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Stable and Simple Theories

The Birth of Stability Theory

Theorem (Morley, 1962)

If T is a theory in a countable language and is κ-categorical for some
κ > ℵ0, then T is λ-categorical for all λ > ℵ0. T is then called
uncountably categorical.

The techniques used to prove this theorem marked the beginning of
stability theory: total transcendentality (AKA ω-stability), (Morley)
ranks, etc. . .
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Stable and Simple Theories

Classification Theory

Theorem (Baldwin-Lachlin)

If T is an uncountably categorical theory, then T has either 1 countable
model or ℵ0 many countable models.

Theorem (Shelah-1970)

If T is κ-categorical for some κ > |T |, then T is λ-categorical for all
λ > |T |. (Morley’s theorem for uncountable languages.)

Theorem (Shelah)

If T is unstable, then T has 2λ models of cardinality λ for λ > |T |.
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Stable and Simple Theories

Stable theories

Definition

T is κ-stable if for everyM |= T and every A ⊆ M with |A| ≤ κ, we
have |S1(A)| ≤ κ. T is said to be stable if it is κ-stable for some κ.

Example

The theory of the infinite set is ω-stable. Indeed, for each a ∈ A, there
is a type determined by saying “x = a”. There is also a type
determined by saying “x 6= a” for each a ∈ A. Thus, there are
|A|+ 1-many 1-types over A.
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Stable and Simple Theories

Stable theories (cont’d)

Example

Suppose that T = ACF . Suppose K |= ACF and A ⊆ K . Without loss
of generality, we may assume that A = k is a subfield of K . Given
p ∈ S1(k), define Ip := {f (x) ∈ k [x ] : “f (x) = 0” ∈ p}. Then p 7→ IP is
a bijection between S1(k) and the set of prime ideals in k [x ]; the latter
set has cardinality |k |+ ℵ0 since every ideal in k [x ] is finitely generated
by Hilbert’s basis theorem.

Example

DCF is ω-stable.
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Stable and Simple Theories

Unstable theories

Example

The theory of the random graph is not stable. Fix κ and let G |= Trg be
κ+-saturated. Then one can find κ many elements A that are not
connected to each other. For X ⊆ A, let pX (x) be the type declaring
xEa for a ∈ X and ¬xEa for a /∈ X . Then these pX ’s are distinct, so
there are 2κ many types over A.

Example

o-minimal theories are not stable.

Theorem

T is unstable if and only if there isM |= T , a formula ϕ(x , y), and
sequences (ai), (bi) from M such thatM |= ϕ(ai ,bj)⇔ i < j .
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Stable and Simple Theories

Continuous Stable Theories

One can define κ-stability for continuous theories just as for classical
(discrete theories). However, there is an alternate (metric) notion of
κ-stability, and it is usually this notion that is referred to. Fortunately,
they yield the same class of stable theories.

Examples

1 Infinite-dimensional Hilbert spaces (ω-stable)
2 Atomless probability algebras (ω-stable)
3 Lp-Banach lattice (ω-stable)
4 Richly branching R-trees (κ-stable if and only if κω = κ)
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Stable and Simple Theories

An application to functional analysis

Suppose that M is some separable object of functional analysis (e.g
C∗-algebra, von-Neumann algebra, etc. . . ) and U , V are nonprincipal
ultrafilters on N. Is it true thatMU ∼=MV? Under (CH), the answer is
yes. But what about under ¬(CH).

Theorem (Hart, Farah, Sherman)

Suppose that ¬(CH) holds. Suppose thatM is a separable metric
structure.

1 If Th(M) is stable, then all nonprincipal ultrapowers ofM over N
are isomorphic.

2 If Th(M) is unstable, then there are nonprincipal ultrafilters U and
V on N such thatMU 6∼=MV .

II1-factors are unstable as are unital C∗-algebras and their unitary
groups.
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Stable and Simple Theories

TU is not stable

Remember that U denotes the Urysohn sphere and TU is the theory of
U. In this talk, U is a very saturated model of TU. Fix a (small) cardinal
λ and let A be a set of elements of U of size < λ which are pairwise
distance 1 apart. Then for any X ⊆ λ, the collection of conditions

ΓX := {d(x ,ai) = 1 | i ∈ X} ∪ {d(x ,ai) =
1
2
| i /∈ X}

is finitely satisfiable in U. This yields 2λ many distinct complete 1-types
over A.
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Stable and Simple Theories

Free extensions

Fix a theory T and a “monster model” M |= T (a very saturated and
homogeneous model). Throughout, A,B,C ⊆M are small in the
sense that they have cardinality less than the saturation level of M. A
model will refer to a small elementary substructure of M.

Stable theories have a nice notion of independence for small
subsets of M.
The idea is A is independent from B over C, written A |̂

C
B, if

B ∪ C gives no more information about A than C does.
In terms of types, we say that tp(A/BC) is a free or nonforking
extension of tp(A/C).
A very important property of this independence notion is that of
extension, namely that if p(x) is a type over C and B ⊇ C, then p
has a free extension to B.
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Stable and Simple Theories

Definable types

Definition

A type p(x) ∈ S(A) is definable if for every formula ϕ(x , y) without
parameters, there is another formula dpϕ(y) with parameters from A
such that, for every a ∈ A, ϕ(x ,a) ∈ p ⇔|= dpϕ(a).

Theorem

T is stable if and only if every type over a model is definable.

Suppose that T is stable and p(x) ∈ S(M), where M is a model. If
M ⊆ B ⊆M, then define q(x) = {ϕ(x ,b) : |= dpϕ(b),b ∈ B}. Then
one can show that q(x) ∈ S(B). In this case, q(x) is a free extension
of p(x). In fact, it is the unique free extension of p(x) to B.
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Stable and Simple Theories

Stable Independence Relations

Suppose that T is stable. Then |̂ satisfies the following properties:
1 Automorphism invariance
2 Symmetry: A |̂

C
B ⇔ B |̂

C
A

3 Transitivity: A |̂
C

BD ⇔ A |̂
C

B and A |̂
BC

D

4 Finite character: A |̂
C

B if and only if a |̂
C

B for all finite tuples a
from A

5 Extension: for all A,B,C, there exists A′ |= tp(A/C) such that
A′ |̂

C
B

6 Local Character: If a is any finite tuple, then there is B0 ⊆ B of
cardinality ≤ |T | such that a |̂

B0
B

7 Stationarity of Types: If tp(A/M) = tp(A′/M), A |̂
M

B, and
A′ |̂

M
B, then tp(A/MB) = tp(A′/MB).
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Stable and Simple Theories

Stable Independence Relations (cont’d)

Definition

Any relation |∗^ that satifies the properties (1)-(7) is called a stable
independence relation.

Theorem

1 If T is stable, then there is a unique stable independence relation,
namely nonforking independence.

2 If T admits a stable independence relation, then T is stable (and
this stable independence relation must be nonforking
independence).
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Stable and Simple Theories

Forking in ACF

In ACF, there is a nice geometric interpretation of |̂ .
Suppose that K |= ACF and k ⊆ l ⊆ K are subfields.
For a ∈ K , define RM(a/k) := d if a is the generic point of an
irreducible variety V defined over k of dimension d .
Then a |̂

k
l if and only if RM(a/k) = RM(a/l).
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Stable and Simple Theories

A combinatorial approach to forking

Definition

Suppose that ϕ(x ,a) is a formula and A ⊆M is small.
1 ϕ(x ,a) divides over A if there is an A-indiscernible sequence

(ai | i < ω) with tp(a/A) = tp(a0/A) such that {ϕ(x ,ai) | i < ω} is
inconsistent.

2 ϕ(x ,a) forks over A if there are ϕ1(x), . . . , ϕn(x), each of which
divide over A, such that |= ϕ(x)→

∨n
i=1 ϕi(x).

“Forking=negligible or smaller dimension”
If p(x) ∈ S(B) and A ⊆ B, then p forks over A if it contains a
formula that forks over A. So nonforking extensions don’t include
any “lower-dimensional” sets which provide more information
about realizations of p than A.
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Stable and Simple Theories

Simple theories

Definition

T is simple if |̂ satisfies local character.

Example

The theory of the random graph, which is not stable, is simple.

If T is simple, then |̂ satisfies the first six properties of a stable
independence relation but stationarity of types might fail. A useful
substitute is:

Theorem (Independence Theorem)

Suppose that T is simple, M is a model, and A,B ⊇ M are such that
A |̂

M
B. If p(x) ∈ S(A) and q(x) ∈ S(B) are nonforking extensions of

p0, their restriction to M, then p ∪ q is consistent and is a nonforking
extension of p0. (Type Amalgamation over Models)
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Stable and Simple Theories

Characterizing simple theories

Call |∗^ a simple independence relation if |∗^ satisfies 1-6 and the
Independence Theorem.

Theorem

If T is simple, then |̂ is the unique simple independence relation. If T
has a simple independence relation, then T is simple.

Example

For G a big model of the theory of the random graph, define A |∗^C
B if

and only if A ∩ B ⊆ C. Then |∗^ is a simple independence relation and
thus |∗^ is the relation of nonforking independence.
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Stable and Simple Theories

TU is not simple

Since TU contains a copy of the random graph inside, maybe it is
simple.

Theorem (Pillay)

TU is not simple.

Sketch.

Let A ⊆ U be small with all elements mutually 1
2 -apart. By QE,

there is a unique type p(x) determined by the conditions
{d(x ,a) = 1

4 | a ∈ A}.
Let B ( A be closed. We show that p divides over B, showing that
|̂ doesn’t satisfy local character in TU.

Let a ∈ A \ B. We can find a B-indiscernible sequence (ai | i < ω)
of realizations of tp(a/B) which are mutually 1-apart. Then
“d(x ,a) = 1

4 ” 2-divides over B.
Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 19 / 36
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Stable and Simple Theories

DLO

Example

DLO is not simple. To see this, fix b < a < c. Then bc |̂
∅

a: tp(bc/a)

is determined by the formula y < a < z which doesn’t divide over ∅.
However, a 6 |̂

∅
bc. Look at the indiscernible sequence

b = b0 < c = c0 < b1 < c1 < b2 < c2 · · ·

Then if ϕ(x , y , z) is the formula y < x < z, then {ϕ(x ,bi , ci) | i < ω} is
2-inconsistent, so ϕ(x ,b, c) divides over ∅ and is in tp(a/bc).

More generally, any o-minimal theory is not simple.
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Stable and Simple Theories

Independence in o-minimal theories

Suppose that T is o-minimal.

Definition

If X ⊆Mn is definable, then dim(X ) is the dimension of the biggest
open cell contained in X . If a ∈Mn and A ⊆M, we define
dim(a/A) := min{dim(X ) | X is A-definable and a ∈ X}.

Define a |o^C
B if and only if dim(a/BC) = dim(a/C). Then |o^ is a very

well-behaved independence relation and one can use it in many ways
to mimic arguments from stability and simplicity theory.

Question

Is there a common framework for simple theories and o-minimal
theories?
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Rosy theories

1 Stable and Simple Theories

2 Rosy theories

3 The Urysohn space is rosy
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Rosy theories

Defining |þ^

T -classical complete theory,M a monster model for T .

A |a^C
B ⇔ acl(AC) ∩ acl(BC) = acl(C).

Satisfies all axioms for a strict independence relation except perhaps
base monotonicity: If D ⊆ C ⊆ B and A |̂

D
B, then A |̂

C
B.

A |M^C
B ⇔ for all C′ such that C ⊆ C′ ⊆ acl(BC), we have A |a^C′ B.

Satisfies all axioms for a strict independence relation except perhaps
local character and extension.

A |þ^C
B ⇔ for all E ⊇ BC there is A′ |= tp(A/BC) such that A′ |M^C

E .
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Rosy theories

Rosy Theories

Theorem (Adler, Ealy, Onshuus)

|þ^ is a strict independence relation if and only if |þ^ has local character
if and only if there is a strict independence relation for T at all. In this
case, |þ^ is the weakest strict independence relation for T , that is, if |∗^
is another strict independence relation for T , then for all small A, B, C,
we have A |∗^C

B ⇒ A |þ^C
B.

Definition

T is rosy if and only if |þ^ is a strict independence relation for T eq.

Example

Simple theories and o-minimal theories are rosy.
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Rosy theories

Strict Countable Independence Relations

Definition

|∗^ is a strict countable independence relation if it satisfies all of the
axioms for a strict independence relation except that it satisfies
countable character instead of finite character, that is,

A |∗^
C

B ⇔ A0 |∗^
C

B for all countable A0 ⊆ A.

Theorem

Suppose that T is a complete continuous theory. Then |þ^ is a strict
countable independence relation if and only if |þ^ has local character if
and only if there is a strict countable independence relation for T at all.
In this case, |þ^ is the weakest strict countable independence relation
for T .

Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 25 / 36



The Urysohn space is rosy

1 Stable and Simple Theories

2 Rosy theories

3 The Urysohn space is rosy

Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 26 / 36



The Urysohn space is rosy

TU is real rosy

Theorem (Ealy, G.)

TU is real rosy, that is, |þ^ satisfies local character when restricted to
the real sort.

Sketch.

1 By the triviality of acl in TU, one can show that

A |M^
C

B ⇔ A ∩ B ⊆ C.

2 Next, show that |M^ = |þ^ in TU.

3 Suppose A,B ⊆ U are small. For x ∈ A ∩ B, let Bx ⊆ B be
countable such that x ∈ Bx . Let B0 :=

⋃
{Bx | x ∈ A ∩ B}. Then

A |þ^B0
B and |B0| ≤ ℵ0 · |A|, showing that |þ^ satisfies local

character.
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|M^ = |þ^ in TU

It suffices to show that for any small, closed A,B,C ⊆ U, there
exists A′ ≡C A with A′ |M^C

B.

Let (ai |i ∈ I) enumerate A \ C and (bj | j ∈ J) enumerate B \ C.
Let εi := d(ai ,C) and δij := max{εi ,d(ai ,bj)}.
Let Σ(X ) := tp(A/C) ∪ {|d(xi ,bj)− δi,j | = 0 | i ∈ I, j ∈ J}. It
suffices to show that Σ is satisfiable.
To show that Σ is satisfiable, it suffices to show that Σ prescribes a
metric on X ∪ B ∪ C.
Check that all of the various triangle inequalities hold. This follows
from the choice of δij .
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An Application of Real Rosiness

By the universality of U, we know that Un isometrically emdeds in U for
any n ≥ 2. However,

Corollary

For any n ≥ 2, there is no definable isometric embedding Un → U.

Proof.

First show that any definable isometric embedding Un → U extends to
an isometric embedding Un → U. (Recall that this actually takes work
in continuous logic!) Then show that Uþ

real(U
n) = n and use

monotonicity of Uþ
real-rank with respect to definable injections.
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Definable Predicates

Many issues around definability in continuous logic revolve around
the notion of a definable predicate.
Suppose, for each n ∈ N, ϕn(x , yn) is a formula, where the yn’s are
increasing finite tuples of variables. Suppose also that
u : [0,1]N → [0,1] is a continuous function. Then we obtain a
definable predicate P(x ,Y ) := u((ϕn(x , yn)), where Y :=

⋃
n yn.

It should be viewed as a “formula” with finitely many object
variables x and countably many parameter variables Y .

Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 30 / 36



The Urysohn space is rosy

Meq in continuous logic

As in classical logic, the eq-construction can be viewed as adding
canonical parameters for formulae (or definable predicates in our
case).
Suppose P(x ,Y ) is a definable predicate. OnMY , define the
pseudometric dP(B,B′) := supx |P(x ,B)− P(x ,B′)|.
InMeq, we add a sortMP , which is the metric space
MY/(dP = 0), as well as relevant “projection maps.”
The elements ofMP are canonical parameters of instances of
P(x ,Y ), meaning an automorphism preserves P(x ,B) if and only
if it fixes the equivalence class of B.
If |Y | < ω, we say that P(x ,Y ) is a finitary definable predicate
and. If P(x ,Y ) is a finitary definable predicate, then the elements
ofMP are called finitary imaginaries.
Mfeq is the reduct ofMeq where one only considers finitary
imaginaries.
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WEFI

Definition

We say that T has weak elimination of finitary imaginaries (WEFI) if for
every finitary definable predicate ϕ(x), there is a finite tuple c fromM
such that ϕ(x) is definable over c and whenever ϕ(x) is defined over a
finite tuple d , then c ∈ acl(d).

Equivalently, for every e ∈Mfeq, there is a finite tuple l(e) fromM
such that e ∈ dcl(l(e)) and l(e) ∈ acl(e). (l(e) is a “weak code” for e.)
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A Fact About Iso(U)

We needed the following fact in our proof that TU has WEFI.

Theorem (J. Melleray)

Let A and B be finite subsets of U. Set G := Iso(U|A ∩ B) and H := the
subgroup of G generated by Iso(U|A) ∪ Iso(U|B). Then H is dense in
G with respect to the topology of pointwise convergence.
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TU has WEFI

Suppose that ϕ(x ,a) is a finitary definable predicate.
Let b be a subtuple of a such that ϕ(x) is definable over b and
ϕ(x) is not definable over any proper subtuple of b.
Now suppose that ϕ(x) is definable over the finite tuple d . Let
G := Iso(U|b ∩ d) and let H be the subgroup of G generated by
Iso(U|b) ∪ Aut(U|d). Let c ∈ U.
If τ ∈ H, then ϕ(τ(c)) = ϕ(c).
If τ ∈ G, then by the above theorem, there is a sequence (τn) from
H such that τn(c)→ τ(c).
Since ϕ is continuous, we have

ϕ(τ(c)) = ϕ(lim τn(c)) = limϕ(τn(c)) = ϕ(c).

Thus, ϕ is defined over b ∩ d .
By choice of b, we have b ∩ d = b, i.e. b ∈ acl(d).

Thus, we have that TU has WEFI.
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Real Rosy + WEFI⇒ Rosy w.r.t. Mfeq

Theorem (Ealy, G.)

If T is real rosy and has WEFI, then T is rosy w.r.t. finitary imaginaries.

Corollary

TU is rosy with respect to finitary imaginaries.

Questions

What about arbitrary imaginaries? Can we (weakly) eliminate them? Is
TU rosy?

Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 35 / 36



The Urysohn space is rosy

References

H. Adler, A geometric introduction to forking and thorn-forking
I. Ben Yaacov, A. Berenstein, C. W. Henson, A. Usvyatsov, Model
theory for metric structures, Model theory with applications to
algebra and analysis. Vol. 2, pgs. 315-427, London Math. Soc.
Lecture Note Ser. (350), Cambridge Univ. Press, Cambridge,
2008.
C. Ealy and I. Goldbring, Thorn-forking in continuous logic, To
appear in the Journal of Symbolic Logic. Available at
http://www.math.ucla.edu/̃isaac

A. Pillay, An introduction to stability theory

Isaac Goldbring ( UCLA ) The Urysohn space is rosy Irvine February 27, 2012 36 / 36


	Stable and Simple Theories
	Rosy theories
	The Urysohn space is rosy

