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Joint work with Matilde Marcolli.
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Introduction

Main references:
@ Feynman motives of banana graphs. Comm. in Number
Theory and Physics (2009) 1-57
@ Algebro-Geometric Feynman rules. arXiv:0811.2514

@ Parametric Feynman integrals and determinant hypersurfaces.
arXiv:0901.2107

e Matilde Marcolli: Feynman Motives. World Scientific.
(To appear later this year.)
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Introduction

Perturbative QFT ~» Feynman integral computations
Extensive numerical evidence: graph ‘amplitudes’ are linear
combinations of multiple zeta values (Broadhurst-Kreimer).

Hard to give a precise statement, as integrals typically diverge.
I: graph; p: ‘'momenta’ attached to external edges

I(n—D¢/2) 5(1 = 3, t) Vi (t, p)Pt/2=n
(47)(D/2 /[0,1]" Wr(t)D/2

u(r, p) = dty - - - dt,.

n = # internal edges

D = spacetime dimension

¢ = by(I') = # loops

Vi (t, p) = a rational function

Yr(t)= a polynomial of degree ¢ determined by the graph.
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Introduction

Ignore most of this!

U(T, p) = an integral of a form defined over the complement of a
hypersurface Xr: {¢r = 0} in projective space.

Xr is determined by the graph I, in a way that | will explain later.

There are renormalization techniques assigning well-defined values
to such (typically divergent) integrals. These are beyond my
understanding, but their success is unquestionable.

Broadhurst-Kreimer ~~ evidence that numbers obtained this way
are periods of ‘mixed Tate motives'.
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Introduction

Mixed Tate motives, simple-minded viewpoint:
Varieties admitting decompositions as unions, set-differences of
affine spaces determine Tate motives.

Mixed Tate motive: an object in the smallest motivic category
generated by Tate motives.

Motive: in this talk, will approximate these by elements of the
Grothendieck ring of varieties.

Grothendieck ring of varieties: a Lego construction set, with bricks
given by isomorphism class of varieties.
Addition « disjoint union; Multiplication < product.

This gives a ‘universal Euler characteristic’: e.g., X ~~ x(X)
(top. Euler characteristic) factors through the Grothendieck ring.
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Introduction

‘Mixed Tate motives': Use only affine spaces as Lego bricks.
Examples:

[P7] = [A7] + [A" ] 4+ [A%]

Grassmannians, Schubert varieties. . .

Blow-up of P" along P™: [P"] — [P™] + [P™] - [P"~™~1].

Caveat: intersections of Tate motives are not necessarily Tate
motives.
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Introduction

Broadhurst-Kreimer: evidence that contributions of individual
graphs to Feynman integrals are periods of mixed Tate motives.
Kontsevich: BK evidence may be explained if the motives
determined by graph hypersurfaces Xr are mixed-Tate motives.
Belkale-Brosnan: not true. Graph hypersurfaces generate the
Grothendieck ring of varieties! (But the proof is non-constructive.)

Program:

@ Analyze classes of graphs, attempt to estimate ‘complexity’ of
Xr in the Grothendieck ring.

@ Note: A hypersurface in P” can be ‘simple’ in Grothendieck
ring only if it is ‘very' singular.

@ 'Quantify’ singularity: compute Milnor classes of graph
hypersurfaces. (Milnor = cp — csur.)

@ Tools needed to compute the cqyp class of X usually suffice in
order to compute class in Grothendieck ring.
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Introduction

Is this really the right approach?
(After Abraham Kaplan, The conduct of inquiry, 1964)

There is a story of a drunkard searching under a street lamp for his
house key, which he had dropped some distance away.

Asked why he didn't look where he had dropped it, he replied,
“It's lighter here!”
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

There is a Lego-like theory of characteristic classes for possibly
singular varieties in characteristic 0 (say: over C).

History:
o Marie-Hélene Schwartz
(~1964, Poincaré-Hopf for singular varieties);

@ Grothendieck-Deligne
(~1969, SGAb5; conjectural ‘functorial’ theory);
@ Robert MacPherson
(~1974, affermative answer to Grothendieck-Deligne);

@ Brasselet-Schwartz
(~1979, Schwartz=MacPherson).

~~ Chern-Schwartz-MacPherson (cgm) classes of compact complex
algebraic varieties.
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

Chern-Schwartz-MacPherson (cgy) classes of compact complex
algebraic varieties.

‘Normalization': X nonsingular ~» cgp(X) = ¢(TX) N [X].

‘Functoriality': for any X, csm(X) = ¢«(1Lx), where ¢, is a natural
transformation from the functor of constructible functions to the
Chow (‘homology’) functor, w.r.t. proper morphisms.

First instance of functoriality: [ con(X) = x(X)
(topological Euler characteristic).
‘Singular Poincaré-Hopf’

MacPherson: explicit construction of this natural transformation.
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

Definition (Warning: not a la Schwartz, nor a la MacPherson.)

Write X =1I7_, V;, for V; nonsingular (of course, possibly
noncompact). | will define a contribution ¢,(1ly) € A, X for each

nonsingular V C X.
w
%4

C_>VC_>X

e W := resolution of singularities of V.
o D:= W \ V, assume divisor with SNC.

c(Ly) = wa(c(Qjy (log D)) N [W])
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class
Milnor class

Definition
c.(Ly) = wi(c(Qy (log D)) N [W])

Write X = II7_; V;, for V; nonsingular, in any way.

Chern-Schwartz-MacPherson class
CSM(X) = Zi C*(II.\/I)

(Clearly Lego-like!)

Theorem (—, 2006)

This is independent of all choices, and agrees with
Schwartz/MacPherson’s definition.
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

Two proofs:
@ Using MacPherson's result, easy exercise.
Classes de Chern pour variétés singuliéres, revisitées,
C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 405-410.

@ Not using MacPherson's natural transformation, prove directly
that c, satisfies the Grothendieck-Deligne conjecture.

Limits of Chow groups and a new construction of
Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. (2006)
(MacPherson Volume 2), 915-941.

Useful side-product: functoriality with respect to not necessarily
proper morphisms, for an ‘enlarged’ Chow functor.
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

X: a subscheme of a nonsingular variety M.

Chern-Fulton class

cr(X) == c(TM) N s(X, M)

Example: X a hypersurface in M, then

[X]

cr(X) := c(TM) N (c(NxM)" 1 N [X]) = c(TM) N X

Possibly better name for this: ‘virtual Chern class’ of X.

If X is nonsingular, cp(X) = c(TX) N [X].

Morally, cp(X) is ‘the Chern class of a smoothening of X'.
A precise statement of this type: Fantechi-Gottsche 2007,
Theorem 4.15.
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Chern-Schwartz-MacPherson classes
Crash course on Chern/Milnor classes of singular varieties Chern-Fulton class

Milnor class

Remark: the virtual class is not Lego-like.

In particular, cp(X) # csm(X) in general.

Link between cp(X), csm(X): reasonably well-understood for
hypersurfaces, complete intersections. (Work of many people.)

Yokura: The difference is captured by Verdier-Riemann-Roch-type
results. (Close to Grothendieck's motivation!)

Milnor class (up to sign...)

cr(X) — csm(X)

e If X is nonsingular, Milnor class = 0.

e If X is a hypersurface, then £ [ cp(X) — csm(X) = sum of
Parusinski-Milnor numbers of singularities. (Hence the name.)

@ In general, a quantification of ‘how singular X is'.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Recall from 10 minutes ago:
The aim is to study ‘graph hypersurfaces’, in the Grothendieck
group and from the point of view of singularities.

I": graph; one variable t. for each edge e
(Usually assume I is connected and 1-Pl: it cannot be
disconnected by removing a single edge.)

Definition

Wr(t) Z H te

TCl e¢E(T)

where the sum is over all the spanning trees T of I'.

# of variables = # (internal) edges; degree = # loops
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Example: '=n-sided polygon

4

List all spanning trees, and edges missed by the spanning trees:

D L D

=ttt +
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Example: ‘banana graphs': two vertices, n parallel edges

BN\

~r = oty + tit3 + t1tp for n = 3.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

{1r = 0}: hypersurface Xr € P"~1 (or Xr C A"); deg Xr = (.
(n = number of edges of I'; £ = number of loops.)

Task: compute the class [Xr] in the Grothendieck ring, and/or
CSM(XF) S A*Pn_l.

Equivalent: [P\ Xr], com(Lpn-1.x.) € APL.
(Closer to motivation: the Feynman amplitude of I is a period of
the complement of Xr.)

For example: y(P" 1~ Xp) =7

Relation between these invariants and combinatorics of I'?
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

For instance, does x(P"~! \ Xr) closely reflect the combinatorics
of I'?

Devil's advocate (=referee to CNTP 2009): maybe not too closely.
Indeed, x(PN \. Xr,ir,) = 0. (Reason: C*-action.)

Challenge: Beyond computing invariants for individual graphs,
understand the organization of these invariants for all graphs.
(This is in fact necessary in order to approach renormalization
issues. )
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

In low dimension, cgy classes may be computed with
e.g. Macaulay?2.
http://www.math.fsu.edu/ aluffi/CSM/CSMexamples.html

Experimentation for small graphs: J. Stryker, almost all graphs
with six or fewer edges.

Puzzle: cgnm(Xr) is effective for all these graphs! Why?

Evokes:
o csM(T) is effective for all toric varieties. (" Ehlers’ formula™)

e csM(S) is conjecturally effective for all Schubert varieties S of
ordinary Grassmannians (— & Mihalcea, JAG 2009)

Note these are all mixed-Tate. . .
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Definition
Explicit computations

Feynman rules

Invariants of graph hypersurfaces q
grapn hyp Back to Broadhurst-Kreimer

Infinite families of graphs?

Theorem (—, Marcolli, CNTP 2009)

Explicit computation of [Xr| € Grothendieck ring, and csm(Xr),
for I = all banana graphs

In the Grothendieck group:

T - (-1)

]mel X _ " Tn72
[P\ Xr, ] T+1 "

=T 4 (= DT 2 T7° =T 4 4 T7° o

where T = [Al VA =1L — 1.
(L = [A'])
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

The CSM class:
sm(Lprix;,) = (1= H)"™* + nH) N [P"]

where H is the hyperplane class in P"1.

‘Large’ Milnor class (< 'very singular’). Example, n = 9:
84H3 — 1176 H* + 9786 H° — 78792H° + 630516 H" — 5044200H°

Corollary: x(Xr) = n+ (—1)" for n > 3.

In particular, x(Xr) > 0 for all banana graphs.
In fact, csm(Xr) is effective for banana graphs.
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Definition
Explicit computations

Invariants of graph hypersurfaces TEIED (Ul
grapn hyp Back to Broadhurst-Kreimer

Proof of the theorem:

If T is any planar graph, can relate Xr to Xrv, where 'V is the dual
graph: they correspond to each other via a Cremona
transformation of P71,

For ' = banana graphs:

Paolo Aluffi Chern classes of singular varieties and Feynman integrals




Definition
Explicit computations

Invariants of graph hypersurfaces TEIED (Ul
grapn hyp Back to Broadhurst-Kreimer

Proof of the theorem:

If T is any planar graph, can relate Xr to Xrv, where 'V is the dual
graph: they correspond to each other via a Cremona
transformation of P71,

For ' = banana graphs:
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Definition
Explicit computations

Invariants of graph hypersurfaces TEIED (Ul
grapn hyp Back to Broadhurst-Kreimer

Proof of the theorem:

If T is any planar graph, can relate Xr to Xrv, where 'V is the dual
graph: they correspond to each other via a Cremona
transformation of P71,

For ' = banana graphs:
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

'V are polygons, computation can be carried out explicitly.
(Calculus of constructible functions, and lemma on cgyp classes via
‘adapted blow-ups’.) O

Remark: More generally, one expects certain sums of [Xr] to be
‘easier’ (and more interesting) than individual [Xr].

Bloch, 2008: computation of > [Xr], I connected graph with N
vertices (with automorphism factor); it is MT. Main tool: the
relation between [Xr] and [Xrv], extended to non-planar graphs.

Paolo Aluffi Chern classes of singular varieties and Feynman integrals



Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Reason why ' assumed to be connected, 1-Pl:
Integrals U(T, p) are multiplicative on disjoint unions of graphs. If
=711, then

ur,p) = U1, p1)U(T2, p2)

If T is obtained by joining '1, > by an edge (matching external
momenta), multiply product by a ‘propagator’ term.

FEYNMAN RULES!

With Marcolli: ‘Algebro-geometric Feynman rules’
(I vetoed ‘Feynman rules in algebraic geometry’)
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Back to the challenges presented earlier:

Challenge: Understand the organization of invariants such as
[P™=1  Xr], csm(Lpn-1.x. ) for all graphs. Understand relation
between the combinatorics of a graph and the corresponding
invariants.

Ways to formalize these:
@ Give formulas for the behavior of invariants after combinatorial
operations such as splitting edges, adding edges. ..
@ Look for ‘Feynman rules’ based on the class in the

Grothendieck ring and on cgqyp classes.

First task: some formulas are obtained in CNTP 2009.
Second task: maybe more interesting.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

The following recipe is part of a larger picture:

I: finite graph (may be non-connected, non-1-Pl...), n edges
Xr: corr. hypersurface in A”; view as locally closed in P"
(g ) = ao[P%] + - - + an[P"]
Define Gr(T) =ao+ a1 T +---+anT"
Define Cr(T) = (T +1)" — Gr(T)
Example: T = banana graph ~ Cr(T) = T(T —1)"" 1+ n7"1
Remarks:

o Coefficient of T"~1in Gr(T) equals n— .

o CL(0) = x(P" 1\ Xr).
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Definition
Explicit computations
Feynman rules

Invariants of graph hypersurfaces q
grapn hyp Back to Broadhurst-Kreimer

Theorem (—, Marcolli, arXiv:0811.2514)

The invariant Cr(T) obeys the Feynman rules, with inverse
propagator (T + 1).

Proof:

Show that Feynman rules correspond to homomorphisms from a
‘Grothendieck ring’ of conical immersed subvarieties of A”".

The function Gr(T) is such a homomorphism.

Proof of this fact: study cqnr classes of joins in projective

space. L]

~ ‘Feynman rules’ for cgyr classes of graph hypersurfaces are a
particular case of behavior of cqy classes with respect to natural
constructions in projective geometry.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

Note that this answers the objection on x(P"1 < Xp):
This is one coefficient of Cr(T); it is not multiplicative under
disjoint union, but Cr(T) is.

Similar story at the level of motives:

[~ A7 N )A(r]

Theorem (—, Marcolli, arXiv:0811.2514)

This invariant also satisfies the Feynman rules, with inverse
propagator I = [Al].

In arXiv:0811.2514, we obtain a ‘universal’ invariant.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

More recent work with Marcolli: a possible approach to explaining
the BK evidence. (Reference: arXiv:0901.2107.)

Idea: Transfer the integral computation to a fixed variety D,
(for given number ¢ of loops) ~~ for all graphs with ¢ loops, the
Feynman integral is a period of a fixed Dy relative to a locus Sy
supported on strata of a fixed normal crossing divisor.

Here, Dy is the complement of the determinant hypersurface,
clearly MT.

The translation holds for graphs satisfying reasonable
combinatorial conditions, e.g.: 3-vertex connected, each vertex
admits a wheel neighborhood.
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

This reduces the question to ‘linear algebra’: describe a variety of
frames (vi,...,vy) with vy € V4, ..., vy € V, where Vi,...V} are
(arbitrary) subspaces of a fixed vector space.

Prove this is MT!

Ravi Vakil: This is bound to be hard.
(‘Murphy’s law in algebraic geometry’)

Low ¢ (=few loops): fun exercise.
Example: Vi, V5@ arbitrary subspaces of a fixed vector space V/;
F(V4, Vo) = variety of pairs (vi, v2) s.t. v; € V;, and (v, vo)

linearly independent.

[F(Vy, Vo)] =77
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

di = dim V;; di2 = dim(V1 N V,):
[F(V1, V2)] —[Atd [ _,d [ datl T di2 g,

¢ = 3, notation as above (6 = dim(V; + Vo + V3)):
[F(Vi, Vo, V5)] = (L% — 1)(L% — 1)(L% — 1)
S(L - 1) (L% - L)L - 1) + 1% - L - 1)+ (L% - LS - 1)
_,’_(L _ 1)2 (]Ld1+d2+d3—5 _ Ld123+1) + (]L _ 1)3
In particular, both are mixed-Tate. (Both from arXiv:0901.2107.)

£ = 4: some work by J. Fullwood; but it gets very messy very fast.

F(Vi,...,V,) may be expressed as an intersection of Schubert
varieties in flag manifolds; these tend to be very complex gadgets.
(And remember: intersections of MT are not necessarily MT!)
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Definition

Explicit computations
Feynman rules

Back to Broadhurst-Kreimer

Invariants of graph hypersurfaces

SUMMARY:

@ Numerical evidence suggests that individual contributions of
graphs to Feynman integrals may be ‘very special’ numbers.

e One way to approach this question is to study certain (very)
singular varieties associated to graphs.

@ Classes in the Grothendieck group and characteristic classes
are natural ways to quantify ‘how singular’ these varieties are.

@ It turns out that these invariants satisfy the ‘Feynman rules’, a
natural set of constraints in the theory of Feynman integrals.

@ A new approach reduces the question to the study of certain
varieties of frames, with relations to e.g. the geometry of
Schubert varieties in flag manifolds.

Just two more things. . .
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Two more things

HAPPY BIRTHDAY, ANATOLY!
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