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Abstract. We study thorn forking and rosiness in the context of con-
tinuous logic. We prove that the Urysohn sphere is rosy (with respect
to finitary imaginaries), providing the first example of an essentially
continuous unstable theory with a nice notion of independence. In the
process, we show that a real rosy theory which has weak elimination of
finitary imaginaries is rosy with respect to finitary imaginaries, a fact
which is new even for classical real rosy theories.

1. Introduction

In classical model theory, thorn forking independence was defined by Tom
Scanlon, and investigated by Alf Onshuus and then by the first author as
a common generalization of forking independence in stable theories and (all
known) simple theories as well as the independence relation in o-minimal
theories given by topological dimension. More generally, a theory T is called
rosy if thorn independence is a strict independence relation for T eq. If T
is rosy, then thorn independence is the weakest notion of independence for
T eq. It thus follows that all simple theories and o-minimal theories are rosy.
It is the purpose of this paper to define and investigate thorn independence
and rosiness in the context of continuous logic.

Continuous logic is a generalization of first-order logic which is suited for
studying structures based on complete metric spaces, called metric struc-
tures. Moreover, one has continuous versions of nearly all of the notions and
theorems from classical model theory. In particular, stable theories have
been studied in the context of continuous logic; see [8]. Nearly all of the
“essentially continuous” theories that were first studied in continuous logic
are stable, e.g. infinite-dimensional Hilbert spaces, atomless probability al-
gebras, Lp-Banach lattices, and richly branching R-trees; see [6] and [9].
Here, “essentially continuous” is a vague term used to eliminate classical
first-order structures, viewed as continuous structures by equipping them
with the discrete metric, from the discussion. One can also make sense
of the notion of a continuous simple theory; see [5], where the notion of
simplicity is studied in the more general context of compact abstract the-
ories. However, there are currently no “natural” examples of an essentially
continuous, simple, unstable theory and all attempts to produce an essen-
tially continuous, simple, unstable theory have failed. For example, adding
a generic automorphism to almost all known essentially continuous stable
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theories (e.g. infinite-dimensional Hilbert spaces, structures expanding Ba-
nach spaces, probability algebras) yields a theory which is once again stable;
this result appears to be folklore and has not appeared anywhere in the lit-
erature. Another failed attempt involves taking the Keisler randomization
of a (classical or continuous) simple, unstable theory. More precisely, either
a Keisler randomization is dependent (in which case, if it is simple, then it
is stable) or it is not simple; see [3]. In this paper, we will give an exam-
ple of an essentially continuous theory which is not simple but is rosy (with
respect to finitary imaginaries), namely the Urysohn sphere, providing the
first example of an essentially continuous theory which is unstable and yet
possesses a nice notion of independence.

There are many natural ways of defining thorn independence for contin-
uous logic, yielding many notions of rosiness. The approach which shares
the most features with the classical notion is the geometric approach, where
one defines thorn-independence to be the independence relation one obtains
from the relation of algebraic independence after forcing base monotonicity
and extension to hold; this is the approach to thorn independence taken by
Adler in [1]. This notion of thorn independence in continuous logic has the
new feature that finite character is replaced by countable character, which
should not be too surprising to continuous model theorists as the notions of
definable and algebraic closure also lose finite character in favor of count-
able character in the continuous setting. In order to salvage finite character,
we present alternative approaches to thorn independence, yielding notions
of rosiness for which we do not know any essentially continuous unstable
theories that are rosy.

We now outline the structure of the paper. In Section 2, we describe some
of our conventions concerning continuous logic as well as prove some facts
concerning the extensions of definable functions to elementary extensions.
These latter facts have yet to appear in the literature on continuous logic
and will only be used in Section 5 in an application of the rosiness of the
Urysohn sphere to definable functions. In Section 3, we introduce the geo-
metric approach to thorn independence and prove some basic results about
this notion. In Section 4, we discuss weak elimination of finitary imaginaries
and prove that a continuous real rosy theory which has weak elimination of
finitary imaginaries is rosy with respect to finitary imaginaries. In particu-
lar, this shows that a classical real rosy theory which has weak elimination of
imaginaries is rosy, a fact that has yet to appear in the literature on classical
rosy theories. In Section 5, we prove that the Urysohn sphere is real rosy
and has weak elimination of finitary imaginaries, whence we conclude that
it is rosy with respect to finitary imaginaries. In Section 6, we introduce
other notions of thorn independence and develop properties of these various
notions. In Section 7, we show that if T is a classical theory for which the
Keisler randomization TR of T is strongly rosy, then T is rosy; here strongly
rosy is one of the alternative notions of rosiness defined in Section 6.
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We assume that the reader is familiar with the rudiments of continuous
logic; otherwise, they can consult the wonderful survey [6]. For background
information on rosy theories, one can consult [13] and [1]. All terminology
concerning independence relations will follow [1].

We would like to thank Itaï Ben Yaacov and Ward Henson for helpful
discussions involving this work.

2. Model Theoretic Preliminaries

In this section, we establish some conventions and notations as well as
gather some miscellaneous model-theoretic facts. First, let us establish a
convention concerning formulae. All formulae will have their variables sepa-
rated into three parts: the object variables, the relevant parameter variables,
and the irrelevant parameter variables, so a formula has the form ϕ(x, y, z),
where x is a multivariable of object variables, y is a multivariable of relevant
parameter variables, and z is a multivariable of irrelevant parameter vari-
ables. This distinction will becomes useful in our discussion of thorn-forking,
for often only some of the parameter variables are allowed to vary over a type-
definable set. While this distinction is usually glossed over in classical logic,
we make a point of discussing it here as the metric on countable tuples is
sensitive to the presentation of the tuple. For ease of exposition, we make
the following further convention. When considering a formula ϕ(x, y, z), we
may write ϕ(x, b) to indicate that b is a y-tuple being substituted into ϕ
for y and we do not care about what parameters are being plugged in for z.
When using this convention, if b′ is another y-tuple, then ϕ(x, b′) will denote
the formula obtained from ϕ(x, y, z) by substituting b′ for y and the same
tuple for z as in ϕ(x, b). Finally, let us say that we maintain the conventions
of this paragraph for definable predicates as well.

We will use the following metrics on cartesian products. Suppose that
(Mi, di)i<ω are metric spaces. For two finite tuples x = (x0, . . . , xn) and
y = (y0, . . . , yn) from

∏
i≤nMi, we set d(x, y) = maxi≤n di(xi, yi). For two

countably infinite tuples x = (xi | i < ω) and y = (yi | i < ω) from∏
i<ωMi, we set d(x, y) :=

∑
i 2−id(xi, yi). Further suppose that L is a

bounded continuous signature. Define the signature Lω to be the signature
L together with new sorts for countably infinite products of sorts of L. We
define the metric on these new sorts as above. We also include projection
maps: if (Si | i < ω) is a countable collection of sorts of L, we add function
symbols πS,j :

∏
i Si → Sj to the language for each j < ω. Each L-structure

expands to an Lω-structure in the obvious way.
For any r ∈ R>0 and any x ∈ [0, 1], we set r � x := max(rx, 1). Also, for

x, y ∈ R>0, we set x−. y := max(x− y, 0).
In all but the last section of this paper, L denotes a fixed bounded con-

tinuous signature. For simplicity, let us assume that L is 1-sorted and the
metric d is bounded by 1. We also fix a complete L-theory T and a monster
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modelM for T . We let κ(M) denote the saturation cardinal forM and we
say that a parameterset is small if it is of cardinality < κ(M).

If ϕ(x) is anM-definable predicate, then we set Z(ϕ(x)) to be the zeroset
of ϕ(x), that is, Z(ϕ(x)) = {a ∈Mx | ϕ(a) = 0}. Likewise, if p(x) is a type,
we write Z(p(x)) =

⋂
{Z(ϕ(x)) | “ϕ(x) = 0” ∈ p}.

Let us briefly recall the eq-construction for continuous logic. Suppose that
ϕ(x, y) is a definable predicate, where x is a finite tuple of object variables
and y is a countable tuple of parameter variables. Then in Meq, there is
a sort Sϕ whose objects consist of canonical parameters of instances of ϕ.
Formally, Sϕ = My/(dϕ = 0), where dϕ is the pseudometric on My given
by

dϕ(a, a′) := sup
x
|ϕ(x, a)− ϕ(x, a′)|.

(Ordinarily, one has to take the completion ofMy/(dϕ = 0), but the satura-
tion assumption onM guarantees that this metric space is already complete.)
As in classical logic, one also adds appropriate projection maps to the lan-
guage. For more details on the eq-construction in continuous logic, including
axiomatizations of T eq, see Section 5 of [8]. In the case when ϕ(x, y) is a
finitary definable predicate, that is, when y is finite, we say that the elements
of Sϕ are finitary imaginaries. We letMfeq denote the reduct ofMeq which
retains only sorts of finitary imaginaries. If a ∈ Meq and b is an element of
the equivalence class corresponding to a, we write π(b) = a. If A ⊆ Meq

and B ⊆M, we write π(B) = A to indicate the fact that the elements of B
are representatives of classes of elements of A.

The remainder of this section will be devoted to understanding exten-
sions to M of definable functions on small elementary submodels of M;
this material will only be used at the end of Section 5. Suppose that M
is a small elementary submodel of M, A ⊆ M is a set of parameters, and
P : Mn → [0, 1] is a predicate definable in M over A. Then there exists
a unique predicate Q : Mn → [0, 1] definable in M over A which has P
as its restriction to Mn; see [6], Proposition 9.8. The predicate Q satisfies
the additional property that (M,P ) � (M, Q). We call Q the natural ex-
tension of P to M. Now suppose that f : Mn → M is A-definable, where
A ⊆ M . Let P : Mn+1 → [0, 1] be the A-definable predicate d(f(x), y).
Let Q : Mn+1 → [0, 1] be the natural extension of P to Mn+1. Then,
since (M,P ) � (M, Q), the zeroset of Q defines the graph of a function
g :Mn →M. Moreover, g is A-definable and extends f . (See [6], Proposi-
tion 9.25) We call g the natural extension of f toMn.

In Lemma 2.3 below, we seek to show that under certain mild saturation
assumptions, the natural extension of f to Mn can preserve some of the
properties of f . First, we need two lemmas, the first of which is a general-
ization of [6], Proposition 7.14.

Lemma 2.1. Suppose M is a small elementary submodel of M and P,Q :
Mn → [0, 1] are predicates definable in M . Suppose that either of the follow-
ing two conditions hold:
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(i) M is ω1-saturated, or
(ii) M is ω-saturated and P is definable over a finite set of parameters

from M .
Then the following are equivalent:

(1) For all a ∈Mn, if P (a) = 0, then Q(a) = 0.
(2) For all ε > 0, there is δ > 0 such that for all a ∈ Mn, (P (a) ≤ δ ⇒

(Q(a) < ε).
(3) There is an increasing, continuous function α : [0, 1] → [0, 1] with

α(0) = 0 such that Q(a) ≤ α(P (a)) for all a ∈Mn.

Proof. We only need to prove the direction (1) ⇒ (2), as the direction
(2) ⇒ (3) follows immediately from Proposition 2.10 in [6] and the direc-
tion (3) ⇒ (1) is trivial. Suppose that P (x) is the uniform limit of the
sequence (ϕm(x) | m ≥ 1) and Q(x) is the uniform limit of the sequence
(ψm(x) | m ≥ 1), where each ϕm(x) and ψm(x) are formulae with pa-
rameters from M . If condition (ii) in the statement of the lemma holds,
then we further assume that the parameters from each of the ϕn’s are
contained in some finite subset of M . Moreover, we may assume that
|P (x) − ϕm(x)|, |Q(x) − ψm(x)| ≤ 1

m for each m ≥ 1 and each x ∈ Mn.
Now suppose (2) fails for some ε > 0. Then for every m ≥ 1, there is
am ∈ Mn such that P (am) ≤ 1

m and Q(am) ≥ ε. Let k ≥ 1 be such that
ε > 3

k .
Claim: The collection of conditions

Γ(x) := {ψk(x) ≥ 2
k
} ∪ {ϕm(x) ≤ 2

m
| m ≥ 1}

is finitely satisfiable.
Proof of Claim: Consider m1, . . . ,ms ≥ 1. Set m′ := max(m1, . . . ,ms).
Then ψk(am′) ≥ Q(am′) − 1

k ≥
2
k and, for each i ∈ {1, . . . , s}, we have

ϕmi(am′) ≤ P (am′) + 1
mi
≤ 1

m′ + 1
mi
≤ 2

mi
.

By the claim and either of assumptions (i) or (ii), we have a ∈Mn realizing
Γ(x). Then Q(a) ≥ ψk(a) − 1

k ≥
1
k . Also, P (a) ≤ ϕm(x) + 1

m ≤
3
m for

all m ≥ 1, whence P (a) = 0. Thus, (2) fails, finishing the proof of the
lemma. �

The import of the above lemma is the following. Working in the notation
of the lemma, suppose that P and Q satisfy (1) and either (i) or (ii) holds.
Suppose P ′ and Q′ denote the natural extensions of P and Q toMn. Then
it follows that, for all a ∈ Mn, P ′(a) = 0 ⇒ Q′(a) = 0. This is because (1)
is equivalent to (3), which can be expressed by a formula in the signature
of the structure (M,P,Q). Since (M,P,Q) � (M, P ′, Q′), we have that (3)
holds with P ′ and Q′ replacing P and Q. This in turn implies that (1) holds
with P ′ and Q′ replacing P and Q.

Lemma 2.2. Suppose M is a small ω-saturated elementary submodel ofM
and A ⊆ M is countable. Let f : Mn → M be an A-definable function and
let g :Mn →M be the natural extension of f toMn. Let R : M2n → [0, 1]
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be the predicate defined by R(a, b) = d(f(a), f(b)) for all a, b ∈Mn, which is
definable in M over A. Let S : M2n → [0, 1] be the natural extension of R
toM2n. Then S(a, b) = d(g(a), g(b)) for all a, b ∈Mn.

Proof. Let (ϕm(x, y) | m ≥ 1) be a sequence of formulae with parameters
from A converging uniformly to the predicate P (x, y) := d(f(x), y). Fur-
ther assume that |P (x, y) − ϕm(x, y)| ≤ 1

m for all (x, y) ∈ Mn+1 and all
m ≥ 1. Note that if (a, c), (b, d) ∈ Mn+1 are such that ϕm(a, c), ϕm(b, d) ≤
1
m , then |R(a, b) − d(c, d)| ≤ 4

m . By Lemma 2.1, we have that for all
(a, c), (b, d) ∈ Mn+1, if ϕm(a, c), ϕm(b, d) ≤ 1

m , then |S(a, b)− d(c, d)| ≤ 4
m .

It remains to show that ϕm(a, g(a)), ϕm(b, g(b)) ≤ 1
m for each m ≥ 1.

However, this follows from the fact that Q(a, g(a)) = Q(b, g(b)) = 0 and
|Q(x, y)− ϕm(x, y)| ≤ 1

m for all (x, y) ∈Mn+1 and all m ≥ 1. �

Lemma 2.3. Suppose M is a small elementary submodel ofM and A ⊆M
is countable. Let f : Mn →M be an A-definable function and let g :Mn →
M be the natural extension of f toMn.

(1) Suppose M is ω-saturated and f is an isometric embedding. Then g
is also an isometric embedding.

(2) Suppose that either:
(a) M is ω1-saturated, or
(b) M is ω-saturated and A is finite.
Further suppose that f is injective. Then g is injective.

Proof. Define the predicates R and S as in Lemma 2.2.
(1) Fix ε > 0. Then for all a, b ∈Mn, we have

|d(a, b)− ε| = 0⇒ |R(a, b)− ε| = 0.

By Lemma 2.1, we have, for all a, b ∈Mn,

|d(a, b)− ε| = 0⇒ |S(a, b)− ε| = 0.

It follows that g is an isometric embedding.
(2) Since f is injective, we know that, for all a, b ∈ Mn, if R(a, b) = 0,

then d(a, b) = 0. By Lemma 2.1, for all a, b ∈Mn, we have

S(a, b) = 0⇒ d(a, b) = 0.

It follows that g is injective. �

3. Basic Properties of Thorn-Forking

In classical logic, there are two ways of defining thorn-independence: a
“geometric” definition and a “formula” definition. Since the geometric defi-
nition immediately makes sense in continuous logic, we shall use it to define
thorn-independence for continuous logic. Afterwards, we explain an equiva-
lent formula definition.
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Notation: For any sets X,Y with X ⊆ Y , we set

[X,Y ] := {Z | X ⊆ Z ⊆ Y }.

We borrow the following definitions from Adler [1] to define thorn-independence
in the continuous setting.

Definition 3.1. Let A,B,C be small subsets ofMeq.
(1) We write A |M^C

B if and only if for any C ′ ∈ [C, acl(BC)], we have
acl(AC ′) ∩ acl(BC ′) = acl(C ′).

(2) We write A |þ^C
B if and only if for any B′ ⊇ B, there is A′ ≡BC A

with A′ |M^C
B′.

For the sake of the reader who has not seen the above definitions, let us
take a moment to motivate them. One of the most natural ternary rela-
tions amongst small subsets of the monster model is the relation of “alge-
braic independence,” namely A is algebraically independent from B over C
if acl(AC)∩ acl(BC) = acl(C). This relation is not always an independence
relation as it may fail to satisfy base monotonicity. The relation |M^ is an
attempt to force base monotonicity to hold. However, |M^ may fail to satisfy
extension, that is, nonforking extensions to supersets may not exist. Thus,
|þ^ is introduced in order to force extension to hold.
In [1], Adler shows that the relation |M^ (for classical theories) satisfies: in-

variance, monotonicity, base monotonicity, transitivity, normality, and anti-
reflexivity. These properties persist for |M^ in continuous logic. In classical
logic, |M^ also satisfies finite character, whereas in continuous logic, |M^ sat-
isfies countable character : If A0 |M^C

B for every countable A0 ⊆ A, then
A |M^C

B. The proof of this is the same as in [1], using the fact that if
b ∈ acl(A), then there is a countable A0 ⊆ A such that b ∈ acl(A0). Adler
shows that |þ^ satisfies invariance, monotonicity, base monotonicity, transi-
tivity, normality, and anti-reflexivity; these properties remain true for |þ^ in
continuous logic. In [1], it is also shown that |þ^ has finite character pro-
vided |M^ has finite character and |þ^ has local character. Using Morley
sequences indexed by ω1 instead of ω, Adler’s arguments show that, in con-
tinuous logic, |þ^ satisfies countable character provided |M^ satisfies countable
character and |þ^ satisfies local character.

In Remark 4.1 of [1], it is shown that, in classical logic, if |̂ is any strict
independence relation, then |̂ ⇒ |þ^. This proof does not use finite charac-
ter and so remains true in continuous logic. Let us summarize this discussion
with the following theorem, where a countable independence relation is an
independence relation satisfying countable character instead of finite char-
acter.

Theorem 3.2. The relation |þ^ is a strict countable independence relation
if and only if it has local character if and only if there is a strict countable
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independence relation at all. If |þ^ is a strict countable independence relation,
then it is the weakest.

Definition 3.3. T is said to be rosy if |þ^ satisfies local character. T is
said to be real rosy (resp. rosy with respect to finitary imaginaries)
if |þ^ satisfies local character when restricted to the real sorts (resp. sorts of
finitary imaginaries).

Corollary 3.4. Simple continuous theories are rosy.

Proof. If T is simple, then dividing independence is a strict independence
relation for T eq. �

Corollary 3.5. If T is a classical theory viewed as a continuous theory, then
T is rosy as a classical theory if and only if T is rosy with respect to finitary
imaginaries as a continuous theory.

Proof. This follows from the fact that Meq (in the classical sense) is the
same asMfeq and, for A ⊆ Mfeq, the algebraic closure of A is the same in
either structure. �

We next seek to provide a formula definition for thorn-independence.
First, we will need some definitions.

Definition 3.6. Suppose that B is a small subset ofMeq and c is a countable
tuple fromMeq.

(1) We let Ind(c/B) denote the set of B-indiscernible sequences of real-
izations of tp(c/B).

(2) If I ∈ Ind(c/B), let d(I) := d(c′, c′′) for any c′, c′′ ∈ I.
(3) We let χ(c/B) := max{d(I) | I ∈ Ind(c/B)}.

Remarks 3.7. Suppose that B and D are small subsets ofMeq and c is a
countable tuple fromMeq.

(1) If B ⊆ D, then χ(c/D) ≤ χ(c/B).
(2) Lemma 4.9 in [8] shows that χ(c/B) = 0 if and only if tp(c/B) is

algebraic.
(3) Since the metric on countably infinite tuples is sensitive to the enu-

meration of the tuple, it is possible that if c is countably infinite and
c′ is a rearrangement of c, then χ(c/B) may not equal χ(c′/B). How-
ever, χ(c/B) = 0 if and only if χ(c′/B) = 0 as a tuple is algebraic
over B if and only if each component of the tuple is algebraic over
B.

Definition 3.8. Suppose ϕ(x, y) is a formula, ε > 0, c is a countable tuple
fromMeq, and B is a small subset ofMeq.

(1) We say that ϕ(x, c) strongly ε-k-divides over B if:
• ε ≤ χ(c/B), and
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• whenever c1, . . . , ck |= tp(c/B) satisfy d(ci, cj) ≥ ε for all
1 ≤ i < j ≤ k, we have

|= inf
x

max
1≤i≤k

ϕ(x, ci) = 1.

(2) We say that ϕ(x, c) strongly ε-divides over B if it strongly ε-k-
divides over B for some k ≥ 1.

(3) We say that ϕ(x, c) strongly ε-k-divides over B in the naïve
sense if:
• ε ≤ χ(c/B), and
• whenever c1, · · · , ck |= tp(c/B) satisfy d(ci, cj) ≥ ε for all

1 ≤ i < j ≤ k, we have, for every a ∈Mx, that

max
1≤i≤k

ϕ(a, ci) > 0.

We say that ϕ(x, c) strongly ε-divides over B in the naïve sense
if it strongly ε-k-divides over B in the naïve sense for some k ≥ 1.

Using our conventions from above, when saying that ϕ(x, c, d) strongly ε-
divides over B, we only consider B-conjugates of c which are ε-apart; d must
remain fixed. The next proposition is the key link between the geometric
and formula definitions of thorn-independence.

Proposition 3.9. Let A and C be small parametersets fromMeq and let b
be a countable tuple fromMeq. Then the following are equivalent:

(1) b ∈ acl(AC) \ acl(C);
(2) b /∈ acl(C) and for every ε with 0 < ε ≤ χ(b/C), there is a formula

ϕε(x, b) such that the condition “ϕε(x, b) = 0” is in tp(A/bC) and
such that ϕε(x, b) strongly ε-divides over C in the naïve sense.

(3) b /∈ acl(C) and for every ε with 0 < ε ≤ χ(b/C), there is a formula
ϕε(x, b) such that the condition “ϕε(x, b)” is in tp(A/bC) and such
that ϕε(x, b) strongly ε-divides over C.

Proof. (1) ⇒ (2): Suppose that (2) fails. If b ∈ acl(C), then (1) fails.
Assume that b /∈ acl(C). We aim to show that b /∈ acl(AC). We argue
as in the proof of Lemma 2.1.3(4) in [13]. By assumption, there is ε with
0 < ε ≤ χ(b/C) such that ϕ(x, b) doesn’t strongly ε-divide over C in the
naïve sense for any formula ϕ(x, b) such that the condition “ϕ(x, b) = 0” is
in tp(A/bC). Let p(X, y) := tp(A, b/C) and q(y) := tp(b/C).
Claim: The set of (Leq)ω-conditions

Γ(X, (yi)i<ω) :=
⋃
i<ω

p(X, yi) ∪
⋃
i<ω

q(yi) ∪ {d(yi, yj) ≥ ε | i < j < ω}

is satisfiable.
It is enough to prove that, for any ϕ(x, y) for which the condition “ϕ(x, b) =

0” is in p(X, b) and any n < ω, we have

{max
i≤n

ϕ(x, yi) = 0} ∪
⋃
i≤n

q(yi) ∪ {d(yi, yj) ≥ ε | i < j ≤ n}



10 CLIFTON EALY AND ISAAC GOLDBRING

is satisfiable. Since b /∈ acl(C) and ϕ(x, b) doesn’t strongly ε-divide over
C in the naïve sense, we have b0, . . . , bn |= q such that d(bi, bj) ≥ ε for all
i < j ≤ n and maxi≤n ϕ(c, bi) = 0 for some c. This finishes the proof of the
claim.

Let (A, (bi)i<ω) realize Γ(X, (yi)i<ω). Since A′b0 ≡C Ab, we may assume
A′b0 = Ab. It then follows that b′ |= tp(b/AC) for all i < ω. Since (bi)i<ω
can contain no convergent subsequence, the set of realizations of tp(b/AC)
inMeq cannot be compact, whence b /∈ acl(AC).

(2) ⇒ (3): Suppose (2) holds and fix ε with 0 < ε ≤ χ(b/C). Suppose
ϕε(x, b) is a formula such that the condition “ϕε(x, b) = 0” is in tp(A/bC)
and such that ϕε(x, b) strongly ε-k-divides over C in the naïve sense. By
compactness, we can find r ∈ (0, 1] such that infx maxi<k ϕε(x, bi) ≥ c for all
b0, . . . , bk−1 |= tp(b/C) with d(bi, bj) ≥ ε for all i < j < k. Let ϕ′ε := 1

r �ϕε.
Then the condition “ϕ′ε(x, b) = 0” is in tp(A/bC) and ϕ′ε(x, b) strongly ε-k-
divides over C.

(3) ⇒ (1): Suppose that (3) holds and yet b /∈ acl(AC), i.e. the set X
of realizations of tp(b/AC) in Meq is not compact. Note that X is closed,
and hence complete. It follows that X is not totally bounded, i.e. there
is ε > 0 such that X cannot be covered by finitely many balls of radius ε.
Without loss of generality, we may assume that ε ≤ χ(b/C). Let ϕε(x, b) be
such that the condition “ϕε(x, b) = 0” is in tp(A/bC) and such that ϕε(x, b)
strongly ε-k-divides over C. Choose b1, . . . , bk ∈ X with d(bi, bj) ≥ ε. Then
ϕε(A, bi) = 0 for each i ∈ {1, . . . , k}, contradicting strong ε-k-dividing. �

Motivated by the above proposition, we make the following definitions.

Definition 3.10. Let A,B,C be small subsets ofMeq.
(1) If b is a countable tuple, then tp(A/bC) strongly divides over C

if b ∈ acl(AC) \ acl(C).
(2) tp(A/BC) strongly divides over C if tp(A/bC) strongly divides

over C for some countable b ⊆ B.
(3) If b is a countable tuple, then tp(A/bC) thorn-divides over C if

there is a D ⊇ C such that b /∈ acl(D) and such that, for every ε with
0 < ε ≤ χ(b/D), there is a formula ϕε(x, b) such that the condition
“ϕε(x, b) = 0” is in tp(A/bC) and ϕε(x, b) strongly ε-divides over D.

(4) tp(A/BC) thorn-divides over C if tp(A/bC) thorn-divides over C
for some countable b ⊆ B.

(5) tp(A/BC) thorn-forks over C if there is E ⊇ BC such that every
extension of tp(A/BC) to E thorn-divides over C.

The following is the continuous analog of Theorem 3.3 in [2].

Theorem 3.11. Suppose |I^ is an automorphism-invariant ternary relation
on small subsets ofMeq satisfying, for all small A,B,C,D:

(1) for all countable b, if b ∈ acl(AC) \ acl(C), then A 6 | I^C
b;

(2) if A |I^B
D and B ⊆ C ⊆ D, then A |I^C

D and A |I^B
C;
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(3) if A |I^C
B and BC ⊆ D, then there is A′ ≡BC A such that A′ |I^C

D.
(4) if A |I^C

BC, then A |I^C
B.

Then for all A,B,C, if A |I^C
B, then tp(A/BC) does not thorn-fork over

C.

Proof. Let us first show that thorn-dividing implies I-dependence. Suppose
that tp(A/BC) thorn-divides over C but, towards a contradiction, A |I^C

B.
Let b ⊆ B be countable so that tp(A/bC) thorn-divides over C. We then
have D ⊇ C such that b /∈ acl(D) and for every ε ∈ (0, χ(b/D)], there is a
formula ϕε(x, b) such that the condition “ϕε(x, b) = 0” is in tp(A/bC) and
ϕε(x, b) strongly ε-divides over D.
Claim: D can be chosen so that A |I^C

bD.
By (3), we have A |I^C

BC. By (2), we have A |I^C
bC. By (4), we

have A |I^C
b. By (2), there is a′ ≡bC a such that a′ |I^C

bD. Take σ ∈
Aut(Meq|bC) such that σ(a′) = a. Since a |I^C

bσ(D), σ(D) ⊇ C, and
χ(b/σ(D)) = χ(b/D), we have ϕε(x, b) still strongly ε-divides over σ(D).
This finishes the proof of the claim.

By the Claim and (2), we have A |I^D
bD, and by (4), we have A |I^D

b.
However, by Proposition 3.9, we have b ∈ acl(AD) \ acl(D), so by (1), we
have A 6 | I^D

b, a contradiction.
Now suppose that A |I^C

B. We wish to show that tp(A/BC) does not
thorn-fork over C. Fix E ⊇ BC. By (2), we have A′ ≡BC A such that
A′ |I^C

E. By the first part of the proof, we have tp(A′/E) does not thorn-
divide over C. Since tp(A/BC) has an extension to every superset of BC
which does not thorn-divide over C, it follows that tp(A/BC) does not
thorn-fork over C. �

In establishing the equivalence of the geometric and formula definitions of
thorn-independence, the following technical lemma will be useful.

Lemma 3.12. Suppose that b is countable and tp(A/bC) thorn-divides over
C, witnessed by D ⊇ C. Then we can find D′ ∈ [C,D] witnessing that
tp(A/bC) thorn-divides over C and satisfying |D′ \ C| ≤ ℵ0.

Proof. Fix ε ∈ (0, χ(b/D)]. Choose ϕε(x, b) such that the condition “ϕε(x, b) =
0” is in tp(A/bC) and ϕε(x, b) strongly ε-k-divides over D for some k ≥ 1.
By compactness, there is a finite dε ⊆ D and a formula ψ(y, dε) such that
ψ(b, dε) = 0 and whenever b0, . . . , bk−1 are such that ψ(bi, dε) = 0 and
d(bi, bj) ≥ ε for all i < j < k, we have infx max1≤i≤kε 2 � ϕε(x, bi) = 1.
Let D′ := C ∪

⋃
{dε | ε ∈ (0, χ(c/D)] ∩ Q}. It follows that this D′ has the

desired property. �

A version of the following proposition appears in [1] for classical theories.

Proposition 3.13. Let A and C be arbitrary small subsets of Meq. Let
M be a small elementary submodel of Meq such that C ⊆ M and M is
(|T |+ |C|)+-saturated. Then the following are equivalent:
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(1) A |M^C
M ;

(2) for all C ′ ∈ [C,M ], we have acl(AC ′) ∩M = acl(C ′);
(3) for all C ′ ∈ [C,M ], we have tp(A/M) does not strongly divide over

C ′;
(4) tp(A/M) does not thorn-divide over C.

Proof. (1)⇔ (2) is immediate.
(2) ⇒ (3): Suppose there is C ′ ∈ [C,M ] such that tp(A/M) strongly

divides over C ′. Choose b ⊆ M countable such that tp(A/bC ′) strongly di-
vides over C ′, i.e. b ∈ acl(AC ′)\acl(C ′). Writing b = (bi)i<ω, by Proposition
2.8(2) of [10], there is i < ω such that bi ∈ acl(AC ′) \ acl(C ′), contradicting
(2).

(3) ⇒ (2): Suppose there is C ′ ∈ [C,M ] and b ∈ M such that b ∈
acl(AC ′)\acl(C ′). Then tp(A/bC ′) strongly divides over C ′, whence tp(A/M)
strongly divides over C ′.

(3) ⇒ (4): Suppose that tp(A/M) thorn-divides over C. Choose b ⊆ M
countable such that tp(A/bC) thorn-divides over C. By Lemma 3.12, we
can find a countable d ⊆ Meq such that b /∈ acl(Cd) and for every ε ∈
(0, χ(b/Cd)], there is a formula ϕε(x, b) such that the condition “ϕε(x, b) = 0”
is in tp(A/bC) and ϕε(x, b) strongly ε-divides over Cd. Let d′ ⊆M be such
that d′ ≡bC d; this is possible by the saturation assumption on M . Now
notice that tp(A/bCd′) strongly divides over Cd′, whence tp(A/M) strongly
divides over Cd′, contradicting (3).

(4)⇒ (3): Suppose that there is C ′ ∈ [C,M ] such that tp(A/M) strongly
divides over C ′. Let b ⊆ M be countable such that tp(A/bC ′) strongly di-
vides over C ′. Arguing as in Lemma 3.12, we may find countable d ⊆ C ′

such that tp(A/bCd) strongly divides over Cd. We now show that tp(A/bdC)
thorn-divides over C, whence tp(A/M) thorn-divides over C, finishing the
proof of the proposition. Since the metric on countably infinite tuples is
sensitive to the enumeration of the tuple, we must specify the enumera-
tion of bd. We fix the enumeration bd = (b0, d0, b1, d1, . . .). Notice that if
b′d, b′′d |= tp(bd/Cd), then d(b′d, b′′d) ≤ d(b′, b′′). In particular, this shows
that χ(bd/Cd) ≤ χ(b/Cd). Note also that bd /∈ acl(Cd) as b /∈ acl(Cd).
Fix ε ∈ (0, χ(bd/Cd)]. Let ϕ(x, b) be a formula such that the condition
“ϕ(x, b) = 0” is in tp(A/bCd) and such that ϕ(x, b) strongly ε-k-divides
over Cd for some k ≥ 1; this is possible since tp(A/bCd) strongly di-
vides over Cd. Now suppose b0d, . . . , bk−1d |= tp(bd/Cd) are such that
d(bid, bjd) ≥ ε for all i < j < k. Then d(bi, bj) ≥ ε for all i < j < k, whence
infx maxi<k ϕ(x, bi, d) = 1. Thus, Cd witnesses that tp(a/bdC) thorn-divides
over C. �

Corollary 3.14. For all small A,B,C ⊆Meq, we have A |þ^C
B if and only

if tp(A/BC) does not thorn-fork over C.

Proof. First suppose that tp(A/BC) thorn-forks over C. Let E ⊇ BC be
such that every extension of tp(A/BC) to E thorn-divides over C. Let
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M ⊇ E be a small elementary submodel of Meq which is (|T | + |C|)+-
saturated. Then every extension of tp(A/BC) to M thorn-divides over
C. By Proposition 3.13, we see that A′ 6 |M^C

M for every A′ |= tp(A/BC),
whence A 6 | þ^C

B.
Now suppose that A 6 | þ^C

B. Let E ⊇ BC be such that A′ 6 |M^C
E for every

A′ |= tp(A/BC). LetM ⊇ E be a small elementary submodel ofMeq which
is (|T |+ |C|)+-saturated. Then by monotonicity of |M^, we have A′ 6 |M^C

M for
every A′ |= tp(A/BC). By Proposition 3.13, we see that every extension of
tp(A/BC) toM thorn-divides over C. It follows that tp(A/BC) thorn-forks
over C. �

One can define what it means for a definable predicate Φ(x, b) to strongly
ε-k-divide over a parameterset just as in the case of formulae. A priori,
it appears that we may get a different notion of thorn-forking if we allowed
definable predicates to witness strong dividing. However, this is not the case,
as we now explain. Suppose A and C are small subsets of Meq and b is a
countable tuple fromMeq. Say that tp(A/bC) thorn∗-divides over C if there
is a small D ⊇ C such that b /∈ acl(D) and for every ε with 0 < ε ≤ χ(b/D),
there is a definable predicate Φε(x, b) with parameters from Cb such that
Φε(A, b) = 0 and Φε(x, b) strongly ε-divides over D. For small A,B,C, one
defines what it means for tp(A/BC) to thorn∗-divide over C and thorn∗-fork
over C in the obvious ways.

Lemma 3.15. For small A,B,C, tp(A/BC) thorn∗-divides (-forks) over C
if and only if it thorn-divides (-forks) over C.

Proof. The (⇐) direction is immediate. For the (⇒) direction, suppose
tp(A/BC) thorn∗-divides over C. Let b ⊆ B be a countable tuple such that
tp(A/bC) thorn∗-divides over C, witnessed by D ⊇ C. Fix ε ∈ (0, χ(b/D)].
Let Φε(x, b) be a definable predicate with parameters from Cb such that
Φε(A, b) = 0 and Φε(x, b) strongly ε-divides overD. Let ϕ̃ε(x, b) be an L(Cb)-
formula such that supx |Φε(x, b)−ϕ̃ε(x, b)| ≤ 1

4 . Let ϕε(x, b) := 4�(ϕ̃ε(x, b)−.
1
2). Note that ϕ̃ε(A, b) ≤ 1

4 , whence ϕε(A, b) = 0. It remains to show that
ϕε(x, b) strongly ε-divides over D. Suppose Φε(x, b) strongly ε-k-divides
over D. Let b1, . . . , bk |= tp(b/D) be ε-apart. Fix e ∈ (Meq)x. Choose
i ∈ {1, . . . , k} such that Φε(e, bi) = 1. For this i, we have ϕ̃ε(e, bi) ≥ 3

4 , so
ϕ̃ε(e, bi)−. 1

2 ≥
1
4 , whence ϕε(e, bi) = 1. �

Let us end this section with the definition of superrosiness, which is meant
to mimic the definition of supersimplicity for continuous logic.

Definition 3.16. Suppose that T is rosy. Then we say that T is superrosy
if for any finite tuple a from Meq, any small B ⊆ Meq, and any ε > 0,
there is a finite tuple c which is similar to a and a finite B0 ⊆ B such that
d(a, c) < ε and c |þ^B0

B.
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4. Weak Elimination of Finitary Imaginaries

In this section, we discuss what it means for a continuous theory to weakly
eliminate finitary imaginaries. We then show that a real rosy (continuous)
theory which weakly eliminates finitary imaginaries is rosy with respect to
finitary imaginaries. In fact, our proof will show that in classical logic, a
real rosy theory which admits weak elimination of imaginaries is rosy, which
is a fact that, to our knowledge, has not yet appeared in the literature on
classical rosy theories.

The following lemma is the continuous analog of the discussion on weak
elimination of imaginaries from [14], pages 321-323.

Lemma 4.1. The following conditions are equivalent:
(1) For every finitary definable predicate ϕ(x, a) with real parameters,

there is a finite tuple c fromM such that:
• ϕ(x, a) is a c-definable predicate, and
• if B is a real parameterset for which ϕ(x, a) is also a B-definable
predicate, then c ∈ acl(B).

(2) For every finitary definable predicate ϕ(x, a) with real parameters,
there is a finite tuple c fromM such that:
• ϕ(x, a) is a c-definable predicate, and
• if d is a finite tuple from M for which ϕ(x, a) is also a d-
definable predicate, then c ∈ acl(d).

(3) For every finitary definable predicate ϕ(x, a) with real parameters,
there is a definable predicate P (x, c), c a finite tuple from M, such
that ϕ(x, a) ≡ P (x, c) and the set

{c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}
is compact.

(4) For every finitary imaginary e ∈Mfeq, there is a finite tuple c from
M such that e ∈ dcl(c) and c ∈ acl(e).

Proof. (1) ⇒ (2) is trivial. (2) ⇒ (3): Fix a finitary definable predicate
ϕ(x, a) and let c be as in (2) for ϕ(x, a). Let P (x, c) be a c-definable predicate
for which ϕ(x, a) ≡ P (x, c). We claim that this P (x, c) is as desired. Set

X := {c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}.
Let p(c) := tp(c/∅). Then X = p(M) ∩ Z(supx |ϕ(x, a)− P (x, z)|), whence
X is closed and hence complete. Suppose that X is not compact. It follows
that X is not totally bounded. Choose ε > 0 such that X cannot be covered
by finitely many balls of radius ε. By the Compactness Theorem, it follows
that X cannot be covered by a small number of balls of radius ε. Since acl(c)
is the union of a small number of sets, each of which can be covered by finitely
many balls of radius ε, it follows that X * acl(c). Let c′ ∈ X \ acl(c). Take
σ ∈ Aut(M) such that σ(c′) = c. Set c′′ := σ(c). Since P (x, c) ≡ P (x, c′),
we have P (x, c′′) ≡ P (x, c), whence ϕ(x, a) is defined over c′′. It follows that
c ∈ acl(c′′). However, applying σ−1, we get c′ ∈ acl(c), a contradiction.
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(3)⇒ (4): Let e ∈Mfeq be a finitary imaginary. Let ϕ(x, y) be a finitary
definable predicate such that e is the canonical parameter for ϕ(x, a). Let
P (x, c) be as in (3) for ϕ(x, a). We claim that c is the desired tuple. First
suppose that σ ∈ Aut(Mfeq|c). Then

ϕ(x, a) ≡ P (x, c) ≡ P (x, σ(c)) ≡ ϕ(x, σ(a)),

whence σ(e) = e. It follows that e ∈ dcl(c). Now suppose that σ ∈
Aut(Mfeq|e). Then P (x, c) ≡ ϕ(x, a) ≡ ϕ(x, σ(a)) ≡ P (x, σ(c)). This
implies that

Y := {σ(c) | σ ∈ Aut(Mfeq|e)} ⊆ X := {c′ | c′ ≡ c and ϕ(x, a) ≡ P (x, c′)}.
Since X is compact and Y is closed (it is the set of realizations of tp(c/e)),
it follows that Y is compact, i.e. that c ∈ acl(e).

(4)⇒ (1): Let ϕ(x, a) be a finitary definable predicate and let e ∈ Mfeq

be a canonical parameter for ϕ(x, a). Let c be a finite tuple from M such
that e ∈ dcl(c) and c ∈ acl(e). We claim that this c is as desired. Suppose
σ ∈ Aut(M|c). Then σ(e) = e, whence ϕ(x, a) ≡ ϕ(x, σ(a)). Thus, ϕ(x, a)
is defined over c. Now suppose that ϕ(x, a) is defined over B. Let σ ∈
Aut(M|B). Then ϕ(x, a) ≡ ϕ(x, σ(a)), i.e. σ(e) = e. It follows that
e ∈ dcl(B), and since c ∈ acl(e), we have c ∈ acl(B). �

Definition 4.2. Say that T has weak elimination of finitary imaginar-
ies if any of the equivalent conditions of the previous lemma hold.

The following lemma is the continuous analog of a classical lemma due
to Lascar. The classical version can be used to show that the theory of the
infinite set has weak elimination of imaginaries. We will use it in the next
section to show that the theory of the Urysohn sphere has weak elimination
of finitary imaginaries.

Lemma 4.3. Suppose the following two conditions hold:
(1) There is no strictly decreasing sequence A0 ) A1 ) A2 ) . . ., where

each An is the real algebraic closure of a finite set of real elements.
(2) If A and B are each the real algebraic closure of a finite subset ofM

and ϕ(x, a) is a finitary definable predicate which is defined over A
and also defined over B, then ϕ(x, a) is defined over A ∩B.

Then T has weak elimination of finitary imaginaries.

Proof. Let ϕ(x, a) be a finitary definable predicate. We will verify condition
(2) of Lemma 4.1 for T . By (1), there is a finite tuple c such that ϕ(x, a)
is defined over c and ϕ(x, a) is not defined over any finite tuple c′ such that
acl(c′) ( acl(c). Now suppose that ϕ(x, a) is defined over the finite tuple d.
We must show that c ∈ acl(d). By (2), ϕ(x, a) is defined over c ∩ d. By the
choice of c, we must have acl(c∩d) = acl(c) which implies that c ∈ acl(d). �

We now aim to show that a real rosy theory which has weak elimination
of finitary imaginaries is rosy with respect to finitary imaginaries. We first
need a simplifying lemma.
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Lemma 4.4. Suppose that A is a set of finitary imaginaries and A 6 | þ^C
D,

where C ⊆ D. Then B 6 | þ^C
D where B is a set of real elements for which

π(B) = A.

Proof. First suppose that B |M^C
D. We show that A |M^C

D. Let C ′ ∈
[C, acl(D)]. Then

acl(BC ′) ∩ acl(DC ′) = acl(C ′).
Since A ⊆ dcl(B), we have

acl(AC ′) ∩ acl(DC ′) ⊆ acl(BC ′) ∩ acl(DC ′) = acl(C ′).

This shows that A |M^C
D.

Now suppose that B |þ^C
D. Let E ⊇ D. Then there is B′ ≡D B such

that B′ |M^C
E. By the first part of the proof, we have π(B′) |M^C

E. Since
π(B′) ≡D A, we see that A |þ^C

D. �

Notation: Suppose that T has weak elimination of finitary imaginaries. For
a finitary imaginary e, we let l(e) denote a real tuple such that e ∈ dcl(l(e))
and l(e) ∈ acl(e). We refer to l(e) as a weak code for e. For a set of finitary
imaginaries E, we let l(E) :=

⋃
{l(e) | e ∈ E}.

Lemma 4.5. Suppose that T has weak elimination of finitary imaginaries.
Suppose B ⊆ M and D ⊆ Mfeq are small. Further suppose that C ⊆ D is
such that B 6 | þ^C

D. Then B 6 | þ^ l(C)
l(D) (in the real sense).

Proof. We first show that if B |M^ l(C)
l(D), then B |M^C

D. Suppose that
C ′ ∈ [C, acl(D)]. Then l(C ′) ∈ [l(C), l(acl(D))] ⊆ [l(C), acl(l(D))]. Since
B |M^C

D, we have

acl(Bl(C ′)) ∩ acl(l(D)l(C ′)) = acl(l(C ′)).

It follows that

acl(BC ′) ∩ acl(DC ′) ⊆ acl(Bl(C ′)) ∩ acl(l(D)l(C ′)) = acl(l(C ′)) ⊆ acl(C ′).

This proves that B |M^C
D.

Now suppose that B |þ^ l(C)
l(D). Suppose E ⊇ D. Then since l(E) ⊇

l(D), there is B′ ≡l(D) B with B′ |M^ l(C)
l(E). By the first part of the proof,

we have B′ |M^C
E. Since D ⊆ dcl(l(D)), we have that B′ ≡D B, proving

that B |þ^C
D. �

Remark 4.6. The first part of the proof of Lemma 4.5 only used that T had
geometric elimination of finitary imaginaries, that is, for every e ∈ Mfeq,
there is a finite tuple l(e) from M such that e and l(e) are interalgebraic.
Perhaps a more careful analysis of the second part of the proof could yield
that Lemma 4.5 holds under the weaker assumption of geometric elimination
of finitary imaginaries. Also, in the above proof, we never used the fact that
each weak code is finite. In fact, if κ(M) is regular and each weak code



THORN-FORKING IN CONTINUOUS LOGIC 17

is small, then for a small D ⊆ Meq, l(D) will also be small and the above
lemma will hold in this case as well.

Theorem 4.7. Suppose that T has weak elimination of finitary imaginaries
and is real rosy. Then T is rosy with respect to finitary imaginaries.

Proof. Let A ⊆Mfeq. We need a cardinal κ(A) such that for anyD ⊆Mfeq,
there is C ⊆ D with |C| ≤ κ(A) and A |þ^C

D. Let B ⊆ M be such that
π(B) = A. Set κ(A) := κ(B), where κ(B) is understood to be the cardinal
that works for B when only considering thorn-forking in the real sense; κ(B)
exists by real rosiness. Suppose, towards a contradiction, that A 6 | þ^C

D for
all C ⊆ D with |C| ≤ κ(A). Then B 6 | þ^C

D for all C ⊆ D with |C| ≤ κ(A)
by Lemma 4.4. By Lemma 4.5, we have B 6 | þ^ l(C)

l(D) for all C ⊆ D with
|C| ≤ κ(B). Now suppose that E ⊆ l(D) is such that |E| ≤ κ(B). Let
C ⊆ D be such that E ⊆ l(C) and |C| ≤ κ(B). Then B 6 | þ^E

l(D) by base
monotonicity. This contradicts the definition of κ(B), proving the theorem.

�

Remark 4.8. Say that T admits weak elimination of imaginaries if, for
every a ∈ Meq, there is a countable tuple b from M such that b ∈ dcl(a)
and a ∈ acl(b). The above line of reasoning shows that if T is real rosy and
has weak elimination of imaginaries, then T is rosy.

Corollary 4.9. Suppose that T is real superrosy and has weak elimination
of finitary imaginaries. Then T is superrosy with respect to finitary imagi-
naries.

Proof. Let a ∈Mfeq and B ⊆Mfeq be small. Let ε > 0 be given. Let a′ be
a tuple from M be such that π(a′) = a. Let δ > 0 be such that whenever
d(x, y) < δ, then d(π(x), π(y)) < ε. Since T is real superrosy, there is a
tuple c′ from M such that d(a′, c′) < δ and a finite C ⊆ l(B) such that
c′ |þ^C

l(B). By base monotonicity, we may assume that C = l(B0) for some
finite B0 ⊆ B. By Lemma 4.5, we have that c′ |þ^B0

B. Let c = π(c′). By
Lemma 4.4, we have that c |þ^B0

B. By choice of c′, we have that d(a, c) < ε,
completing the proof of the corollary. �

5. The Urysohn Sphere

In this section, we present an example of an “essentially” continuous theory
which is rosy (with respect to finitary imaginaries) but not simple, namely
the theory of the Urysohn sphere. Before proving the main results of this
section, let us set up notation and recall some facts about the model theory
of the Urysohn sphere.

Definition 5.1. The Urysohn sphere is the unique (up to isometry) Pol-
ish metric space of diameter ≤ 1 which is universal (that is, every Polish
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metric space of diameter ≤ 1 can be isometrically embedded into it) and
ultrahomogeneous (that is, any isometry between finite subsets of it can be
extended to an isometry of the whole space).

We let U denote the Urysohn sphere. We let LU denotes the continuous
signature consisting solely of the metric symbol d, which is assumed to have
diameter bounded by 1. We let TU denote the LU-theory of U and we let U
denote a monster model for TU. We now collect some basic model theoretic
facts about the Urysohn sphere, which appear to have been known for a
while. Proofs of these facts can be found in [15].

Facts 5.2 (Henson).
(1) TU is ℵ0-categorical.
(2) TU admits quantifier-elimination.
(3) TU is the model completion of the empty L-theory and is the theory

of existentially closed metric spaces of diameter bounded by 1.

Another fact about the Ursyohn sphere is that the algebraic closure op-
erator is trivial. Once again, this fact has been known for a while, but we
include here a proof given to us by Ward Henson.

Fact 5.3 (Henson). For every small A ⊆ U, we have acl(A) = Ā.

Proof. The inclusion Ā ⊆ acl(A) is true in any structure. Now suppose
b /∈ Ā. Let d(b, A) denote inf{d(b, a) | a ∈ A}, a positive number. Consider
the following collection p(xi | i < ω) of closed L(A)-conditions:

{d(xi, a) = d(b, a) | a ∈ A, i < ω} ∪ {d(xi, xj) = 2� d(b, A) | i < j < ω}.

It is easy to verify that these conditions define a metric space, whence p can
be realized in U, say by (bi | i < ω). By quantifier elimination, tp(b/A)
is determined by {d(b, a) | a ∈ A}. It follows that bi |= tp(b/A) for each
i < ω. Since (bi | i < ω) can contain no convergent subsequence, we see that
b /∈ acl(A). �

As the above facts indicate, there appears to be an analogy between the
theory of the infinite set in classical logic and the theory of the Urysohn
sphere in continuous logic. However, there is a serious difference between
the two theories. In classical logic, the theory of the infinite set is ω-stable,
whereas TU is not even simple. This fact was first observed by Anand Pillay
and we provide here a proof communicated to us by Bradd Hart.

Theorem 5.4. TU is not simple.

Proof. Suppose A is a small set of elements from U which are all mutually
1
2 -apart. Let p(x) be the unique 1-type over A determined by the conditions
{d(x, a) = 1

4 | a ∈ A}. It suffices to show that p divides over any proper
closed subset B of A. Indeed, suppose B ( A is closed and a ∈ A\B. Then,
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since a /∈ acl(B), we can find (ai | i < ω) ∈ Ind(a/B) such that d(ai, aj) = 1
for all i < j < ω. Indeed, the set of conditions

Γ(xi | i < ω) := {d(xi, b) =
1
2
| i < ω, b ∈ B} ∪ {d(xi, xj) = 1| i < j < ω}

is finitely satisfiable, and hence realized in U. By quantifier elimination in
TU, we have (ai | i < ω) ∈ Ind(a/B). We now see that {d(x, ai) = 1

4 | i < ω}
is inconsistent, whence the formula d(x, a) = 1

4 divides over B. �

Remark 5.5. There are a few more model-theoretic facts about TU that are
known but have not yet appeared in the literature. First, since the random
graph is a “subspace” of U, we see that TU is an independent theory (in a
rather strong sense). Berenstein and Usvyatsov have observed that TU has
SOP3. Also, Usvyatsov has shown that TU does not have the strict order
property.

We now aim to prove that TU is real rosy. Until further notice, the inde-
pendence relations |M^ and |þ^ will be restricted to the real sorts. Suppose
that A,B,C are small subsets of U. Then:

A |M^
C

B ⇔ for all C ′ ∈ [C,B ∪ C](A ∪ C ′) ∩ (B ∪ C ′) = C ′)

⇔ for all C ′ ∈ [C,B ∪ C](A ∩B ⊆ C ′)
⇔ A ∩B ⊆ C.

Lemma 5.6. In TU, |M^ satisfies extension, i.e. |M^ = |þ^.

Proof. Since |M^ satisfies invariance, monotonicity, transitivity, normality,
and symmetry, by Remark 1.2(3) of [1], it suffices to check that |M^ satis-
fies full existence, that is, for any small A,B,C ⊆ U, we can find A′ ≡C A
such that A′ |M^C

B. Let A,B,C ⊆ U be small. Without loss of generality,
we may assume that A,B,C are closed. Indeed, suppose we find A′′ ≡C B

with A′′ |M^C
B. Let A′ ⊆ A′′ correspond to A, so A′′ = A′. Then this A′ is

as desired.
Let (ai | i ∈ I) enumerate A \ C. For each i ∈ I, set

εi := inf{d(ai, c) | c ∈ C} > 0.

Let p(X,C) := tp(A/C), where X = (xi | i ∈ I ′), I ⊆ I ′, and (xi | i ∈ I)
corresponds to the enumeration of A \C. Let (bj | j ∈ J) enumerate B \C.
For i ∈ I and j ∈ J , set δi,j := max(d(ai, bj), εi). Set

Σ := Σ(X) := p(X,C) ∪ {|d(xi, bj)− δi,j | = 0 | i ∈ I, j ∈ J}.

Claim: Σ is satisfiable.
Proof of Claim: Let S := {xi | i ∈ I} ∪B ∪C. Let ρ : S2 → R be defined
as follows:
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• ρ � (B ∪ C)2 = d � (B ∪ C)2;
• ρ(xi1 , xi2) = d(ai1 , ai2) for all i1, i2 ∈ I;
• ρ(xi, bj) = δi,j for all i ∈ I and all j ∈ J ;
• ρ(xi, c) = d(ai, c) for all i ∈ I.

It suffices to show that (S, ρ) is a metric space. Indeed, suppose that Σ0 ⊆ Σ
is finite. Let S0 ⊆ S be finite such that the parameters and variables occuring
in Σ0 are from S0. Since (S0, ρ) is a finite metric space of diameter bounded
by 1, it is isometrically embeddable in U. By the strong homogeneity of
U, we may assume that the embedding ι : S0 → U is such that ι(y) = y
for all y ∈ S0 ∩ (B ∪ C). Let X0 ⊂ X be the variables appearing in S0.
Since TU admits quantifier elimination, it follows that ι(X0) realizes Σ0. By
compactness, Σ is satisfiable.

In order to check that (S, ρ) is a metric space, we must show that, for any
s1, s2, s3 ∈ S, we have ρ(s1, s2) ≤ ρ(s1, s3) + ρ(s2, s3). We distinguish this
into cases, depending on what part of S the si’s come from. For example,
Case ABC is the case when s1 ∈ X, s2 ∈ B \ C, and s3 ∈ C. There are 15
cases for which there is either no A or no B; these cases are trivially true.
Let us turn our attention to the remaining 12 cases.

Consider Case ACB=Case CAB. We must show that ρ(xi, c) ≤ ρ(xi, b) +
ρ(b, c). However, we have ρ(xi, c) = d(ai, c) ≤ d(ai, b) + d(b, c) ≤ ρ(xi, b) +
ρ(b, c). It is easily verified that this same argument handles Cases BCA,
CBA, BBA, and AAB.

Next consider Case ABC=Case BAC. We need to show that ρ(xi, b) ≤
ρ(xi, c) + ρ(c, b) = d(ai, c) + d(c, b). If ρ(xi, b) = d(ai, b), then the result is
clear. Otherwise ρ(xi, b) = εi ≤ d(ai, c), and the result is once again clear.

Next consider Case ABB=Case BAB. We need to show that ρ(xi, b) ≤
ρ(xi, b′) + ρ(b, b′). If ρ(xi, b) = d(ai, b), then we have ρ(xi, b) = d(ai, b) ≤
d(ai, b′) + d(b, b′) ≤ ρ(xi, b′) + ρ(b, b′). Otherwise, ρ(xi, b) = εi ≤ ρ(xi, b′),
and the inequality once again holds.

Finally, consider Case ABA=Case BAA. We need to show that ρ(xi1 , b) ≤
ρ(xi1 , xi2) + ρ(xi2 , b). Set r := ρ(xi1 , xi2) = d(ai1 , ai2). First suppose that
ρ(xi1 , b) = d(ai1 , b). Then ρ(xi1 , b) = d(ai1 , b) ≤ r + d(ai2 , b) ≤ r + ρ(xi2 , b).
Now suppose that ρ(xi1 , b) = εi. To handle this case, we need to first observe
that εi1 ≤ r+εi2 . Indeed, let c ∈ C be arbitrary. Then d(ai1 , c) ≤ r+d(ai2 , c).
It follows that d(ai1 , c) ≤ d + εi2 . Since εi1 ≤ d(ai1 , c), we have that εi1 ≤
r + εi2 . But now ρ(xi1 , b) = εi1 ≤ r + εi2 ≤ r + ρ(xi2 , b). This finishes the
proof of this case as well as the proof of the claim.

By the Claim, we can find A′ |= Σ(X). We claim that this A′ is as desired.
Indeed, suppose that e ∈ (A′ ∩B) \C. Let i ∈ I be such that e corresponds
to xi. Then 0 = d(e, e) = d(xi, e) ≥ εi > 0, a contradiction. �

Theorem 5.7. TU is real rosy.
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Proof. We must show that |þ^ satisfies local character. By the previous
lemma, this amounts to showing that |M^ satisfies local character. Let A
and B be small subsets of U. For each x ∈ A ∩B, let Bx ⊆ B be countable
such that x ∈ Bx. Let C :=

⋃
{Bx | x ∈ A ∩ B}. Then A ∩ B ⊆ C, i.e.

A |M^C
B. Since |C| ≤ |A| · ℵ0, |M^ has local character. �

Corollary 5.8. TU is real superrosy.

Proof. Let a ∈ Un, B ⊆ U small, and ε > 0. Write a = (a1, . . . , an). Fix
i ∈ {1, . . . , n}. If ai ∈ acl(B) = B, set ci to be an element of B such that
d(ai, ci) < ε. If ai /∈ acl(B), set ci := ai. Let c = (c1, . . . , cn) ∈ Mn. Let
B0 = {c1, . . . , cn}∩B. Then c |þ^B0

B, finishing the proof of the corollary. �

In order to prove that TU has weak elimination of finitary imaginaries, we
will need the following fact due to Julien Melleray.

Fact 5.9 ([12]). Let A and B be finite subsets of U. Let G := Aut(U|A∩B)
and H := the subgroup of G generated by Aut(U|A) ∪ Aut(U|B). Then H
is dense in G with respect to the topology of pointwise convergence.

Lemma 5.10. TU has weak elimination of finitary imaginaries.

Proof. We verify properties (1) and (2) of Lemma 4.3 for TU. Since real
algebraic closures of finite subsets of U are finite, property (1) is clear. We
now verify (2). Let A and B be finite subsets of U. Let ϕ(x) be a finitary
definable predicate which is defined over A and defined over B. We must
show that ϕ(x) is defined over A∩B. Once again, let G = Aut(U|A∩B) and
H = the subgroup of G generated by Aut(U|A) ∪ Aut(U|B). Fix a ∈ Ux.
Note that if τ ∈ H, then ϕ(τ(a)) = ϕ(a). Now suppose that τ ∈ G. By Fact
5.9, there is a sequence (τi | i < ω) from H such that τi(a)→ τ(a). Since ϕ
is continuous, we have ϕ(τ(a)) = limϕ(τi(a)) = ϕ(a). Since a was arbitrary,
this shows that ϕ(τ(x)) ≡ ϕ(x). Since τ ∈ G was arbitrary, we have that
ϕ(x) is defined over A ∩B, completing the proof of the lemma. �

Corollary 5.11. TU is rosy with respect to finitary imaginaries.

Proof. This is immediate from Theorem 4.7, Theorem 5.7, and Lemma 5.10.
�

Corollary 5.12. TU is superrosy with respect to finitary imaginaries.

Proof. This is immediate from Corollary 4.9, Corollary 5.8, and Lemma 5.10.
�

We end this section with an application of the fact that TU is real rosy.
For p ∈ S(A), one defines Uþ(p) as in classical model theory. If X is an A-
definable set, one defines Uþ(X) := sup{Uþ(a/A) | a ∈ X}. If Uþ(X) < ω,
then there is a ∈ X such that Uþ(X) = Uþ(a/A). The Lascar inequalities
for Uþ-rank also hold in this context.
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Proposition 5.13. Suppose f : Mn → M is an injective A-definable
function, where A ⊆ Meq is small. Suppose that Uþ(M) < ω. Then
Uþ(Mn) ≤ Uþ(f(Mn)).

Proof. Let a ∈ Mn be such that Uþ(Mn) = Uþ(a/A). Let b := f(a). Then
since a and b are interdefinable over A, we have, by the Lascar inequal-
ities, that Uþ(b/A) = Uþ(ab/A) = Uþ(a/A). Consequently, we see that
Uþ(Mn) = Uþ(a/A) = Uþ(b/A) ≤ Uþ(f(Mn)). �

Define Uþ
real and U

þ
feq to be the foundation rank of |þ^ when restricted to the

real sorts and finitary imaginary sorts respectively. The previous proposition
continues to hold when Uþ is replaced by Uþ

real or U
þ
feq.

Lemma 5.14. For each n > 0, we have Uþ
real(U

n) = n.

Proof. We prove this by induction on n. First suppose that n = 1. Let p
be the unique element of S1(∅). Since p is consistent, we have Uþ(p) ≥ 0.
Let a |= p. Since tp(a/a) þ-forks over ∅, we see that Uþ

real(p) ≥ 1. Suppose
Uþ

real(p) ≥ 2. Then there would be b and A such that Uþ
real(b/A) ≥ 1 and

tp(b/A) þ-forks over ∅, i.e. b ∈ Ā. Since b ∈ acl(A), tp(b/A) cannot have
a þ-forking extension, contradicting Uþ

real(b/A) ≥ 1. Thus Uþ
real(p) = 1 for

the unique type in S1(∅), whence Uþ(U) = 1. Now suppose that n > 1.
Let a ∈ Un−1 be such that Uþ

real(U
n−1) = Uþ

real(a/∅). Let b ∈ U be such
that b does not equal any of the coordinates of a. Then a |þ^ b, so by the
Lascar inequalities, Uþ

real(ab) = Uþ
real(a) + Uþ

real(b) = (n − 1) + 1 = n. It
follows that Uþ

real(U
n) ≥ n. However, for any c ∈ Un−1 and d ∈ U, we

have Uþ
real(cd) ≤ Uþ

real(c/d) ⊕ Uþ
real(d) ≤ n, whence Uþ

real(U
n) ≤ n. Thus,

Uþ
real(U

n) = n. �

Corollary 5.15. For each n > 0, we have Uþ
feq(Un) = n.

Proof. To prove the corollary, it suffices to show that, for any a ∈ Un, we
have Uþ

feq(a/∅) ≤ Uþ
real(a/∅). However, this follows immediately from Lemma

4.5. �

By the universality property of the Urysohn sphere, we have that, for
n > 1, Un isometrically embeds into U. The next corollary shows that this
cannot be done definably.

Corollary 5.16.
(1) For any n ≥ 2, there does not exist a definable isometric embedding

f : Un → U.
(2) For any n ≥ 2, there does not exist an A-definable injective function

f : Un → U, where A ⊆ U is finite..

Proof. In either case, if such an f existed, then by Lemma 2.3, the natural
extension g : Un → U of f to Un would be injective. By Proposition 5.13,
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we would have

n = Uþ
real(U

n) ≤ Uþ
real(g(Un)) ≤ Uþ

real(U) = 1,

a contradiction. �

Ward Henson has a more elementary proof that, assuming κ(U) > 2ℵ0 ,
there can be no definable, injective function f : Un → U for any n ≥ 2. It
suffices to treat the case n = 2, as if n > 2, we specify the extra coordinates
arbitrarily in U, getting a definable injective function U2 → U. Let A be a
closed separable set on which f is definable. For any a ∈ U2, we have f(a) ∈
dcl(Aa) = Aa. So, if f(a) /∈ A, then f(a) equals one of the coordinates of a.
Since f is injective, |f−1(A)| ≤ 2ℵ0 . Let S be a continuum sized subset of U
such that f−1(A) ⊆ S2. Then on (U \ S)2, the function f is always equal to
one of its coordinates. Let F ⊆ U \ S have cardinality 2. Then |f(F 2)| ≤ 2.
However, since f is injective, |f(F 2)| = 4. This contradiction proves that
such an f could not exist.

6. Other Notions of Thorn-forking

In this section, we discuss other natural ways of defining thorn-forking in
continuous logic and show that they also yield well-behaved independence
relations. Throughout this section, we work inMeq.

Definition 6.1. Let ϕ(x, y) be a formula.
(1) We say that ϕ(x, c) maximally strongly divides over B if it

strongly χ(c/B)-divides over B.
(2) We say that ϕ(x, c) maximally þ-divides over B if there is D ⊇ B

so that ϕ(x, c) maximally strongly divides over D.
(3) We say that the partial type π(x) (in possibly infinitely many vari-

ables) maximally þ-forks over B if there is a cardinal λ < κ(M)
and formulae ϕi(x, ci), i < λ < κ(M), such that each ϕi(x, ci) max-
imally þ-divides over B and such that

Z(π(x)) ⊆
⋃
i<λ

Z(ϕi(x, ci)).

(4) We say that A |mþ
^C

B if tp(A/BC) does not maximally þ-fork over
C.

(5) We say that ϕ(x, c) maximally strongly divides over B in the
naïve sense if it strongly χ(c/B)-divides over B in the naïve sense.
One can then define maximally þ-dividing in the naïve sense
and maximally þ-forking in the naïve sense in the obvious way.

Lemma 6.2. For every A,B,C, we have A |mþ
^C

B if and only A |mþ
^C

B in
the naïve sense.

Proof. The backwards direction being obvious, suppose A 6 |mþ
^C

B in the naïve
sense. Choose formulae ϕi(x, ci), i < λ, and parameter sets Di, i < λ, each
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containing C, such that each ϕi(x, ci) strongly χ(ci/Di)-ki-divides over Di

in the naïve sense, and such that

Z(tp(A/BC)) ⊆
⋃
i<λ

Z(ϕi(x, ci)).

By saturation, for each i < λ we can find ηi > 0 such that for any ci1, . . . , ciki
realizing tp(ci/Di) which are at least χ(ci/Di)-apart, we have

inf
x

max
1≤j≤ki

ϕi(x, cij) ≥ ηi.

Let ψi(x, ci) := 1
ηi
�ϕi(x, ci). Then Z(ψi(x, ci)) = Z(ϕi(x, ci)) and ψi(x, ci)

maximally strongly divides over Di, whence we can conclude that A 6 |mþ
^C

B.
�

Lemma 6.3. A partial type π(x) maximally þ-forks over B if and only
if there exists n > 0 and formulae ϕi(x, ci), i = 1, . . . , n, each of which
maximally þ-divides over B, such that Z(π(x)) ⊆

⋃n
i=1Z(ϕi(x, ci)).

Proof. Suppose Z(π(x)) ⊆
⋃
i<λZ(ψi(x, ci)), where each ψi(x, ci) maximally

strongly divides over Di ⊇ B. By compactness, we have i1, . . . , in < λ such
that

Z(π(x)) ⊆
n⋃
j=1

Z(ψij (x, cij )−.
1
2

).

But then the formulae ϕj(x, cij ) := 2ψij −. 1 maximally strongly divide over
Di and Z(π(x)) ⊆

⋃n
j=1Z(ϕj(x, cij )). �

Lemma 6.4. Suppose p ∈ S(C). Then p maximally þ-forks over B if and
only if there exists an L(C)-formula ϕ(x, c) such that the condition “ϕ(x, c) =
0” is in p and there exists formulae ϕi(x, ci), i = 1, . . . , n, each of which
maximally þ-divide over B, such that Z(ϕ(x, c)) ⊆

⋃n
i=1Z(ϕi(x, ci)).

Proof. This is proven in the exact same way as in the proof of Lemma 6.3. �

Lemma 6.5.
(1) If the formula ϕ(x, c) maximally strongly divides over B, then it di-

vides over B.
(2) Suppose A |̂

C
B. Then A |mþ

^C
B.

Proof. (1)⇒(2) follows from Lemma 6.3, so we need only prove (1). However
any I ∈ Ind(c/B) with d(I) = χ(c/B) witnesses that ϕ(x, c) divides over
B. �

Lemma 6.6. Suppose the formula ϕ(x, c) maximally þ-divides over B, wit-
nessed by maximal strong dividing over D ⊇ B. Then there exists a finite
tuple d ∈ D so that the formula 2 � ϕ(x, c) maximally strongly divides over
Bd. Consequently, a partial type π(x) maximally þ-forks over B if and only
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if there exists ϕi(x, ci), i = 1, . . . , n, and finite tuples d1, . . . , dn, so that each
ϕi(x, ci) maximally strongly divides over Bdi and such that

Z(π(x)) ⊆
n⋃
i=1

Z(ϕi(x, ci))).

Proof. Let p(x) := tp(c/D) and r := χ(c/D). Let k be such that ϕ(x, c)
maximally strongly r-k-divides over D. Then the collection of formulae

p(y1) ∪ . . . ∪ p(yk) ∪ {d(yi, yj) ≥ r |1 ≤ i < j ≤ k} ∪ {inf
x

max
1≤i≤k

ϕ(x, yi) ≤
1
2
}

is inconsistent. Hence we have a formula ψ(x,B, d), where d is a finite tuple
from D \B, such that the condition “ψ(x,B, d) = 0” is in tp(c/D) and such
that, for all c1, . . . , ck ∈ Z(ψ) which are pairwise at least r-apart, we have
infx max1≤i≤k ϕ(x, ci) > 1

2 . Since χ(c/Bd) ≥ χ(c/D) = r, it follows that
2� ϕ(x, c) maximally strongly divides over Bd.

�

Remark 6.7. The proof of the above lemma also shows that, like in classical
logic, the “k-inconsistency” in the maximal strong dividing of ϕ(x, c) over B
is witnessed by the zeroset of a single formula ψ(x) with parameters from B
for which ψ(c) = 0; see Remark 2.1.2 in [13] for the statement of this in the
classical setting.

Proposition 6.8. Suppose A,B,C,D are small parameter sets. The follow-
ing properties of |mþ

^ hold in any theory:
(1) Automorphism Invariance: For any automorphism σ, if A |mþ

^C
B,

then σ(A) |mþ
^σ(C)

σ(B).

(2) Extension: If B ⊆ C ⊆ D and A |mþ
^B

C, then there is A′ ≡C A such
that A′ |mþ

^B
D.

(3) Monotonicity: If B ⊆ C ⊆ D and A |mþ
^B

D, then A |mþ
^C

D.
(4) Partial Right Transitivity: If B ⊆ C ⊆ D and A |mþ

^B
D, then A |mþ

^C
D

and A |mþ
^B

C.
(5) Finite Character: A |mþ

^C
B if and only if a |mþ

^C
b for all finite tuples

a and b from A and B respectively.
(6) Base Extension: If A |mþ

^C
B, there is D′ ≡BC D such that A |mþ

^CD′
B.

(7) If C ⊆ B, we have A |mþ
^C

B if and only if A |mþ
^C

acl(B).

Proof. (1) is clear. For (2), suppose {pi | i < λ} enumerate the extensions
of p := tp(A/C) to D. Suppose, towards a contradiction, that each pi
maximally þ-forks over B. Then for each i, there are formulae ϕi,j(x, ci,j),
j = 1, . . . , ni, such that each ϕi,j(x, ci,j) maximally þ-divides over B and
Z(pi) ⊆

⋃ni
j=1Z(ϕi,j(x, ci,j)). But then

Z(p) ⊆
⋃
{Z(ϕi,j(x, ci,j)) | i < λ, j < ni},

whence p maximally þ-forks over C, a contradiction.
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(3) This follows from the fact that if ϕ(x, c) maximally þ-divides over C,
then it maximally þ-divides over B.

(4) The first claim is just monotonicity and the second claim follows from
the fact that tp(A/C) ⊆ tp(A/D).

(5) First suppose that A 6 |mþ
^C

B. Then we have a formula ϕ(x, b, c) which
maximally þ-forks over C and such that the condition ϕ(x, b, c) = 0 is in
tp(A/BC). Let a be a tuple from A such that ϕ(a, b, c) = 0. Then ϕ(x, b, c)
witnesses that a 6 |mþ

^C
b. Now suppose A |mþ

^C
B and a and b are finite tuples

from A and B respectively. Then since tp(a/bC) ⊆ tp(A/BC), we have
a |mþ
^C

b.
(6) By extension, we can find A′ |= tp(A/BC) with A′ |mþ

^C
BD. But then

by monotonicity, we have A′ |mþ
^CD

B. By automorphism invariance, we have
D′ ≡BC D such that A |mþ

^CD′
B.

(7) One direction is clear by monotonicity. Now let a be a finite tuple
from A and suppose a 6 |mþ

^C
acl(B). Choose an L(acl(B))-formula ϕ(x, d)

which maximally þ-forks over C and such that ϕ(a, d) = 0. By Lemma 1.8
in [10], d ∈ bdd(B), whence we may enumerate Z(tp(d/B)) = {di | i < λ},
where λ < κ(M). Note that each ϕ(x, di) maximally þ-forks over C. From
this and the fact that

Z(tp(a/B)) ⊆
⋃
i<λ

Z(ϕ(x, di)),

we see that a 6 |mþ
^C

B. �

The following lemma is the analog of Proposition 3.9 for maximal strong
dividing.

Lemma 6.9. Suppose ϕ(x, c) maximally strongly divides over B and ϕ(a, c) =
0. Then χ(c/Ba) < χ(c/B).

Proof. Suppose I ∈ Ind(c/Ba). Then since ϕ(a, c′) = 0 for each c′ ∈ I, we
must have d(I) < χ(c/B), else we contradict strong dividing. �

Using the preceding lemma, we prove the next theorem exactly like we
proved Theorem 3.11.

Theorem 6.10. Suppose |I^ is an automorphism ternary relation on small
subsets ofM satisfying:

(1) for all finite tuples b, if χ(b/AC) < χ(b/C), then A 6 | I^C
b;

(2) for all A,B,C,D, if A |I^B
D and B ⊆ C ⊆ D, then A |I^C

D and
A |I^B

C;
(3) for all A,B,C,D, if A |I^C

B and D ⊇ BC, then there is A′ ≡BC A
such that A′ |I^C

D.
(4) for all A,B,C, if A |I^C

BC, then A |I^C
B.

Then for all A,B,C, A |I^C
B ⇒ A |mþ

^C
B.
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The proof of the following lemma has a similar proof to the proof of Lemma
2.1.8 in [13].

Lemma 6.11. Suppose a |mþ
^A

b. Then χ(b/Aa) = χ(b/A).

Proof. The result is obvious if χ(b/A) = 0, so let us assume that χ(b/A) > 0.
It suffices to construct I ∈ Ind(b/Aa) with d(I) = χ(b/A). Let p(x, y) :=
tp(a, b/A). Note that, by Lemma 6.2, there is no L(Ab)-formula ϕ(x, b) such
that ϕ(a, b) = 0 and ϕ(x, b) maximally strongly divides over A in the naïve
sense. Hence, for every such formula ϕ(x, b) and k < ω, there are b1, . . . , bk
realizing tp(b/A) which are at least χ(b/A)-apart and for which there exists
c such that ϕ(c, bi) = 0 for all i = 1, . . . , k. It thus follows by compactness
that the set of conditions⋃

i<ω

p(x, yi) ∪ {d(yi, yj) ≥ χ(b/A) | i < j < ω}

is consistent, say realized by a1, J1. By Ramsey’s theorem and compactness,
we can find an Aa1-indiscernible sequence J2 with a1b

′ realizing p(x, y) for
each b′ ∈ J2 and such that d(J2) = χ(b/A). Fix b′ ∈ J2. Let σ ∈ Aut(M/A)
be such that σ(a1) = a and σ(b′) = b. Then I := σ(J2) is as desired. �

The proof of the following lemma is essentially the same as in the classical
case; see [13] Lemma 2.1.6.

Lemma 6.12. In any continuous theory T , |mþ
^ satisfies Partial Left Transi-

tivity: For any tuples a, b, c and any parameter set A, if a |þ^A
c and b |mþ

^Aa
c,

then ab |mþ
^A

c.

Proof. Suppose that a |þ^A
c and b |mþ

^Aa
c. As in the proof in the classical

case, it is enough to show that there is no L(Ac)-formula ϕ(x, y, c) such that
ϕ(a, b, c) = 0 and ϕ(x, y, c) maximally þ-divides over A (This reduction in the
classical case only uses Extension and automorphisms). Suppose, towards a
contradiction, that there is an L(Ac)-formula ϕ(x, y, c) with ϕ(a, b, c) = 0
and ϕ(x, y, c) maximally þ-divides over A, say maximally strongly divides
over Ad. By base extension, we can find d′ |= tp(d/Ac) for which a |mþ

^Ad′
c.

Since ϕ(x, y, c) still maximally strongly divides over Ad′, we may assume
d = d′, i.e. that a |mþ

^Ad
c. By Lemma 6.11, we know that χ(c/Ada) =

χ(c/Ad). Hence, we have that ϕ(a, y, c) maximally strongly divides over
Ada, and hence maximally þ-divides over Aa. This contradicts the fact that
b |mþ
^Aa

c. �

Definition 6.13. We say that T is maximally rosy if |mþ
^ satisfies local

character.

Lemma 6.14. In a maximally rosy theory, |mþ
^ satisfies Existence: for all

A,B, we have A |mþ
^B

B.

Proof. If not, then the constant sequence (tp(A/B)) contradicts local char-
acter. �
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From existence, one can quite easily get that, in maximally rosy theories,
|mþ
^ is an independence relation. In particular, by Theorem 2.5 in [1], |mþ

^
satisfies symmetry in maximally rosy theories.

Lemma 6.15. In a maximally rosy theory, |mþ
^ satisfies Anti-reflexivity: for

all A,B, we have A |mþ
^B

A if and only if A ⊆ acl(B).

Proof. First suppose that A * acl(B), i.e. that χ(a/B) > 0 for some a ∈ A.
Since the formula d(x, a) maximally strongly divides over B in the naïve
sense, we see that a 6 |mþ

^B
a in the naïve sense. Hence, by Lemma 6.2, we see

that a 6 |mþ
^B

a. By finite character, we conclude that A 6 |mþ
^B

A. (Note that this
direction did not use the maximal rosiness assumption.)

Now suppose A ⊆ acl(B). By existence, we have A |mþ
^B

B. By Lemma 6.8
(7), we see that A |mþ

^B
acl(B). By monotonicity, we conclude that A |mþ

^B
A.
�

Remark 6.16. In maximally rosy theories, we have that |mþ
^ is a strict

independence relation. The fact that |mþ
^ satisfies finite character might

make some want to favor it over |þ^. However, being maximally rosy seems
like quite a strong condition on a theory. For example, one can show that
a classical rosy theory T need not be maximally rosy when viewed as a
continuous theory.

Definition 6.17.
(1) Say that ϕ(x, c) þ-ε-divides over A if there is B ⊇ A such that

ϕ(x, c) strongly-ε-divides over B. Say that π(x) þ-ε-forks over A if
there exists λ < κ(M) and formulae ϕi(x, ci), i < λ, each of which
þ-ε-divide over A, and such that Z(π(x)) ⊆

⋃n
i=1Z(ϕi(x)). Let

|þ,ε^ denote the corresponding independence relation. Say that T is
ε-rosy if |þ,ε^ satisfies local character.

(2) Say A |sþ^C
B, read A is strongly thorn-independent from B over

C, if there exists ε > 0 such that A |þ,ε^C
B. Say that T is strongly

rosy if |sþ^ satisfies local character.

Lemma 6.18. Suppose a |þ,ε^A
b. If χ(b/A) ≥ ε, then χ(b/Aa) ≥ ε.

Proof. Exactly as in the proof of Lemma 6.11. �

Lemma 6.19. |þ,ε^ satisfies Partial Left Transitivity.

Proof. Follows from the previous lemma in the exact same way that Partial
Left Transitivity for |mþ

^ followed from Lemma 6.11. �

It is straightforward to check that |þ,ε^ satisfies all of the other properties of
a strict independence relation in an ε-rosy theory. In a strongly rosy theory,
|sþ^ satisfies all of the axioms of a strict countable independence relation. To
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verify countable character, suppose that A,B,C are small parametersets.
Suppose that A0 ⊆ A and B0 ⊆ B are countable. Then

A |sþ^
C

B ⇒ A |þ,ε^
C

B( some ε > 0)⇒ A0 |þ,ε^
C

B0 ⇒ A0 |sþ^
C

B0.

Next suppose that A 6 | sþ^C
B. Then for every n > 0, we have A 6 | þ,

1
n^C
B.

Thus, for every n > 0, we have ϕn(x, bn) ∈ tp(A/BC) which þ- 1
n -forks over

C. Let an ∈ A be such that ϕn(an, bn) = 0. Let A0 =
⋃
n>0 an and let

B0 :=
⋃
n>0 bn. Then A0 6 | sþ^C

B0. Indeed, given ε > 0, choose n such that
1
n < ε. Then ϕn(x, bn) þ-ε-forks over C and ϕn(x, bn) ∈ tp(A0/B0C).

Lemma 6.20. For any ε > 0, we have

|̂ ⇒ |þ,ε^ ⇒ |sþ^ ⇒ |þ^
and

|̂ ⇒ |mþ
^ ⇒ |þ^ .

Consequently we have

simple⇒ ε− rosy ⇒ strongly rosy ⇒ rosy

and
simple⇒ maximally rosy ⇒ rosy.

Proof. It is clear that strong ε-dividing implies dividing. This takes care of
each of the first implications. The second implication of the first line is true
by definition. The remaining two implications follow from the fact that |þ^
is weakest amongst the strict countable independence relations. �

Note that if ε < ε′, then strong ε-dividing implies strong ε′-dividing, so ε′-rosy
implies ε-rosy. We thus make the following definition.

Definition 6.21. þ(T ) := sup{ε | T is ε-rosy}.

Question 6.22. Note that if þ(T ) > 0, then T is strongly rosy. Is the
converse true? What can we say about theories for which þ(T ) = 1?

Question 6.23. It appears that the argument showing that TU is not simple
also shows that TU is not maximally rosy. Are there natural examples of
maximally rosy theories or strongly rosy theories?

7. Keisler Randomizations and Rosiness

In [11], Keisler introduced the notion of the randomization of a theory T ,
denoted TR. The models of TR are essentially spaces of M -valued random
variables, where M |= T . In [7], the randomization of a classical theory was
phrased in the framework of continuous logic and its properties were further
studied. In [11], [7], and [4], theorems of the form “T is P if and only if
TR is P ” were proven, where P stands for any of the following properties:
ω-categorical, ω-stable, stable, NIP. However, in [3], it is shown that if T
is simple, unstable, then TR is not simple. It is a natural question to ask
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whether T is rosy if and only if TR is rosy with respect to finitary imaginaries.
Since the direction “TR is P implies T is P ” is generally trivial, we tried to
prove that if TR is rosy with respect to finitary imaginaries, then T is rosy.
We were unable to prove that and instead were only able to prove that T is
rosy provided TR is maximally rosy with respect to finitary imaginaries. We
devote this section to proving this fact.

In this section, we assume that the reader is familiar with the basic prop-
erties of the Keisler randomization process. We refer the reader to [7] for
information about the randomization theory. We also borrow notation from
the aforementioned paper. The set-up for this section differs from earlier
parts of this paper. Let L be a countable classical signature and let T be a
complete L-theory. Let M |= T be a monster model. Let κ > |M |2ℵ0 be a
cardinal and let M be a monster model of TR (in the 1-sorted language LR)
which is κ-saturated and strongly κ-homogeneous. By Corollary 2.8 of [7],
we may assume that M is the structure associated to some full randomiza-
tion K of M based on the atomless finitely-additive measure space (Ω,B, µ).
We may further assume that (Ω,B, µ) is σ-additive; see Theorem 3.6 of [3],
noting that in our situation, the so-called auxiliary sort is the same as our
boolean algebra sort. Let MC be the substructure of M which is the struc-
ture associated to the elements of K with countable range. From now on,
for any a ∈ M , we write a for the element of MC which is the equivalence
class of the element of K with constant value a. We do the same for tuples
and parameter sets from M .

Lemma 7.1. Let c be a finite tuple from M and let B ⊆ M be countable.
Suppose C ∈ K is such that C |= tp(c/B). Then C(ω) |= tp(c/B) for almost
all ω ∈ Ω.

Proof. Let ψ(x, b) ∈ tp(c/B). Then the condition PJψ(X,b)K = 1 is in
tp(c/B), whence PJψ(C,b)K = 1. Since tp(c/B) is countable and (Ω,B, µ)
is σ-additive, we achieve the desired result. �

Lemma 7.2. Suppose c is a finite tuple from M and B ⊆ M is a small
parameterset such that c /∈ acl(B). Then χ(c/B) = 1.

Proof. Let (ci : i ∈ ω) be a nonconstant B-indiscernible sequence of realiza-
tions of tp(c/B). Then setting I := (ci : i ∈ ω), we see that I ∈ Ind(c/B)
with d(I) = 1. Indeed, since TR admits (strong) quantifier elimination
(see [7], Theorem 2.9), tp(ci1 , . . . , cin/B) is determined by the values of
PJψ(ci1 , . . . , cin)K as ψ ranges over all L-formulae with n free variables.
But Jψ(ci1 , . . . , cin)K = Jψ(cj1 , . . . , cjn)K whenever i1 < · · · < in < ω and
j1 < · · · < jn < ω by indiscernibility of (ci : i ∈ ω). �

In order to prove the main lemma relating strong dividing in T and max-
imal strong dividing in TR, we first need to prove a Ramsey-theoretic fact



THORN-FORKING IN CONTINUOUS LOGIC 31

for Boolean algebras equipped with a finitely-additive measure (Lemma 7.5
below). We had a rather lengthly (nonstandard) proof of the desired fact,
but we are grateful to Konstantin Slutsky for showing us the much simpler
proof that appears below.

Lemma 7.3. Suppose B is a boolean algebra and µ : B → [0, 1] is a finitely-
additive measure. Then for any m > 0 and any set of distinct elements
{a1, . . . , a2m} from B with µ(ai) ≥ 1

m for each i ∈ {1, . . . , 2m}, there exists
i, j ∈ {1, . . . , 2m} satisfying µ(ai ∧ aj) ≥ 1

3m2 .

Proof. Suppose, towards a contradiction, that we have distinct elements
a1, . . . , a2m from B such that µ(ai) ≥ 1

m for all i ∈ {1, . . . , 2m} and yet
µ(ai∧aj) < 1

3m2 for all distinct i, j ∈ {1, . . . , 2m}. By the inclusion-exclusion
formula, we have

1 ≥ µ(a1 ∨ · · · ∨ a2m) ≥
2m∑
i=1

µ(ai)−
∑
i<j

µ(ai ∧ aj)

> 2−
(

2m
2

)
1

3m2

> 2− 2
3

> 1.

This contradiction finishes the proof of the lemma. �

Lemma 7.4. Suppose that B is a boolean algebra and µ : B → [0, 1] is a
finitely-additive measure. Let k ≥ 2 be a natural number and letm > 0. Then
there exists a sufficiently large natural number l := l(k,m) and a positive
natural number c(k,m) such that whenever {a1, . . . , al} is a set of l distinct
elements of B for which µ(ai) ≥ 1

m for each i ∈ {1, . . . , l}, then there are
distinct i1, . . . , ik ∈ {1, . . . , l} such that µ(

∧k
j=1 aij ) ≥

1
c(k,m) .

Proof. By induction on k. The previous lemma shows that the case k = 2
holds by taking l(2,m) := 2m and c(2,m) := 3m2. Now suppose that
k > 2. We claim that the choices l(k,m) := 2 · c(k − 1,m) · l(k − 1,m) and
c(k,m) := c(2, 3c(k − 1,m)2) are as desired. Let l = l(k,m) and suppose
that {a1, · · · , al} is a set of l distinct elements of B. Then there is a set
{bi | 1 ≤ i ≤ 2 · c(k − 1,m)} of distinct elements of B such that:

• each bi =
∧k−1
j=1 aij for some distinct i1, . . . , ik−1 ∈ {1, . . . , l},

• if i, i′ ∈ {1, . . . , 2 · c(k − 1,m)} are distinct, then ij 6= i′j′ for all
j, j′ ∈ {1, . . . , k − 1}, and
• µ(bi) ≥ 1

c(k−1,m) .

By the case k = 2, there are i, j ∈ {1, . . . , 2·c(k−1,m)} such that µ(bi∧bj) ≥
1

3c(k−1,m)2
. This finishes the proof of the lemma. �



32 CLIFTON EALY AND ISAAC GOLDBRING

Lemma 7.5. Suppose B is a boolean algebra and µ : B → [0, 1] is a finitely-
additive measure. Let k ≥ 2 be a natural number and let r ∈ (0, 1). Then
there exists a sufficiently large natural number l = l(k, r) such that whenever
{a1, . . . , al} is a set of l distinct elements of B for which µ(ai) ≥ r for
each i ∈ {1, . . . , l}, then there are distinct i1, . . . , ik ∈ {1, . . . , l} such that
µ(
∧k
j=1 bij ) > 0.

Proof. Immediate from the preceding lemma. �

Lemma 7.6. Suppose ϕ(x, y) is an L-formula, c is a finite tuple from M ,
and B ⊆M is countable. Suppose ϕ(x, c) strongly divides over B. Then, for
any r ∈ (0, 1), we have r−. PJϕ(X, c)K maximally strongly divides over B in
the naïve sense.

Proof. Let k be such that ϕ(x, c) strongly k-divides over B. Let l = l(k, r)
be as in Lemma 7.5. We show that r −. PJϕ(X, c)K maximally strongly l-
divides over B in the naïve sense. Let C1, . . . , Cl |= tp(c/B) be 1-apart.
Then, for almost all ω ∈ Ω, C1(ω), . . . , Cl(ω) are l distinct realizations of
tp(c/B). Fix X ∈ Kn, where n := |x|. Suppose, towards a contradiction,
that r −. PJϕ(X,Ci)K = 0 for all i = 1, . . . , l. Then by the defining property
of l, we see that there are i1, . . . , ik so that

{ω ∈ Ω | M |= ϕ(X(ω), Cij (ω)), j = 1, . . . , k}

has positive measure. A positive measure subset of these ω’s has the further
property that Ci1(ω), . . . , Cik(ω) are k distinct realizations of tp(c/B). This
then contradicts the fact that ϕ(x, c) strongly k-divides over B. �

Lemma 7.7. Suppose ϕ(x, y) is an L-formula, c is a tuple from M , and
B ⊆M is countable. Suppose ϕ(x, c) þ-divides over B. Then r−. PJϕ(X, c)K
maximally þ-divides over B in the naïve sense for any r ∈ (0, 1].

Proof. Suppose ϕ(x, c) strongly divides over Bd. Then r−. PJϕ(X, c)K max-
imally strongly divides over Bd in the naïve sense, whence r −. PJϕ(X, c)K
maximally þ-divides over B in the naïve sense. �

Theorem 7.8. Suppose a is a tuple from M and B ⊆ C ⊆M are parameter
sets such that B is countable and C is small. Then a |mþ

^B
C implies that

a |þ^B
C.

Proof. Suppose ϕ(x, c) ∈ tp(a/C) þ-forks over B. Then there are L-formulae
ϕ1(x, c1), . . . , ϕ(x, cn), each of which þ-divide over B, so that

M |= ∀x(ϕ(x, c)→
n∨
i=1

ϕi(x, ci)).

We then have

Z(1− PJϕ(X, c)K) ⊆
n⋃
i=1

Z(
1
n
−. PJϕi(X, ci)K),
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and since each of 1
n −
. PJϕi(X, ci)K maximally þ-divides over B in the naïve

sense by Lemma 7.7, we see that 1 − PJϕ(X, c)K maximally þ-forks over B
in the naïve sense. Since the condition “1− PJϕ(X, c)K = 0” is in tp(a/C),
it follows that a 6 |mþ

^B
C in the naïve sense, and hence a 6 |mþ

^B
C by Lemma

6.2. �

Corollary 7.9. Suppose TR is maximally real rosy. Then T is real rosy.

Proof. Let a be a tuple from M and let C ⊆ M be small. Since TR is
maximally real rosy, there is a countable B ⊆ C so that a |mþ

^B
C. By the

preceding theorem, we see that a |þ^B
C, whence it follows that T is real

rosy. �

We now try to extend Corollary 7.9 to include imaginaries. We first note
that given a L-formula E(x, y) which defines an equivalence relation onMX ,
the LR-formula ρE(X,Y ) := PJ¬E(x, y)K, defines a pseudometric on MX .
It follows that we can associate to every element e of M eq an element τ(e)
of Mfeq. Indeed, suppose that c is a finite tuple from M and πE(c) is its
equivalence class under the 0-definable equivalence relation E. Let πρE (c)
denote the equivalence class of c under the equivalence relation ρE = 0. We
then set τ(πE(c)) := πρE (c).

Suppose ψ(x1, . . . , xm) is an Leq-formula, where each xi is a variable rang-
ing over Ei-equivalence classes. Fix r ∈ [0, 1]. We then set ψ̃r(X1, . . . , Xm)
to be the (LR)feq-formula

inf
X1
· · · inf

Xm
max( max

1≤i≤m
(d(πρEi (X

i), Xi)), r −. PJψeq(X1, . . . , Xm)K).

(Recall that ψeq(x1, . . . , xm) is an L-formula such that, for all a1, . . . , am, we
have M eq |= ψ(πE1(a1), . . . , πEm(am)) if and only if M |= ψeq(a1, . . . , am).)

Lemma 7.10. Suppose e ∈M eq and B ⊆M eq is countable. Suppose C ∈ K
is such that πρE (C) |= tp(τ(e)/τ(B)). Then πE(C(ω)) |= tp(e/B) for almost
all ω ∈ Ω.

Proof. Fix ψ(x, b) ∈ tp(e/B). Let e′ and b′ be representatives of the classes
of e and b respectively. Then M |= ψeq(e′, b′), whence

PJψeq(e′, b′)K = 1.

It thus follows that ψ̃1(τ(e), τ(b)) = 0, so ψ̃1(πρE (C), τ(b)) = 0. It fol-
lows that there are D,F such that πρE (C) = πρE (D), τ(b) = πρ(F ), and
PJψeq(D,F )K = 1. So for almost all ω, M eq |= ψ(πE(D(ω)), π(F (ω)),
whence M eq |= ψ(πE(C(ω)), b) for almost all ω. The lemma follows from
the fact that tp(e/B) is countable. �

Lemma 7.11. Suppose c ∈M eq and B ⊆M eq is a small parameterset such
that c /∈ acl(B). Then χ(τ(c)/τ(B)) = 1.

Proof. Let (ci : i < ω) be a nonconstant B-indiscernible sequence of realiza-
tions of tp(c)/B). The lemma follows from the fact that (τ(ci) : i < ω) is a
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τ(B)-indiscernible sequence of realizations of tp(τ(c)/τ(B)), which we leave
to the reader as an exercise. �

Lemma 7.12. Suppose c ∈ M eq and B ⊆ M eq is countable. Further sup-
pose that the Leq-formula ϕ(x, c) strongly divides over B. Then ϕ̃r(X, τ(c))
maximally strongly divides over τ(B) in the naïve sense for any r ∈ (0, 1).

Proof. Let k be such that ϕ(x, c) strongly k-divides over B. Let l = l(k, r)
be as in Lemma 7.5. We show that ϕ̃r(x, τ(c)) maximally strongly l-divides
over τ(B) in the naïve sense. Let πρE (C1), . . . , πρE (Cl) |= tp(τ(c)/τ(B)) be
1-apart. Then for almost all ω ∈ Ω, we have that πE(C1(ω)), . . . , πE(Cl(ω))
are l distinct realizations of tp(c/B). Suppose, towards a contradiction, that
X ∈ Kn is such that ϕ̃r(πρ(X), πρE (Ci)) = 0 for all i = 1, . . . , l. Arguing as
in Lemma 7.10, we see that there are i1, . . . , ik so that

{ω ∈ Ω | |= ϕ(π(X(ω)), πE(Cij (ω)), j = 1, . . . , k}
has positive measure. A positive measure subset of these ω’s have the fur-
ther property that πE(Ci1(ω)), . . . , πE(Cik(ω)) are k distinct realizations of
tp(c/B). This contradicts the fact that ϕ(x, c) strongly k-divides over B. �

Lemma 7.13. Suppose ϕ(x, y) is an Leq-formula, c is a tuple from M ,
and B ⊆ M is countable. Suppose ϕ(x, π(c)) þ-divides over π(B). Then
ϕ̃r(x, σ(c)) maximally þ-divides over σ(B) in the naïve sense for any r ∈
(0, 1].

Proof. This follows from the previous lemma in exactly the same way as in
the real case. �

Theorem 7.14. Suppose a ∈ M eq and B ⊆ C ⊆ M eq are parameter sets
such that B is countable and C is small. Then τ(a) |mþ

^τ(B)
τ(C) implies that

a |þ^B
C.

Proof. Suppose ϕ(x, c) ∈ tp(a/C) þ-forks over B. Then there are Leq-
formulae ϕ1(x, c1), . . . , ϕn(x, cn), each of which þ-divide over B, so that
M eq |= ∀x(ϕ(x, π(c))→

∨n
i=1 ϕi(x, π(ci))). But then

Z(ϕ̃1(X, τ(c)) ⊆
n⋃
i=1

Z((ϕ̃i) 1
n

(X, τ(ci)))

and since each of (ϕ̃i) 1
n

(X, τ(ci)) maximally þ-divides over τ(B) in the naïve
sense, we see that ϕ̃1(X, τ(c)) maximally þ-forks over τ(B) in the naïve sense.
Since “ϕ̃1(X, τ(c)) = 0” is in tp(τ(a)/τ(C)), it follows that τ(a) 6 |mþ

^τ(B)
τ(C)

in the naïve sense, and hence τ(a) 6 |mþ
^τ(B)

τ(C) by Lemma 6.2. �

Corollary 7.15. Suppose TR is maximally rosy with respect to finitary imag-
inaries. Then T is rosy.

Proof. Take a ∈ M eq and let C ⊆ M eq be small. Since TR is maximally
rosy with respect to finitary imaginaries, there is a countable τ(B) ⊆ τ(C)
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so that τ(a) |mþ
^τ(B)

τ(C). By the preceding theorem, we see that a |þ^B
C,

whence it follows that T is rosy. �

Can we strengthen Corollary 7.15 by weakening the hypothesis from “TR
is maximally rosy with respect to finitary imaginaries” to “TR is rosy with
respect to finitary imaginaries?” To follow the same style of proof as in this
section, it appears that we would need a positive answer to the following
Ramsey-theoretic question:

Suppose B is a boolean algebra and µ : B → [0, 1] is a finitely-additive
measure. Let m1,m2 ≥ 1 and k ≥ 2 be fixed. Does there exist a natural
number l = l(k,m1,m2) such that whenever {a1, . . . , al} is a set of distinct
elements of B and {bij | 1 ≤ i < j ≤ l} is a set of elements of B such that
µ(ai) ≥ 1

m1
for all i ∈ {1, . . . , l} and µ(bij) ≥ 1

m2
for all i, j ∈ {1, . . . , l} with

i < j, then there are distinct i1, . . . , ik ∈ {1, . . . , l} such that

µ(
k∧
j=1

aij ∧
∧

i<j∈{i1,...,ik}

bij) > 0?

However, this question has a negative answer: If B ⊆ P([0, 1]), then each
ai could be a subset of [0, 1

2 ] and each bij could be a subset of (1
2 , 1].
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