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von Neumann algebras

Hilbert spaces

Definition
A Hilbert space H is a complex inner product space such that the
induced metric is complete.

Examples

C

n, where h~x ,~yi :=
Pn

i=1 xiyi .
`2 = {(xn) 2 C

N :
P

n |xn|2 < 1} where h(xn), (yn)i :=
P1

n=1 xnyn.
L2(X , µ) := {f : X ! C : f is measurable and

R
X |f |2dµ < 1},

where hf , gi :=
R

X f ḡdµ (for (X , µ) a finite measure space).
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von Neumann algebras

Bounded operators

Definition
If X , Y are normed spaces (over C), then a linear transformation
T : X ! Y is bounded if the image of the unit ball of X under T is
bounded.

If T is bounded, then we set kTk := sup{kTxk : kxk = 1}, called
the operator norm of T , and observe that kTk is the least upper
bound for the image of the unit ball of X under T .
The set of bounded linear operators B(X , Y ) from X to Y forms a
normed space with the above notion of kTk.
If X = Y , we write B(X ) instead of B(X , X ).
T is bounded if and only if T is (uniformly) continuous.
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von Neumann algebras

Examples of bounded operators

Examples

Every linear transformation between finite-dimensional normed
spaces is bounded.
Fix (dn) 2 C

n and consider T : C

n ! C

n given by
T ((xn)) := (dnxn). Then T 2 B(`2) if and only if (dn) is bounded.
If f 2 L1(X , µ), then mf : L2(X , µ) ! L2(X , µ) defined by
mf (g) := fg is a bounded linear transformation.
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von Neumann algebras

Topologies on Operator spaces

Suppose that H is a Hilbert space. We consider the following
topologies on B(H):

The operator norm topology.
The strong topology: a subbasis of open sets is given by

{T 2 B(H) : kT (v)� T0(v)k < ✏},

where T0 2 B(H), v 2 H and ✏ > 0.
The weak topology: a subbasis of open sets is given by

{T 2 B(H) : |hT (v)� T0(v), wi| < ✏},

where T0 2 B(H), v , w 2 H and ✏ > 0.
Notice norm convergence ) strong convergence ) weak
convergence.
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von Neumann algebras

Why other topologies?

Lemma

The map T ! T ⇤ is weakly continuous but not strongly
continuous.
The map (S, T ) ! ST is separately strongly continuous but not
jointly strongly continuous.
If A ✓ B(H) is a ⇤-subalgebra, then so is the weak closure of A.
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von Neumann algebras

von Neumann’s bicommutant theorem

Given a subset S of B(H), we let
S0 := {T 2 B(H) : TU = UT for all U 2 S}. Notice that S0 is always a
subalgebra of B(H) and S ✓ S00 is always true.

Theorem (von Neumann)

Suppose that A ✓ B(H) is a unital ⇤-subalgebra. The following are
equivalent:

A = S0 for some S ✓ B(H);
A = A00;
A is closed with respect to the weak topology;
A is closed with respect to the strong topology.

A unital ⇤-subalgebra of B(H) satisfying any of the equivalent
conditions of the above theorem is called a von Neumann algebra.
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von Neumann algebras

Examples of vNas

Example

B(H) is a von Neumann algebra.

Example

Suppose that (X , µ) is a finite measure space. Then L1(X , µ) acts on
the Hilbert space L2(X , µ) by left multiplication, yielding an embedding

L1(X , µ) ,! B(L2(X , µ)),

the image of which is a von Neumann algebra. (Actually, all abelian
von Neumann algebras are isomorphic to some L1(X , µ), whence von
Neumann algebra theory is sometimes dubbed “noncommutative
measure theory.”)
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von Neumann algebras

Group von Neumann algebras

Example

Suppose that G is a locally compact group and ↵ : G ! B(H) is a
unitary group representation. Then the group von Neumann algebra of
↵ is ↵(G)00. (Understanding ↵(G)00 is tantamount to understanding the
invariant subspaces of ↵.)

In the important special case that ↵ : G ! B(L2(G)) (where G is
equipped with its haar measure) is given by left translations

↵(g)(f )(x) := f (g�1x),

we call ↵(G)00 the group von Neumann algebra of G and denote it by
L(G).

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 10 / 36



von Neumann algebras

Group von Neumann algebras

Example

Suppose that G is a locally compact group and ↵ : G ! B(H) is a
unitary group representation. Then the group von Neumann algebra of
↵ is ↵(G)00. (Understanding ↵(G)00 is tantamount to understanding the
invariant subspaces of ↵.)

In the important special case that ↵ : G ! B(L2(G)) (where G is
equipped with its haar measure) is given by left translations

↵(g)(f )(x) := f (g�1x),

we call ↵(G)00 the group von Neumann algebra of G and denote it by
L(G).

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 10 / 36



von Neumann algebras

R

Example

Let M2 denote the set of 2⇥ 2 matrices with entries from C. We
consider the canonical embeddings

M2 ,! M2 ⌦M2 ,! M2 ⌦M2 ⌦M2 ,! · · ·

and set M :=
S1

n=1
N

n M2.
The normalized traces on

N
n M2 form a cohesive family of traces,

yielding a trace tr : M ! C.
We can define an inner product on M by hA, Bi := tr(B⇤A). Set H
to be the completion of M with respect to this inner product.
M acts on H by left multiplication, whence we can view M as a
⇤-subalgebra of B(H). We set R to be the von Neumann algebra
generated by M. R is called the hyperfinite II1 factor.
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von Neumann algebras

Tracial von Neumann algebras

Suppose that A is a von Neumann algebra. A tracial state (or just
trace) on A is a linear functional ⌧ : A ! C satisfying:

⌧(1) = 1;
⌧(x⇤x) � 0 for all x 2 A;
⌧(xy) = ⌧(yx) for all x , y 2 A.

A tracial von Neumann algebra is a pair (A, ⌧), where A is a von
Neumann algebra and ⌧ is a trace on A.

In the case that ⌧ is also faithful, meaning that ⌧(x⇤x) = 0 ) x = 0,
the function hx , yi⌧ := ⌧(y⇤x) is an inner product on A, yielding the
so-called 2-norm k · k2 on A. The associated metric is complete on any
bounded subset of A.

(A, ⌧) is called separable if the metric associated to the 2-norm is
separable.
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von Neumann algebras

II1 Factors

A von Neumann algebra A is said to be a factor if A \ A0 = C · 1.

Fact
If A is a von Neumann algebra, then A ⇠=

R �
X Ax (a direct integral)

where each Ax is a factor.

A factor is said to be of type II1 if it is infinite-dimensional and admits a
trace.

Fact
A II1 factor admits a unique weakly continuous trace, which is
automatically faithful.
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von Neumann algebras

Examples-revisited

B(H) is a factor. If dim(H) < 1, then B(H) admits a trace, but is
not a II1 factor. If dim(H) = 1, then B(H) admits no trace. Thus,
B(H) is never a II1 factor.
L1(X , µ) admits a trace f 7!

R
X f dµ but is not a factor.

If G is a countable group that is ICC, namely all conjugacy classes
(other than {1}) are infinite, then L(G) is a II1 factor; the trace is
given by T 7! hT �e, �ei. In particular, if n � 2, then L(Fn) is a II1
factor.
R is a II1 factor; the trace tr :

S
n
N

n M2 ! C extends uniquely to
the completion. Moreover, R embeds into any II1 factor.
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von Neumann algebras

Why model theorists care about II1 factors

It is straightforward to check that the class of tracial von Neumann
algebras (in the correct signature for continuous logic) is a
universally axiomatizable class. We let TvNa denote the theory of
tracial von Neumann algebras.
Moreover, it is a fact that the class of II1 factors is
89-axiomatizable.
Note that any tracial von Neumann algebra embeds into a II1
factor: A ✓ A ⇤ L(Z) (free product).
It follows that an existentially closed tracial von Neumann algebra
is a II1 factor.
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von Neumann algebras

Ultrapowers of von Neumann algebras
Suppose that (A, ⌧) is a tracial von Neumann algebra and U is a
nonprincipal ultrafilter on N. We set

`1(A) := {(an) 2 AN : kank is bounded}.

Unfortunately, if we quotient this out by the ideal

{(an) 2 AN : lim
U
kank = 0},

the resulting quotient is usually never a von Neumann algebra. Rather,
we have to quotient out by the smaller ideal

{(an) 2 AN : lim
U
kank2 = 0},

yielding the tracial ultrapower AU of A.
Continuous logic provided a logical framework for the study of these
ultrapowers.
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von Neumann algebras

R!-embeddability

Definition
We say that a separable II1 factor A is R!-embeddable if there is a
nonprincipal ultrafilter U on N such that A embeds into RU .

Remarks

1 If A is R!-embeddable, then A embeds into RU for any
nonprincipal ultrafilter on N.

2 A is R!-embeddable if and only if A |= Th8(R), the universal
theory of R.
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von Neumann algebras

Connes’ Embedding Problem

In 1976, Connes proved that L(F2) is R!-embeddable.
He then remarked “Apparently such an embedding ought to exist
for all II1 factors...”
This remark is now known as the Connes Embedding Problem
(CEP) and is the central question in operator algebras. It has
zillions of equivalent reformulations.
For example, it is known that L(G) is R!-embeddable if and only if
G is hyperlinear. So settling the CEP for group von Neumann
algebras would settle the question of whether or not all groups are
hyperlinear (a serious question in group theory).
Call a separable II1 factor A locally universal if every separable II1
factor is A!-embeddable. (So CEP asks whether or not R is
locally universal.) Hart, Farah, and Sherman proved the existence
of one (and therefore many) locally universal II1 factors (“Poor
man’s CEP”).

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 18 / 36



Model companions

1 von Neumann algebras

2 Model companions

3 Model complete theories of tracial vNas

4 Independence relations

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 19 / 36



Model companions

Model companions

Recall that a theory T is model complete if any embedding
between models of T is elementary.
If T 0 is a theory, then a model complete theory T is a model
companion for T 0 if any model of T 0 embeds in a model of T and
vic-versa (that is, if T 0

8 = T8). A theory can have at most one
model companion.
If T 0 is universal, then T 0 has a model companion T if and only if
the class of its existentially closed structures is elementary; in this
case T is their theory.

Theorem (G., Hart, Sinclair)

TvNa does not have a model companion.
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Model companions

Crossed products of tracial vNas
Suppose that M is a von Neumann algebra, G is a countable group
and ↵ : G ! Aut(M) is a group homomorphism. Then there is another
von Neumann algebra M o↵ G satisfying the following

Proposition

1 There is an embedding I : M ! M o↵ G;
2 L(G) is naturally a subalgebra of M o↵ G;
3 The action of G on M, inside of M o↵ G, is given by unitary

conjugation:

I(↵g(x)) = �(h) � I(x) � �(g�1), x 2 M, g 2 G.

4 If M is tracial, then so is M o↵ G.
5 If M is R!-embeddable and G is amenable, then M o↵ G is also

R!-embeddable.
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Model companions

R does not have QE

Theorem
R does not have QE.

Proof.

It is enough to find R!-embeddable von Neumann algebras M
and N with M ⇢ N and an embedding ⇡ : M ,! RU that does not
extend to an embedding N ,! RU .
Towards this end, it is enough to find a countable group G such
that L(G) is R!-embeddable, an embedding ⇡ : L(G) ,! RU , and
↵ 2 Aut(L(G)) such that there exists no unitary u 2 RU satisfying
(⇡ � ↵)(x) = u⇡(x)u⇤ for all x 2 L(G). (We’ll explain this on the
next slide.)
By nontrivial work of Nate Brown, we can take G = SL(3, Z) ⇤ Z

and ↵ = id ⇤✓ for any nontrivial ✓ 2 Aut(L(Z)).
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Model companions

R does not have QE (cont’d)

Proof.

Suppose that G, ⇡, and ↵ are as above. Set M := L(G) and
N := M o↵ Z. Then N is R!-embeddable.
Suppose, towards a contradiction, that ⇡ extends to ⇡̃ : N ,! RU .
Let u 2 N be the generator of Z and set ũ := ⇡̃(u). We then have,
for x 2 M:

ũ⇡(x)ũ⇤ = ⇡(uxu⇤) = ⇡(↵(x)),

contradicting our choice of ⇡ and ↵.
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Model companions

Other non-QE results

Definition
If A is a separable II1 factor, we say that A is McDuff if A⌦R ⇠= A.

For example, R is McDuff.
Any II1 factor A embeds into a McDuff factor: A ✓ A⌦R.
It is a fact that McDuffness is 89-axiomatizable, whence a
separable existentially closed tracial von Neumann algebra is a
McDuff II1 factor.

We noticed that Brown’s work would apply if instead of R we had a
locally universal, McDuff II1 factor. We thus have:

Theorem
If S is a locally universal, McDuff II1 factor, then S does not have QE.
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Model companions

Proof of the Main Theorem

Suppose, towards a contradiction, that TvNa has a model
companion T . Since TvNA is 8-axiomatizable and has the
amalgamation property, we have that T has QE.
Fix a separable model S of T . As discussed earlier, models of T
are then existentially closed tracial von Neumann algebras,
whence S is a McDuff II1 factor.
Moreover, S is a locally universal II1 factor: if A is an arbitrary
separable tracial vNA, then A embeds in some separable S1 |= T .
Since SU is !1-saturated, S1 embeds in SU , whence A embeds in
SU .
By our previous theorem, S does not have QE, a contradiction.

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 25 / 36



Model complete theories of tracial vNas

1 von Neumann algebras

2 Model companions

3 Model complete theories of tracial vNas

4 Independence relations

Isaac Goldbring (UIC) Tracial vNas don’t have a model companion UIUC October 12, 2012 26 / 36



Model complete theories of tracial vNas

Are there model complete theories of tracial vNas?

Just because there is no model companion of TvNA does not prevent
there from being a model-complete theory of tracial von Neumann
algebras, so we raise the question: Is there a model-complete theory
of tracial von Neumann algebras (whose models would automatically
be II1 factors)?

Theorem (G., Hart, Sinclair)

If the CEP has a positive solution, then there is no model-complete
theory of tracial von Neumann algebras.
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Model complete theories of tracial vNas

A preliminary result

Fact (Jung)

Any embedding R! RU is unitarily equivalent to the diagonal
embedding (whence elementary).

Remark
Jung’s result shows that R is the prime model of its theory.
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Model complete theories of tracial vNas

R is the only possibility

Proposition

Suppose that A is an R!-embeddable II1 factor such that Th(A) is
model-complete. Then A ⌘ R.

Proof.
Draw crude diagram on the board.

We now see how CEP implies that there is no model-complete theory
of II1 factors. Indeed, if T were a model-complete theory of II1 factors,
then by CEP, models of T would be R!-embeddable, whence the
above proposition shows T = Th(R). Another use of CEP shows that
T8 = TvNa, whence T is a model companion for TvNa, which we know
has no model companion.
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Model complete theories of tracial vNas

Free Group Factors

Murray and von Neumann showed that L(Fn) 6⇠= R by showing that
R has a certain property, called (�), that L(Fn) does not have.
It is not too difficult to show that (�) is axiomatizable by a set of
sentences in continuous logic, whence L(Fn) 6⌘ R.
Since L(Fn) is R!-embeddable, we see that Th(Fn) is not
model-complete.
Big Open Question: For distinct m, n � 2, is L(Fm) ⇠= L(Fn)?
Weaker, but still difficult, Open Question: For distinct m, n � 2,
is L(Fm) ⌘ L(Fn)?
If the above question has an affirmative answer, we see that this
common theory is not model-complete. But are the natural
embeddings L(Fm) ,! L(Fn) (for m < n) elementary (like in the
case of Th(Fn))?
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Independence relations

The order property

Definition
Suppose that M is a metric structure, '(x ; y) is a formula with
|x | = |y | = n, and ✏ > 0.

For a, b 2 Mn, we write a �',✏ b if '(a, b)  ✏ and '(b, a) � 1� ✏.
A '-✏ chain of length k in M is a sequence a1, . . . , ak from Mn

such that ai �',✏ aj for 1  i < j  k .
M has the order property or is unstable if there exists ' such that,
for every ✏ > 0, M has arbitrarily long finite '-✏ chains.
A sequence (Mi : i 2 N) of structures has the order property if
there exists ' such that, for every ✏ > 0 and every k 2 N, all but
finitely many of the Mi have a '-✏ chain of length k .
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The order property in matrix algebras

Theorem (Hart. Farah, Sherman)

The sequence (M2n : n 2 N) has the order property.

Proof.

Let x =

✓
0

p
2

0 0

◆
and for 1  i  n � 1, let

ai =
iO

j=0

x ⌦
n�1O

j=i+1

1 and bi =
iO

j=0

1⌦ x⇤ ⌦
n�1O

j=i+2

1.

Set '(x1, x2; y1y2) := k[x1, y2]k2 and observe that, for i < j , we have
'(ai , bi ; aj , bj) = 0 and '(aj , bj ; ai , bi) = 2.
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II1 factors are unstable

Corollary (Hart, Farah, Sherman)

Every II1 factor has the order property.

Proof.
Every II1 factor contains a copy of M2n .

Corollary (Hart, Farah, Sherman)

Assuming (¬CH), any separable II1 factor has two nonisomorphic
ultrapowers.

Folkloric Theorem (Hart)

Any II1 factor is not (model-theoretically) simple.
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Rosiness?

We had hoped that, although II1 factors are not even simple, perhaps
there could be a well-behaved notion of independence. Here is a
natural candidate:

Suppose that M is a II1 factor. Let L2M be the completion of the
inner product space (M, h·, ·i⌧ ).
For a subalgebra N of M, we let EN : L2M ! L2N be the
orthogonal projection map (“conditional expectation”).
For D ✓ M, let hDi denote the von Neumann subalgebra of M
generated by D.
Define A |̂

C
B to hold if and only if, for all a 2 A, we have

EhBCi(a) = EhCi(a).
We had an idea how to prove that |̂ is an independence relation
for Th(R) assuming QE. Without QE, this seems very difficult.
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