , e±1
n } obtained by recording the traversals of α on each ei taking

into account the orientation. If we let Fn denote the free group with basis
e1, . . . , en and we let [rα] denote the unique reduced word corresponding to
rα, then the map α 7→ [rα] : π1(Γ)→ Fn is an isomorphism.

We now consider the case that Γ is an infinite, locally finite, connected
graph. In order to obtain a compact space, we consider the end compact-
ification |Γ| of Γ obtained by adding the ends of Γ. Loosely speaking (we
will make this more precise in the next section), the ends of Γ are the “path
components of Γ at infinity”; see the paper [Gol11] where this heuristic is
made precise using the language of nonstandard analysis. For example, if Γ
is the Cayley graph of Z with its usual generating set {1}, then Γ has two
ends, one at “−∞” and one at “+∞.” End compactifications of graphs have
been considered, e.g., in [Die10a, Die11, DK04, Geo09b, Geo09a, BB11] as a
way to obtain analogues for infinite graphs of results in finite graph theory
that would otherwise be plainly false.
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In [DS11a], the authors find a combinatorial characterization of π1(|Γ|)
similar in spirit to the aforementioned construction for finite graphs. The
authors have to overcome two main obstructions, both of which are illus-
trated through the following simple example. Consider the 1-way infinite
sideways ladder Γ indicated below in Figure 1.

Figure 1

Γ has one end, namely the point at “+∞.” The loop α that starts at
v0, runs down the bottom edge of the ladder to +∞ and then back to v0

is clearly nullhomotopic. However, if one looks at the traces α leaves on
the chords of the spanning tree T pictured in Figure 1, we are left with the
following word:

rα = (e1e2 · · · )_(· · · e2e1).
This word has order type ω + ω∗ (where ω is the order type of the natural
numbers and ω∗ is ω equipped with its reverse ordering) and contains no
consecutive appearances of ei, e−1

i for any i. In particular, the (usual) notion
of reduction of words does not work well in this context. More generally, for
any infinite, locally finite graph Γ, the authors of [DS11a] consider the group
F∞ consisting of reduced infinite words on the alphabet of oriented chords
of a topological spanning tree of Γ; here, an infinite word can have arbitrary
countable order type, leading to a complicated (non-well-ordered) notion of
reduction of words. Just taking any spanning tree of Γ would not work, as
the closure of such a tree in |Γ| might contain loops. They then show that
π1(|Γ|) embeds as a subgroup of F∞ and F∞ embeds as a subgroup of an
inverse limit of finitely generated free groups by sending an infinite word to
the family of its finite subwords. These are, respectively, part (i) and (ii) of
[DS11a, Theorem 15].

After seeing the nonstandard approach to ends outlined in [Gol11], Diestel
asked the first author whether or not the nonstandard approach could lead
to a simplification of the article [DS11a]. Immediately the following idea
arose: Consider the graph Γ from Figure 1 and fix an infinite natural number
ν ∈ N∗ \ N. (In this paper, we will assume that the reader is familiar with
the basics of nonstandard analysis; otherwise they may consult [Dav77] or
[Hen97].) We then consider the hyperfinite graph Γν appearing in Figure 2.

The nullhomotopic loop α from the previous paragraph “naturally” in-
duces an internal loop in Γ∗, namely the loop that starts at v0, travels down
the bottom edge to vν , then returns back to v0. The hyperfinite word that
α corresponds to is e1e2 · · · eνe−1

ν · · · e−1
2 e−1

1 , which clearly reduces to the
trivial word, witnessing that α is nullhomotopic.
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Figure 2

The main purpose of this article is to make precise the näıve approach
taken in the previous paragraph. More specifically, we prove

Theorem 1.1. Suppose Γ is a locally finite connected graph. Then there is
a hyperfinite, internally connected graph Γhyp and an injective group mor-
phism Θ : π1(|Γ|) ↪→ π1(Γhyp), where π1(Γhyp) is the internal fundamental
group of Γhyp. Moreover, Θ can be constructed in such a way that it factors
through an embedding of π1(|Γ|) into an inverse limit of finitely generated
free groups.

By the transfer principle, π1(Γhyp) will be an internally free group on
hyperfinitely many generators. Said another way: π1(|Γ|) embeds into an
ultraproduct of finitely generated free groups. The “moreover” part gives
part of the aforementioned result of [DS11a]. In fact, in Section 4, we
will show how our methods can be used to completely recover part (i) of
[DS11a, Theorem 15] as described above (part (ii) is purely algebraic and the
nonstandard set-up has nothing to say about this portion of the theorem).
Two sample consequences of the theorem are reported below.

Corollary 1.2.
(1) π1(|Γ|) has the same universal theory as a free group.
(2) π1(|Γ|) is ω-residually free.

Recall that a group G is ω-residually free if for any g1, . . . , gn ∈ G \ {1},
there is a surjective homomorphism σ : G→ F onto a free group such that
σ(gi) 6= 1 for i = 1, . . . , n. For finitely generated groups, conditions (1) and
(2) in the above corollary are well-known to be equivalent, see e.g. [CG05].
Finitely generated groups satisfying conditions (1) and (2) are called limit
groups and are widely studied.

We should mention that our construction is simpler than that of [DS11a]
in that we do not need to concern ourselves with topological spanning trees
(whose existence is nontrivial). On the other hand, our construction uses
the universal cover of Γhyp, which is an internal tree where homotopies can
be reparameterized in nice ways. Only with the hyperfinite approach is the
recourse to the universal covering tree possible. Some applications of this
result (and the construction of Θ) will be given in Section 5, where we give
another proof of the fact that any inclusion of locally finite connected graphs
Γ1 → Γ2 induces an injection π1(|Γ1|) → π1(|Γ2|), the main reason being
that the analogous result is true for finite graphs.

The original motivation for the work in [DS11a] was to show that certain
loops in |Γ| are non-nullhomologous. The motivation for this is that these
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loops are trivial in the so-called topological cycle space, another homology
theory that has proven to be more suitable than the usual one to study
Fredudenthal compactifications (of spaces even more general than graphs)
[DS10, DS11b]. The existence of such loops implies that these theories are
actually different. Using our techniques and the algorithm for calculating
commutator lengths in finitely generated free groups, in Section 5 we give a
very short proof that one of the loops in the infinite-sideways ladder above
witnessing the difference between the said homology theories is in fact non-
nullhomologous. We also make the remark that a loop α gives rise to the
trivial element of the topological cycle space if and only if Θ(α), for Θ
as in the main theorem, is internally null-homologous in H1(Γhyp) (with
coefficients in Z/2Z or Z depending on the version of topological cycle space
under consideration).

We want to caution that our result does not imply that π1(|Γ|) is a free
group. (According to Corollary 18 of [DS11a], π1(|Γ|) is free if and only if
every end of Γ is contractible in |Γ|.) In general, an internally free group
is not actually free. For example, Z∗ is internally free on one generator.
Fix M,N ∈ N∗ \ N with M

N infinitesimal and consider the injective group
morphism (a, b) 7→ aM + bN : Z2 → Z∗. Since Z2 is not free, we see that Z∗
is not free.

We would like to thank Reinhard Diestel for suggesting this project to us
and for being so supportive of the nonstandard approach.

2. Preliminaries on End Compactifications

In this section, we fix a proper, pointed geodesic metric space (X, d, p).
For n ∈ N, we let B(p, n) (resp. B̊(p, n)) denote the closed (resp. open)
ball of radius n around p. For x, y ∈ X, we write x ∝n y to mean that
there is a path in X connecting x to y which remains entirely in X \B(p, n).
Given proper rays r1, r2 : [0,∞) → X based at p, we say that r1 and r2

determine the same end of X if for every n ∈ N, there is t0 ∈ [0,∞) such
that for all t ≥ t0, r1(t) ∝n r2(t). The notion of determining the same end
is an equivalence relation on the set of proper rays beginning at p and we
let end(r) denote the equivalence class of the proper ray r.

The end compactification of X, denoted |X|, is the set X together with its
ends. There is a natural topology on |X|, where a neighborhood basis of x ∈
X is a neighborhood basis of x induced by the metric and a neighborhood
basis for end(r) is given by sets of the form

Wn(end(r)) = {end(r′) | ∃m0 ∈ N ∀m ≥ m0 r(m) ∝n r′(m)}∪

{x ∈ X | ∃m0 ∈ N ∀m ≥ m0 r(m) ∝n x}.

In [Gol11], a nonstandard characterization of the topology of the space
of ends of X was outlined. In this section, we adapt the arguments from
[Gol11] to show that |X| is the same as the space |X|ns (the “nonstandard
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ends compactification”) defined below. First, set

Xfin := {x ∈ X∗ | d(x, p) is finite} and Xinf := X∗ \Xfin.

For x, y ∈ X∗, write x ∝ y (resp. x ∝n y for some n ∈ N) if there exists
an internal path connecting x to y in X∗\Xfin (resp. in X∗\B(p, n)). For
x ∈ Xinf , let [x] denote the equivalence class of x with respect to ∝. Set
IPC(X) := {[x] | x ∈ Xinf} and |X|ns := X ∪ IPC(X). We consider the
topology on |X|ns where a neighborhood basis for [x] ∈ IPC(X) is given by

Vn([x]) := {[x′] ∈ IPC(X) | x′ ∝n x} ∪ {x′ ∈ X | x′ ∝n x},

and a neighborhood basis for x ∈ X is a neighborhood basis for the topology
induced by the metric.

In [Gol11], it is proven that IPC(X) is homeomorphic to the space Ends(X)
of the ends of X via the homeomorphism η : Ends(X) → IPC(X) given by
η(end(r)) = [r(σ)], where σ ∈ R>0

inf is fixed. Extend η to a map η : |X| →
|X|ns by requiring η to be the identity map on X.

Proposition 2.1. η : |X| → |X|ns is a homeomorphism.

Proof. We begin with the following
Claim: Wn(end(r)) = W ′n(end(r)), where

W ′n(end(r)) = {end(r′) | r(σ) ∝n r′(σ)} ∪ {x ∈ X | x ∝n r(σ)}.

Proof of Claim: The containment ⊆ follows by transfer as σ ≥ m0. For the
other containment, suppose that end(r′) ∈W ′n(end(r)), so r(σ) ∝n r′(σ). If
end(r′) /∈Wn(end(r)), then, by overflow, there is σ′ > N such that r(σ′) 6∝n
r′(σ′). Since r(σ) ∝n r(σ′) and r′(σ) ∝n r′(σ′), we get r(σ) 6∝n r′(σ), a
contradiction. The other case is similar.

Since |X| is compact and η is bijective, it suffices to show that η is continu-
ous. η is clearly continuous on X, so let us consider end(r) ∈ |X| and n > 0.
The proof will be finished if we can show that η(W

′
n(end(r))) = Vn([r(σ)]).

However, this is immediate from the definitions and the fact that η is a
homeomorphism. �

Lemma 2.2. If |X∗| denotes the internal end compactification of X∗, then
|X|∗ = |X∗|.

Proof. Both spaces are the union of X∗ and the quotient of the internally
proper rays in X∗ emanating from p modulo the relation of determining the
same internal end. �

3. Embedding π1(Γ) into π1(Γhyp)

3.1. The Main Theorem. In this section, we fix an infinite, locally finite,
connected graph Γ with end compactification |Γ|. We also fix a basepoint
p ∈ Γ.



6 ISAAC GOLDBRING AND ALESSANDRO SISTO

Lemma 3.1. Suppose that n ∈ N and θ : Γ → Γn is the map which col-
lapses each connected component of Γ \ B̊(p, n) to a point. Then θ extends
continuously to a map θ : |Γ| → Γn.

Proof. Given end(r) ∈ |Γ| and x ∈ Γ ∩Wn(end(r)), set θ(end(r)) := θ(x).
It is then easy to check that θ(Wn(r)) = {θ(x)}, whence θ is continuous at
end(r). �

In the rest of this section, we fix ν ∈ N∗ \ N and set θ : Γ∗ → Γhyp to be
the map which collapses each internally connected component of Γ∗\B̊(p, ν)
to a point. We consider Γ both as a subset of |Γ|∗ and Γhyp in the obvious
way and let Γ̂ denote both the elements of |Γ|∗ and Γhyp an infinitesimal
distance away from an element of Γ. (This double use of Γ̂ should not cause
any confusion.) By the previous lemma, we obtain an extension of θ to an
internally continuous map θ : |Γ∗| = |Γ|∗ → Γhyp. Consequently, we get an
induced map on the internal fundamental groups:

Definition 3.2. We set Θ : π1(|Γ|∗)→ π1(Γhyp) to be the group homomor-
phism induced by the map θ : |Γ|∗ → Γhyp. Here, π1(|Γ|∗) and π1(Γhyp) are
the internal fundamental groups of |Γ|∗ and Γhyp respectively.

Observe that π1(|Γ|∗) = (π1(|Γ|))∗, so π1(|Γ|) is a subgroup of π1(|Γ|∗).
Our main goal is to show that Θ|π1(|Γ|) is injective, proving Theorem 1.1.
First, we show that we can construct |Γ| in a nonstandard fashion analogous
to the construction of Section 2 using Γhyp instead of Γ∗.

Here, we are slightly abusive in notation and let Γ̂ refer to the elements
of either Γ∗ or Γhyp that are infinitely close to an element of Γ.

We let d denote the usual metric on Γ, namely the path metric on Γ when
each edge is identified with the interval [0, 1]. Similarly, we let dh denote
the internal metric on Γhyp obtained by identifying each edge with [0, 1]∗.

For x, y ∈ Γhyp, write x ∝ y (resp. x ∝n y for some n ∈ N) if there
exists an internal path connecting x to y in Γhyp\Γ̂ (resp. in Γhyp\B(p, n)),
and denote by [x] the equivalence class of x with respect to ∝. Also, let
IPChyp(Γ) denote the collection of such equivalence classes. Finally, consider
the topology on |Γ|hyp := Γ ∪ IPChyp(Γ) where a neighborhood basis for
[x] ∈ IPChyp(Γ) is given by

V hyp
n ([x]) := {[x′] ∈ IPChyp(Γ) | x′ ∝n x} ∪ {x′ ∈ Γ | x′ ∝n x},

and a neighborhood basis for x ∈ Γ is a neighborhood basis for the topology
induced by the metric.

Suppose x, y ∈ Γinf are such that there is an internal path connecting x to
y in Γ∗\Γ̂. Then, composing with θ, we get an internal path connecting θ(x)
to θ(y) in Γhyp\Γ̂. This allows us to define a map χ : |Γ|ns → |Γ|hyp which
restricts to the identity on Γ and satisfies χ([x]) = [θ(x)] for each x ∈ Γinf .

Lemma 3.3. χ is a homeomorphism.
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Proof. Arguing as before the lemma, Vn([x]) is mapped into V hyp
n ([θ(x)]) for

each x ∈ Γinf , whence χ is continuous. Since |Γ|ns is compact, it suffices to
prove that χ is bijective. Since χ is clearly surjective, it remains to prove
that χ is injective. Towards this end, suppose that θ(x) can be connected to
θ(y) by an internal path γ in Γhyp\Γ̂. Consider pairs of values tj0, t

j
1 so that

dh(γ(tji ), p) = ν, γ(tj0) is in the same connected component of Γ∗\B̊(p, ν)
as γ(tj1), and the interval [tj0, t

j
1] is maximal among intervals with endpoints

satisfying these properties. We can substitute γ|
[tj0,t

j
1]

with an internal path

in Γ∗\B̊(p, ν) connecting γ(tj0) to γ(tj1) (if tj0 > 0 and tj1 < 1, otherwise use
x and/or y), and so we obtain an internal path from x to y in Γ∗\Γ̂. �

Theorem 3.4. Θ|π1(|Γ|) : π1(|Γ|)→ π1(Γhyp) is injective.

The following corollary will be useful for our applications.

Corollary 3.5. If Λ is a hyperfinite graph and there exist internally con-
tinuous maps ϕ : |Γ|∗ → Λ, ψ : Λ → Γhyp so that ψ ◦ ϕ = θ, then the map
induced by ϕ at the level of fundamental groups is injective when restricted
to π1(|Γ|).

Proof. (of Theorem 3.4) Suppose that θ(α) is (internally) null-homotopic,
for some loop α : [0, 1]→ |Γ| based at p ∈ Γ. We will construct a continuous
family of paths γt connecting p to α(t). The idea for constructing such a
family is the following. As θ(α) is null-homotopic, it lifts to an internal loop
in the internal universal cover Γ̃hyp of Γhyp, which is an internal tree. We
can then project on Γhyp a family of geodesics connecting a lift of p to points
in the lift of θ(α) based at the same point, and use these projected paths to
construct the required homotopy.

Convenient reparameterizations. Even though it is not absolutely
necessary, we will assume that α makes no partial crossing of edges, meaning
that if the point α(x) is contained in the interior of an edge then there is
an interval I containing x so that α(I) is the edge containing α(x) and α|I
connects the endpoints of the said edge. We can achieve this by a homotopy
in view of [DS11a, Lemma 2]. Let ρ : N∗ → N∗ be the function such that
ρ(ξ) is the cardinality of the edges at distance at most ξ from p ∈ Γhyp

that are crossed by θ(α), counted with multiplicity. (The distance of an
edge from p is the minimal distance of its endpoints from p.) Notice that
if ξ is finite, then ρ(ξ) is finite as it coincides with the number of edges
at distance at most ξ from p crossed by α counted with multiplicity. We
can reparameterize θ(α) : [0, λ] → Γhyp, for some finite λ ∈ R∗, so that
subintervals of [0, λ] which correspond to crossing an edge at distance ξ
from p have length 1/(2ξρ(ξ)). Notice that λ is indeed finite because, as
there are at most ρ(ξ) subpaths of θ(α) corresponding to crossing an edge
at distance ξ from p, we have λ ≤

∑
ξ∈N∗ ρ(ξ)/(2ξρ(ξ)) = 1. Also, we can

reparameterize α so that for each τ ∈ [0, λ] we have α(st(τ)) = st(θ(α)(τ))
if θ(α)(τ) ∈ Γ̂, and α(st(τ)) is the end corresponding to θ(α)(τ) otherwise
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(the correspondence is given by Lemma 3.3). Here, st : Γ̂ → Γ is the map
so that st(x) has infinitesimal distance from x.

The homotopy. Let f : Γ̃hyp → Γhyp be the universal covering map
and fix p̃ ∈ Γ̃hyp such that f(p̃) = p. As mentioned above, the fact that
θ(α) is null-homotopic means that it can be lifted to a loop θ̃(α) in Γ̃hyp

based at p̃, that is, f ◦ θ̃(α) = θ(α). Let d̃ the metric of Γ̃hyp. Fix t ∈
[0, st(λ)], let δ̃t : [0, d̃(p̃, θ̃(α)(t))] → Γ̃hyp be the geodesic connecting p̃ to
θ̃(α)(t) and let δt := f ◦ δ̃t. (It is possible that λ < st(λ), whence these
definitions are ill-defined for t = st(λ); in this case, let δ̃st(λ) be the geodesic

connecting p̃ to θ̃(α)(λ) and let δst(λ) := f ◦ δ̃st(λ).) Reparameterize δt to
obtain φt : [0, λt]→ Γhyp with the property that subintervals of [0, λt] which
correspond to crossing an edge at distance ξ from p have length 1/(2ξρ(ξ)).
Notice that the image of δt (and so that of φt) is contained in that of θ(α).
In fact, given any path in a tree, the (image of the) geodesic connecting its
endpoints is contained in (the image of) the path. As a consequence, φt
is the concatenation of subpaths of θ(α) with disjoint domain and so λt is
finite.

Define γt : [0, 1] → |Γ| by γt(u) = st(φt(uλt)) if φt(uλt) ∈ Γ̂, and let
γt(u) be the end corresponding to φt(uλt) otherwise (we are using Lemma
3.3 again).

We claim that H : [0, st(λ)] × [0, 1] → |Γ| defined by H(t, u) := γt(u) is
continuous and hence provides a homotopy from α to the trivial loop.

Long common subpaths. The key observation is that φt0 , φt1 differ
at most in final intervals of the respective domains of length bounded by
|t0−t1|, meaning that we have φt0

∣∣
[0,λ]

= φt1
∣∣
[0,λ]

for λ = max{λti−(t1−t0)}.
To see this, suppose, without loss of generality, that t0 < t1 and let β be
the maximal common initial subpath of φt0 and φt1 ; we must show that the
length of the domain of β is at least λti−(t1−t0) for i = 0, 1. For i = 0, 1, let
φ′i denote the final subpath of φti connecting the last point of β to θ(α)(ti).
Then the lift of φ′i is contained in the geodesic segment connecting θ̃(α)(t0)
to θ̃(α)(t1), whose image in turn is contained in the image of θ̃(α)

∣∣[t0, t1]. As
explained above, this means that the image of φ′i is contained in the image
of θ(α)

∣∣[t0, t1] and φ′i is a concatenation of subpaths of θ(α)|[t0, t1], whence
the domain of φ′i is at most t1 − t0. Thus the claim is proven.

Proof of continuity. Fix t ∈ [0, st(λ)] and u ∈ [0, st(λt)]. Define γ′t(u) =
st(φt(u)) if φt(u) ∈ Γ̂ and γ′t(u) is the end corresponding to φt(u) otherwise.
(Once again, this formula may be ill-defined for u = st(λt) if λt < st(λt); in
this case, we make the obvious change to the definition of γ′t(st(λt)).) We
now consider the function

H ′ : {(t, u) ∈ [0, st(λ)]× R≥0 : u ≤ st(λt)} → |Γ|
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given by H ′(t, u) := γ′t(u). Since the key observation implies that t 7→ st(λt)
is continuous, in order to check continuity of H it suffices to check continuity
of H ′. (Notice that φt(u·st(λτ )) is infinitely close to φt(u·λt) if one of them is
in Γ̂ and that otherwise the subpath of φt connecting them does not intersect
Γ̂ so that they correspond to the same end.)

We first show that H ′ is continuous at (t, u) if H ′(t, u) ∈ Γ. Indeed, we
claim that for n ≥ d(p, φt(u))+1 and ε < 1/2, if |t−t′| < ε/(2n+1ρ(n+1)) and
|u− u′| < ε/(2n+1ρ(n+ 1)), then we have d(H ′(t, u), H ′(t′, u′)) ≤ 3ε. To see
this, first observe that if |t − t′| < ε/(2n+1ρ(n + 1)), then φt and φt′ either
differ by paths contained in B(p, n + 1) whose lengths are each bounded
above by ε or by paths contained in the complement of B(p, n− 1). Indeed,
taking into account our choice of parameterization, if the endpoint of φt is
in B(p, n), then φt|[max{0,λt−|t−t′|},λt] is contained in B(p, n + 1) and hence
has length at most ε, and otherwise the said subpath cannot travel through
an edge at distance n− 1 from p. To finish the proof of our claim, it suffices
to observe that if β is any path contained in B(p, n+1) satisfying our choice
of the parameterizations (e.g. φt, φt′) and if |u − u′| < ε/(2n+1ρ(n + 1)),
then dh(β(u), β(u′)) < ε.

Suppose instead that H ′(t, u) is an end. We claim that if |t − t′| <
1/(2n+1ρ(n+1)) and |u−u′| < 1/(2n+1ρ(n+1)), then φt(u) can be connected
to φt′(u′) by a path lying outside B(p, n), which proves the continuity of H ′

at (t, u) in view of the nonstandard characterization of the topology of |Γ|
and the fact that φt(u), φt′(u′) represent the same point of |Γ| as H ′(t, u),
H ′(t′, u′).

With the given restrictions on t′, u′, we have that φt, φt′ differ by paths
contained in some connected component C1 of Γhyp\B(p, n) and also φt′(u),
φt′(u′) must lie in the same connected component C2 of Γhyp\B(p, n). If
C1 6= C2 then φt and φt′ coincide in C2, so the path connecting φt(u) to
φt′(u′) outside B(p, n) can be taken to be a subpath of φt. If C1 = C2

then by definition φt′(u′), φt′(u) and φt′(u), φt(u) lie in the same connected
component of Γhyp\B(p, n). �

Remark 3.6. The combinatorial characterization of π1(|Γ|) given in [DS11a]
also applies to certain subspaces of |Γ|, the so-called standard subspaces of
|Γ|. The subspace H of |Γ| is called standard if H is closed, connected, and
contains every edge of which it contains an inner point. We leave it to the
reader to check that our construction is readily adaptable to the case of a
standard subspace of |Γ|.

3.2. The image of Θ. It would be nice if we could characterize the image
of our embedding Θ|π1(|Γ|), but unfortunately we are currently unable to
accomplish this goal. In this subsection, we discuss some of the difficulties
we face in this endeavor.

Once again, let us consider the 1-way sideways infinite ladder Γ from the
Introduction. Below, in Figure 3, we have Γhyp with its internal spanning
tree and chords e1, e2, . . . , eν .
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Figure 3

The question we face is which internal words are in the image of the
embedding Θ : π1(|Γ|) → π1(Γhyp)? Here is a word that is in the image of
this embedding: e1e2 · · · eν . Indeed, this word arises from the loop α that
travels down the bottom edge of the ladder to the unique end and then
returns along the top edge of the ladder. However, here is a word that is not
in the image of the embedding: e1e2 · · · eν−1. Indeed, in some sense, this
word should result from the same loop that gave rise to e1e2 · · · eν , but it is
impossible for the standard loop to “stop” at eν−1 and continue upwards.
More generally, for any η ∈ N∗ \ N with η < ν, the word e1e2 · · · eη should
not be in the image of the embedding.

We also need to ensure that words representing “loops at infinity” are not
in the image of our embedding. For example, consider the word

e1e2 · · · eν−1eνe
−1
ν−1 · · · e

−1
2 e−1

1 .

Indeed, if this word arose from some loop α, then by transfer, α would
have made a loop at some finite stage n ∈ N and the image of [α] under
our embedding would have been e1e2 · · · en−1ene

−1
n−1 · · · e

−1
2 e−1

1 . With these
hurdles in mind, we pose the following

Question 3.7. What is the image of the embedding Θ : π1(|Γ|)→ π1(Γhyp)?

4. Connection to the results in [DS11a]

4.1. Embedding into an inverse limit of free groups. In this subsec-
tion, we observe that Θ : π1(|Γ|) → π1(Γhyp) factors through an injective
map Ψ : π1(|Γ|)→ lim←−Fn for certain finitely generated free groups Fn. For
n ∈ N, set θn : Γ→ Γn to be the map collapsing each connected component
of Γ \ B̊(p, n) to a point. Set Fn := π1(Γn). There are natural continuous
maps ρmn : Γm → Γn when m ≥ n, so that {Fn} is an inverse system of
groups. By Lemma 3.1, we have a continuous extension of θn to a map
θn : |Γ| → Γn satisfying θn = ρmn ◦θm whenever m ≥ n. We thus have a map
Ψ : π1(|Γ|)→ lim←−Fn.

Suppose we choose our nonstandard extension Γ∗ to be ΓN/µ for some
non-principal ultrafilter µ on N, and choose ν = [(id : N → N)]µ. Then
Γhyp =

∏
µ Γn. Consequently, π1(Γhyp) =

∏
µ Fn. Now consider the map

Φ : lim←−Fn →
∏
µ Fn given by Φ((xn)) = [(xn)]µ. Then Φ is injective: if

xn = yn µ-a.e., then since µ is nonprincipal, xn = yn for infinitely many n.
Since (xn), (yn) ∈ lim←−Fn, it follows that xn = yn for all n.
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We leave it to the reader to check that Θ = Φ ◦ Ψ. It follows that Ψ is
injective.

4.2. The Standard Description of π1(|Γ|). After seeing an initial draft
of this article, Diestel asked us whether we could recover the main theorem
of [DS11a], namely Theorem 15. After some further effort, we can indeed
accomplish this. First, let us briefly describe the content of Theorem 15.
Fix a topological spanning tree T of |Γ|, namely an arc-connected, closed
subspace of |Γ| that does not contain any circle (that is, homeomorphic
image of S1) and which contains every edge of which it contains an interior
point. We let {ei : i ∈ N} enumerate the chords of T , namely the edges of
Γ not in T , equipped with a fixed orientation. (We may assume that there
are infinitely many chords, for otherwise |Γ| is homotopy equivalent to a
finite graph and there is nothing to prove.)

Given a loop α in |Γ| based at p, one can consider the trace of α on the
chords, giving a countable “word” wα, which should be viewed as a function
from some countable linearly ordered set S to the set A := {e±1

i : i ∈ N}.
The authors of [DS11a] define a suitable notion of reduction of words and
prove that every word w reduces to a unique reduced word r(w). They let
F∞ denote the set of reduced words and endow it with the obvious group
multiplication (namely r(w) · r(w′) is the unique reduced word associated
to the concatenation of w and w′). They prove that if α and β are ho-
motopic loops based at p, then r(wα) = r(wβ), whence they obtain a map
[α] 7→ r(wα) : π1(|Γ|) → F∞. Furthermore, they prove that this map
is injective and characterize the image of this map as precisely the set of
words whose monotonic subwords converge (we will explain this terminol-
ogy later in the next subsection). They then show that F∞ embeds into an
inverse limit of finitely generated free groups by mapping r(w) to the family
(r(w � I))I⊆S finite. They characterize the image of this latter embedding as
the set of elements of the inverse limit such that each letter appears only
finitely often. As we remarked in the introduction, this latter embedding is
purely algebraic and the nonstandard set-up has nothing to say about this
portion of the theorem.

By far the hardest part of the paper [DS11a] is their Lemma 14, which
shows that if r(wα) = ∅ for a loop α based at p, then α is nullhomotopic,
implying the injectivity of the map π1(|Γ|) → F∞. In what follows, we use
our framework to give another proof of Lemma 14. Our proof is significantly
shorter than the standard proof, which is 14 pages in length.

4.3. Recovering The Standard Description. We let Λ′ be the (possibly
non-simplicial) internal graph obtained collapsing the internal connected
components of T ∗ \ B̊(p, ν) to points. Also, let Λ be the (simplicial) graph
obtained collapsing loops in Λ′ to points and identifying pairs of edges with
the same endpoints. We let ϕ : |Γ|∗ → Λ be the natural internally continuous
map. Also, we let T ′ = ϕ(T ∗), and we remark that T ′ is an internal tree.
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Notice that if e is a chord of T ∗, then either ϕ maps e to a vertex in Λ or
else it maps e to a chord of T ′.

Lemma 4.1. Given any chord e of T ∗ so that ϕ(e) is a chord of T ′, there
are only hyperfinitely many chords e′ of T ∗ with ϕ(e) = ϕ(e′).

Proof. If not, there are two connected components T1, T2 of T ∗ \ B̊(p, ν)
that are connected by more than hyperfinitely many edges. By transfer,
there would then exist an integer n and two connected components T1, T2

of T \ B̊(p, n) connected by infinitely many edges. But then we would have
that T1 and T2 have a common end in both of their closures, so they were
not different connected components after all. �

Let θ : |Γ|∗ → Γhyp be as in Section 3. Observe that θ factors as θ = ψ◦ϕ,
where ψ : Λ → Γhyp maps the point of Λ corresponding to the internal
connected component C of T ∗\B̊(p, ν) to the internal connected component
of |Γ|∗ \ B̊(p, ν) containing C. Since θ is π1-injective, it follows that ϕ is
π1-injective (Corollary 3.5).

Proposition 4.2 ([DS11a], Lemma 14). Suppose that α : [0, 1] → |Γ| is
such that wα reduces to the empty word. Then α is nullhomotopic.

Proof. Set w := wα and say w : S → A, where S is some countable, linearly
ordered set. Let S0 ⊆ S be the set of all s ∈ S so that φ(w(s)) is a chord
of T ′. Notice that S is hyperfinite because of the hyperfiniteness of Λ,
Lemma 4.1 and the fact that for each e ∈ A there can be only hyperfinitely
many s ∈ S so that w(s) = a. We have a reduction R of w to the empty
word, whence R∗ is an internal reduction of w∗ to the empty word. By
(1) on page 8 of [DS11a], we can restrict such reduction to an internal
reduction of w∗ � S0 to the empty word. Since w∗ � S0 is a hyperfinite word,
w∗ � S0 internally reduces (in the usual sense) to the empty word. But
then, considering the trace of ϕ(α) on the chords of T ′, we see that ϕ(α) is
internally nullhomotopic. Therefore, α is nullhomotopic. �

We now proceed to prove the other difficult part of Theorem 15, namely
the part which characterizes the image of the embedding π1(|Γ|)→ F∞. To
explain this, we need some terminology. First, given a word w : S → A,
we say that a subword w � S′ : S′ → A is monotonic if S′ is infinite and
we can write S′ := {s0, s1, s2, . . . , } where either s0 < s1 < s2 < · · · or
s0 > s1 > s2 > · · · . We say that the monotonic subword w � S′ of w
converges if there exists an end end(r) of |Γ| such that, whenever we choose
xn ∈ w(sn), the sequence (xn) converges to end(r). It is very easy to see
that, for any loop α in |Γ| based at p, every monotonic subword of the word
wα converges.

Proposition 4.3 (Part of [DS11a], Theorem 15). Suppose that the word
w : S → A has the property that all its monotonic subwords converge. Then
there exists a loop α so that w = wα.
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Proof. We fix Λ and T ′ as above. As in the proof of the previous proposition,
we consider the hyperfinite word w∗ � S0, where S0 ⊆ S is the set of all s ∈ S
so that φ(w(s)) is a chord of T ′. As in the case of finite graphs, w∗ � S0

corresponds to an internal loop β in Λ based at p obtained by alternately
concatenating chords of T ′ (given by ϕ(e) for e running through the letters
of w∗ � S0) and injective paths in T ′.

Claim: β crosses each edge of Γ ⊆ Λ finitely many times.

For the moment, suppose that the Claim holds. As we have done several
times, we consider ρ : N∗ → N∗, where ρ(ξ) is the the number of edges at
distance at most ξ from the basepoint p that β crosses, counted with multi-
plicity. The claim implies that ρ(n) ∈ N for n ∈ N. We then reparameterize
β in such a way that intervals in its domain corresponding to crossing an
edge at distance ξ have length 2−ξρ(ξ) (and such crossings are performed
linearly). Consider the path α defined by α(t) = st(β(t)) if st(β(t)) is de-
fined, while α(t) is the end corresponding to ψ(β(t)) otherwise (we are using
Lemma 3.3). Arguments identical to those earlier in the paper show that α
is a loop in |Γ| based at p and that w = wα, as we desired.
Proof of Claim: We must show that β crosses e finitely many times.
This is easily seen to be the case if e = ϕ(e0) is a chord of T (notice that
e0 is unique). Indeed, we then have that e0 and e−1

0 appear only finitely
many times in w, for otherwise, by Ramsey’s theorem, there would exist a
monotonic subword w � S′ of w such that w(s) ∈ {e0, e

−1
0 } for all s ∈ S′;

it is clear that w � S′ does not converge. Consequently, e0 and e−1
0 appear

in w∗ � S0 only finitely many times, whence β crosses e only finitely many
times.

We now suppose that e ∈ T and further suppose, towards a contradiction,
that e is crossed infinitely many times by β. First observe that T ′ \ e̊ has
two components, say T1 and T2. For later purposes, notice that ϕ maps the
connected components of T ∗ \ e̊ to T1 and T2. Given a chord of T ′, we will
say it is of type (i, j), where i, j ∈ {1, 2}, if its initial point is in Ti and
its final point is in Tj . Moreover, we say that a chord c of T ∗ is of type
(i, j) if ϕ(c) is a chord of T ′ of type (i, j). We can then find a hyperfinite
sequence s0, s1, . . . , sξ, where si ∈ S∗ and ξ > N, so that going in T ′ from
the final point of ϕ(w(si)) to the initial point of ϕ(w(si+1)) requires crossing
e, whence w(si) is of type (∗, k) and w(si+1) is of type (l, †), where k 6= l.
Notice that going in T ∗ from the final point of w(si) to the initial point of
w(si+1) also requires crossing e. Indeed, if the unique path in T ∗ connecting
the final point of w(si) to the initial point of w(si+1) did not pass through e,
then after applying ϕ, we would see that, since ϕ acts identically on Γ, the
unique path in T ′ connecting the final point of w(si) to the initial point of
w(si+1) does not pass through e. It remains to note that the unique paths in
T ∗ and T ′ connecting the final point of w(si) to the initial point of w(si+1)
agree on Γ.
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We say that a subword of w(s0)w(s1) · · ·w(sξ) is uniform if either every
w(si) has type (1, 2) or every w(si) has type (2, 1), and we say that it is
alternating if whenever w(si) is of type (1, 1) (resp. (2, 2)), then w(si+1) is
of type (2, 2) (resp. (1, 1)).

We claim that there is an infinite, hyperfinite subword of w(s0)w(s1) · · ·w(sξ)
that is either uniform or alternating. Indeed, either the subword consisting
of chords of type (1, 2) is infinite or the subword consisting of chords of
type (2, 1) is infinite, or else the subword obtained by removing all chords of
type (1, 2) and (2, 1) is infinite and hyperfinite. We may thus suppose that
w(s0)w(s1) · · ·w(sξ) is either uniform or alternating.

Thus, by transfer, there exist arbitrarily long finite subwords w � S′ that
are either uniform for e or alternating for e. If we have arbitrarily long finite
uniform subwords, then we have an infinite uniform subword obtained by
taking the union of the finite subwords. After applying Ramsey’s theorem,
we have an infinite, monotonic subword of w such that all letters correspond
to an edge with an endpoint in T1 and an endpoint in T2. Such a subword
does not converge to an end as every end has a neighborhood that is disjoint
from one of the components of T \ e̊ (for otherwise T contains a circle).

Suppose instead that we have arbitrarily long finite alternating subwords.
Let S1 ⊆ S be the set of all s ∈ S so that w(s) has type either (1, 1)
or (2, 2), and let S′1 be the set of all maximal intervals of S1 that do not
contain any s with w(s) of type (2, 2). It is readily checked that S′1 inherits
a total order from S1. Also, under our assumption on alternating subwords,
it is infinite. In particular, by Ramsey’s theorem, there exists a monotonic
subword w � {s′0, . . . } so that for each letter s′i we have that w(s′i) has type
(1, 1), and between s′i and s′i+1 there exists some element of S of type (2, 2).
By inserting such elements once again we find a monotonic subword of w
such that there are infinitely many endpoints of chords in T1 and infinitely
many endpoints of chords in T2, and we can conclude as above. �

5. Applications

5.1. π1-injectivity. Both of the applications in this subsection rely on ap-
plying the transfer principle to the following

Fact 5.1. If Γ1 is a connected subgraph of the finite, connected graph Γ2,
then the natural map π1(Γ1)→ π1(Γ2) is injective.

To see this, take a spanning tree T 1 of Γ1 and extend it to a spanning tree
T 2 of Γ2. Using these spanning trees in the combinatorial characterization
of π1(Γ1) and π1(Γ2) yields the aforementioned result.

Proposition 5.2. For any locally finite graph Γ, the inclusion Γ′ → |Γ| is
π1-injective for every subgraph Γ′ of Γ.

Proof. Let α be a non-trivial loop in Γ′. Then α is non-trivial in a finite
connected subgraph ∆ of Γ. Hence θ(α) = α is non-trivial in ∆∗ and we can
conclude because the inclusion ∆∗ → Γhyp is π1-injective by Fact 5.1. �
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Proposition 5.3 ([DS11a], Corollary 16). Suppose that Γ1 is a connected
subgraph of the locally finite, connected graph Γ2. Then the inclusion ι :
Γ1 → Γ2 induces an injective map ι∗ : π1(|Γ1|)→ π1(|Γ2|).

Proof. Let {∆i} be the collection of all internally connected components of
(Γ1)∗ ∩

(
(Γ2)∗\B̊Γ2(p, ν)

)
. Let ϕ : (Γ1)∗ → Λ be the map that collapses

each ∆i to a point and let ψ : Λ→ Γ1
hyp be the map which further collapses

the rest of the internal path components of (Γ1)∗ \BΓ1(p, ν) to points. Since
ψ ◦ ϕ = θ1 (the usual collapsing map for (Γ1)∗), we see that Φ|π1(|Γ1|) is
injective. We have a natural map ιhyp : Λ → Γ2

hyp induced by ι, namely
ιhyp(ϕ(x)) = θ2(ι(x)). This map satisfies (ιhyp)∗ ◦Φ = Θ2 ◦ ι∗ at the level of
the fundamental groups, as can easily be checked. It thus suffices to show
that ιhyp is π1-injective. Towards this end, consider the graph Λ′ obtained
from Λ by identifying x, y ∈ Λ if ιhyp(x) = ιhyp(y). Notice that if x 6= y and
ιhyp(x) = ιhyp(y), then x and y correspond to subgraphs ∆ix ,∆iy contained
in the same connected component of (Γ2)∗\B̊Γ2(p, ν). In particular, Λ′ is
obtained from Λ by identifying pairs of vertices, so that the natural map
Λ→ Λ′ is π1-injective. Also, Λ′ is a subgraph of Γ2

hyp, so that the conclusion
follows from Fact 5.1. �

We should remark that the proof of the preceding result appearing in
[DS11a] uses the nontrivial fact that every closed, connected subspace of
|Γ| is arc-connected; our proof avoids using this nontrivial result and is
essentially an application of the transfer principle and our construction.

Notice that the proposition implies, as in [DS11a, Corollary 18], that
π1(|Γ|) is free is and only if every end has a contractible neighborhood (such
ends are called trivial). Namely, if all ends are trivial, then |Γ| is homotopy
equivalent to a finite graph, whereas if |Γ| contains a non-trivial end, then
it contains a subgraph Γ′ with exactly one non-trivial end. The compactifi-
cation of Γ′ is homotopy equivalent to the Hawaiian Earring and hence its
fundamental group, which is contained in π1(|Γ|), is not free [CC00, Hig52].

5.2. Homology. Recall that the first homology group (with coefficients in
Z) H1(G) of the group G is its abelianization, i.e. the quotient of G by the
subgroup [G,G] generated by commutators of elements of G. The commu-
tator length of g ∈ G is defined to be infinite if g /∈ [G,G], while it is the
minimal integer n so that g can be written as the product of n commutators
if g ∈ [G,G].

As usual, let Γ be a connected locally finite graph, and let θ : |Γ|∗ → Γhyp

be the map we defined in Section 3.

Lemma 5.4. If the loop α is null-homologous, i.e. it represents 0 ∈ H1(π1(|Γ|)),
then θ(α) has finite commutator length as an element of π1(Γhyp).

Proof. Let g ∈ π1(|Γ|) be the element represented by α and let f : G →
H1(G) be the natural map. If f(g) = 0, then we can write g as the product
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of, say, n commutators. As Θ : π1(|Γ|) → π1(Γhyp) is a group homomor-
phism, we have that Θ(g) can be written as a product of n commutators as
well. �

The lemma can be used to find “unexpected” non-null-homologous loops,
as the commutator length of elements of a free group can be computed, see
[GT79] and below. For example, it is shown in [DS10, Section 6] that, among
others, the following loop α in the infinite ladder, see Figure 4 below, is not
null-homologous (this loop is the same as the loop ρ as in [DS12, Figure
5.3]). The reason why this is interesting, as explained in the introduction,
is that the fact that this loop is not null-homologous implies that the usual
singular homology for |Γ| is different from the topological cycle space of |Γ|.

Figure 4. The three parts of α

α is based at v0, travels through e1, e2 . . . until it reaches the end, comes
back at the top traveling in T , then loops around the first square in the
clockwise direction, moves in T , loops around the second square and so on
until it reaches the end. Then, it comes back at the top of the ladder staying
in T . If the ladder was finite, an analogous loop would be null-homologous
as, for each i, the sum of the exponents of the occurrences of ei is 0.

Let us show that α is not null-homologous using Lemma 5.4. First, let us
recall how commutators length can be computed [GT79]. Let w be a word on
the letters x±1

1 , . . . , x±1
n representing an element in the commutator subgroup

of the free group with free basis x1, . . . , xn. The sum of the exponents of
each letter is 0, so that we can choose a pairing P of occurrences of letters
with opposite exponent. The circle graph associated to such a pairing is a
circle C with vertices for each letter of w and appearing in the same cyclic
order, together with edges {ei} joining paired letters.

We can associate to such a graph a matrix MP whose ij−th entry is 1 if ei
and ej are linked, meaning that the endpoints of ei lie in different connected
components of C\∂ej , and is 0 otherwise (diagonal elements are 0). It turns
out that the commutator length of w is the minimum, over all pairings P, of
rank(MP)/2, where MP is regarded as a matrix with coefficients in Z/2Z.

If we choose the spanning tree for Γhyp as in Figure 3, then θ(α) represents
the word e1 . . . eνe

−1
1 . . . e−1

ν (notice in particular that θ(α) is internally null-
homologous, as for each i the sum of the exponents of the occurrences of ei is
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Figure 5. Circle graph associated to the unique pairing for
w = x1x2x3x

−1
1 x−1

2 x−1
3

0). It follows from the discussion above, in view of the fact that there is only
one possible pairing, that the commutator length of such a word coincides
with rank(Mν)/2, where Mν is the ν × ν matrix whose diagonal elements
are 0 and whose non-diagonal elements are 1. It is easy to show inductively
that, for n ∈ N, the matrix Mn defined analogously to Mν , regarded as a
matrix with coefficients in Z, has determinant (−1)n−1 · (n−1) (subtracting
from the first column of Mn the sum of the other columns divided by n− 2
yields a matrix where the only non-zero element in the first column is the
top entry and is −(n−1)/(n−2)). Consequently, if n is even, then the rank
of Mn is n. If n is odd, then since Mn−1 is a minor of Mn, we have that the
rank of Mn is n − 1. Thus, the commutator length of e1 · · · eνe−1

1 · · · e−1
ν is

rank(Mν)/2 = bν/2c > N and, by Lemma 5.4, α is not null-homologous.
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Remarks 5.5.

(1) There are two versions of the topological cycle space, one with co-
efficients in Z/2Z, the other one with coefficients in Z. According
to [Die10a][DS10, Theorem 5], a loop α gives rise to the trivial ele-
ment of the topological cycle space if and only if it traverses every
edge an even number of times in the first case, or it traverses every
edge the same number of times in both directions in the second case.
It is readily seen that this happens if and only if θ(α) is trivial in
H1(Γhyp,Z/2Z) in the first case, and in H1(Γhyp,Z) in the second
case.

(2) Observe that in the above argument, we did not use that Θ was
injective. This fact is compatible with the standard proof that α
is not nullhomologous appearing in [DS10] as the injectivity of the
corresponding map π1(|Γ|)→ F∞ was not used either.

(3) It is interesting to note that for any loop α : [0, 1] → |Γ|, if Θ(α)
is internally nullhomotopic, then α is nullhomotopic, while the cor-
responding statement for homology is not true, as witnessed by the
above discussion.

(4) In [Die10b], a proof is given that the finite version of the loop α
discussed above (called ρ there) is nullhomologous. Their proof for
the finite version is more topological than our algebraic proof and
they remark “But we cannot imitate this proof for ρ and our infinite
ladder L, because homology classes in H1(|G|) are still finite chains:
we cannot add infinitely many boundaries to subdivide ρ infinitely
often.” In our opinion, this kind of quote is exactly the kind of
thought process that makes nonstandard methods so powerful.
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