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Main references:

Feynman motives of banana graphs. Comm. in Number
Theory and Physics (2009) 1-57

Algebro-Geometric Feynman rules. arXiv:0811.2514

Parametric Feynman integrals and determinant hypersurfaces.
arXiv:0901.2107

Matilde Marcolli: Feynman Motives. World Scientific.
(To appear later this year.)
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Perturbative QFT  Feynman integral computations
Extensive numerical evidence: graph ‘amplitudes’ are linear
combinations of multiple zeta values (Broadhurst-Kreimer).
Hard to give a precise statement, as integrals typically diverge.
Γ: graph; p: ‘momenta’ attached to external edges

U(Γ, p) =
Γ(n − D`/2)

(4π)`D/2

∫
[0,1]n

δ(1−
∑

i ti )VΓ(t, p)D`/2−n

ΨΓ(t)D/2
dt1 · · · dtn.

n = # internal edges

D = spacetime dimension

` = b1(Γ) = # loops

VΓ(t, p) = a rational function

ψΓ(t)= a polynomial of degree ` determined by the graph.
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Ignore most of this!

U(Γ, p) = an integral of a form defined over the complement of a
hypersurface XΓ: {ψΓ = 0} in projective space.

XΓ is determined by the graph Γ, in a way that I will explain later.

There are renormalization techniques assigning well-defined values
to such (typically divergent) integrals. These are beyond my
understanding, but their success is unquestionable.

Broadhurst-Kreimer  evidence that numbers obtained this way
are periods of ‘mixed Tate motives’.
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Mixed Tate motives, simple-minded viewpoint:
Varieties admitting decompositions as unions, set-differences of
affine spaces determine Tate motives.

Mixed Tate motive: an object in the smallest motivic category
generated by Tate motives.

Motive: in this talk, will approximate these by elements of the
Grothendieck ring of varieties.

Grothendieck ring of varieties: a Lego construction set, with bricks
given by isomorphism class of varieties.
Addition ↔ disjoint union; Multiplication ↔ product.

This gives a ‘universal Euler characteristic’: e.g., X  χ(X )
(top. Euler characteristic) factors through the Grothendieck ring.
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‘Mixed Tate motives’: Use only affine spaces as Lego bricks.

Examples:

[Pn] = [An] + [An−1] + · · ·+ [A0].

Grassmannians, Schubert varieties. . .

Blow-up of Pn along Pm: [Pn]− [Pm] + [Pm] · [Pn−m−1].

Caveat: intersections of Tate motives are not necessarily Tate
motives.
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Broadhurst-Kreimer: evidence that contributions of individual
graphs to Feynman integrals are periods of mixed Tate motives.
Kontsevich: BK evidence may be explained if the motives
determined by graph hypersurfaces XΓ are mixed-Tate motives.

Belkale-Brosnan: not true. Graph hypersurfaces generate the
Grothendieck ring of varieties! (But the proof is non-constructive.)

Program:

Analyze classes of graphs, attempt to estimate ‘complexity’ of
XΓ in the Grothendieck ring.
Note: A hypersurface in Pn can be ‘simple’ in Grothendieck
ring only if it is ‘very’ singular.
‘Quantify’ singularity: compute Milnor classes of graph
hypersurfaces. (Milnor = cF − cSM.)
Tools needed to compute the cSM class of XΓ usually suffice in
order to compute class in Grothendieck ring.
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Is this really the right approach?

(After Abraham Kaplan, The conduct of inquiry, 1964)

There is a story of a drunkard searching under a street lamp for his
house key, which he had dropped some distance away.

Asked why he didn’t look where he had dropped it, he replied,
“It’s lighter here!”
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
Milnor class

There is a Lego-like theory of characteristic classes for possibly
singular varieties in characteristic 0 (say: over C).

History:

Marie-Hélène Schwartz
(∼1964, Poincaré-Hopf for singular varieties);

Grothendieck-Deligne
(∼1969, SGA5; conjectural ‘functorial’ theory);

Robert MacPherson
(∼1974, affermative answer to Grothendieck-Deligne);

Brasselet-Schwartz
(∼1979, Schwartz=MacPherson).

 Chern-Schwartz-MacPherson (cSM) classes of compact complex
algebraic varieties.
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
Milnor class

Chern-Schwartz-MacPherson (cSM) classes of compact complex
algebraic varieties.

‘Normalization’: X nonsingular  cSM(X ) = c(TX ) ∩ [X ].

‘Functoriality’: for any X , cSM(X ) = c∗(11X ), where c∗ is a natural
transformation from the functor of constructible functions to the
Chow (‘homology’) functor, w.r.t. proper morphisms.

First instance of functoriality:
∫

cSM(X ) = χ(X )
(topological Euler characteristic).
‘Singular Poincaré-Hopf’

MacPherson: explicit construction of this natural transformation.
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
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Definition (Warning: not à la Schwartz, nor à la MacPherson.)

Write X = qn
i=1Vi , for Vi nonsingular (of course, possibly

noncompact). I will define a contribution c∗(11V ) ∈ A∗X for each
nonsingular V ⊆ X .

W

!!B
BB

BB
BB

B
w

((PPPPPPPPPPPPPPP

V
?�

OO

� � // V
� � // X

W := resolution of singularities of V .

D := W r V , assume divisor with SNC.

Definition

c∗(11V ) := w∗(c(Ω1
W (log D)∨) ∩ [W ])
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Definition

c∗(11V ) := w∗(c(Ω1
W (log D)∨) ∩ [W ])

Write X = qn
i=1Vi , for Vi nonsingular, in any way.

Definition: Chern-Schwartz-MacPherson class

cSM(X ) :=
∑

i c∗(11Vi
)

(Clearly Lego-like!)

Theorem (—, 2006)

This is independent of all choices, and agrees with
Schwartz/MacPherson’s definition.
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
Milnor class

Two proofs:

Using MacPherson’s result, easy exercise.

Classes de Chern pour variétés singulières, revisitées,
C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 405–410.

Not using MacPherson’s natural transformation, prove directly
that c∗ satisfies the Grothendieck-Deligne conjecture.

Limits of Chow groups and a new construction of
Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. (2006)
(MacPherson Volume 2), 915–941.

Useful side-product: functoriality with respect to not necessarily
proper morphisms, for an ‘enlarged’ Chow functor.
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
Milnor class

X : a subscheme of a nonsingular variety M.

Definition: Chern-Fulton class

cF(X ) := c(TM) ∩ s(X ,M)

Example: X a hypersurface in M, then

cF(X ) := c(TM) ∩ (c(NXM)−1 ∩ [X ]) = c(TM) ∩ [X ]

1 + X
.

Possibly better name for this: ‘virtual Chern class’ of X .
If X is nonsingular, cF(X ) = c(TX ) ∩ [X ].
Morally, cF(X ) is ‘the Chern class of a smoothening of X ’.
A precise statement of this type: Fantechi-Göttsche 2007,
Theorem 4.15.
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Chern-Schwartz-MacPherson classes
Chern-Fulton class
Milnor class

Remark: the virtual class is not Lego-like.
In particular, cF(X ) 6= cSM(X ) in general.
Link between cF(X ), cSM(X ): reasonably well-understood for
hypersurfaces, complete intersections. (Work of many people.)

Yokura: The difference is captured by Verdier-Riemann-Roch-type
results. (Close to Grothendieck’s motivation!)

Definition: Milnor class (up to sign. . . )

cF(X )− cSM(X )

If X is nonsingular, Milnor class = 0.

If X is a hypersurface, then ±
∫

cF(X )− cSM(X ) = sum of
Parusiǹski-Milnor numbers of singularities. (Hence the name.)

In general, a quantification of ‘how singular X is’.
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

Recall from 10 minutes ago:
The aim is to study ‘graph hypersurfaces’, in the Grothendieck
group and from the point of view of singularities.

Γ: graph; one variable te for each edge e
(Usually assume Γ is connected and 1–PI: it cannot be
disconnected by removing a single edge.)

Definition

ΨΓ(t) =
∑
T⊆Γ

∏
e /∈E(T )

te

where the sum is over all the spanning trees T of Γ.

# of variables = # (internal) edges; degree = # loops
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

Example: Γ=n-sided polygon

1 t2

t3
t4

t5

t

List all spanning trees, and edges missed by the spanning trees:

t2

t3
t4

t5

t1

 ψΓ = t1 + t2 + · · ·+ tn.
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

Example: ‘banana graphs’: two vertices, n parallel edges

2
t3

t1t

3

t1 t2
t1t2

t3 t

 ψΓ = t2t3 + t1t3 + t1t2 for n = 3.

ψΓ = t1 · · · tn
(

1

t1
+ · · ·+ 1

tn

)
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

{ψΓ = 0}: hypersurface XΓ ⊆ Pn−1 (or X̂Γ ⊆ An); deg XΓ = `.
(n = number of edges of Γ; ` = number of loops.)

Task: compute the class [XΓ] in the Grothendieck ring, and/or
cSM(XΓ) ∈ A∗Pn−1.

Equivalent: [Pn−1 r XΓ], cSM(11Pn−1rXΓ
) ∈ A∗Pn−1.

(Closer to motivation: the Feynman amplitude of Γ is a period of
the complement of XΓ.)

For example: χ(Pn−1 r XΓ) =?

Relation between these invariants and combinatorics of Γ?
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Definition
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Feynman rules
Back to Broadhurst-Kreimer

For instance, does χ(Pn−1 r XΓ) closely reflect the combinatorics
of Γ?

Devil’s advocate (=referee to CNTP 2009): maybe not too closely.
Indeed, χ(PN r XΓ1qΓ2) = 0. (Reason: C∗-action.)

Challenge: Beyond computing invariants for individual graphs,
understand the organization of these invariants for all graphs.
(This is in fact necessary in order to approach renormalization
issues.)
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

In low dimension, cSM classes may be computed with
e.g. Macaulay2.
http://www.math.fsu.edu/~aluffi/CSM/CSMexamples.html

Experimentation for small graphs: J. Stryker, almost all graphs
with six or fewer edges.

Puzzle: cSM(XΓ) is effective for all these graphs! Why?

Evokes:

cSM(T ) is effective for all toric varieties. (”Ehlers’ formula”)

cSM(S) is conjecturally effective for all Schubert varieties S of
ordinary Grassmannians (— & Mihalcea, JAG 2009)

Note these are all mixed-Tate. . .
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

Infinite families of graphs?

Theorem (—, Marcolli, CNTP 2009)

Explicit computation of [XΓ] ∈ Grothendieck ring, and cSM(XΓ),
for Γ = all banana graphs

In the Grothendieck group:

[Pn−1 r XΓn ] =
Tn − (−1)n

T + 1
+ n Tn−2

=Tn−1 + (n − 1)Tn−2 + Tn−3 − Tn−4 + Tn−5 + · · · ± 1

where T = [A1 r A0] = L− 1.
(L = [A1])
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

The CSM class:

cSM(11Pn−1rXΓn
) = ((1− H)n−1 + nH) ∩ [Pn−1]

where H is the hyperplane class in Pn−1.

‘Large’ Milnor class (↔‘very singular’). Example, n = 9:
84H3 − 1176H4 + 9786H5 − 78792H6 + 630516H7 − 5044200H8

Corollary: χ(XΓ) = n + (−1)n for n ≥ 3.

In particular, χ(XΓ) > 0 for all banana graphs.
In fact, cSM(XΓ) is effective for banana graphs.
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Proof of the theorem:

If Γ is any planar graph, can relate XΓ to XΓ∨ , where Γ∨ is the dual
graph: they correspond to each other via a Cremona
transformation of Pn−1.
For Γ = banana graphs:
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Proof of the theorem:

If Γ is any planar graph, can relate XΓ to XΓ∨ , where Γ∨ is the dual
graph: they correspond to each other via a Cremona
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Proof of the theorem:

If Γ is any planar graph, can relate XΓ to XΓ∨ , where Γ∨ is the dual
graph: they correspond to each other via a Cremona
transformation of Pn−1.
For Γ = banana graphs:
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Definition
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Back to Broadhurst-Kreimer

Γ∨ are polygons, computation can be carried out explicitly.
(Calculus of constructible functions, and lemma on cSM classes via
‘adapted blow-ups’.)

Remark: More generally, one expects certain sums of [XΓ] to be
‘easier’ (and more interesting) than individual [XΓ].
Bloch, 2008: computation of

∑
[XΓ], Γ connected graph with N

vertices (with automorphism factor); it is MT. Main tool: the
relation between [XΓ] and [XΓ∨ ], extended to non-planar graphs.
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Reason why Γ assumed to be connected, 1–PI:
Integrals U(Γ, p) are multiplicative on disjoint unions of graphs. If
Γ = Γ1 q Γ2, then

U(Γ, p) = U(Γ1, p1)U(Γ2, p2)

If Γ is obtained by joining Γ1, Γ2 by an edge (matching external
momenta), multiply product by a ‘propagator’ term.

FEYNMAN RULES!

With Marcolli: ‘Algebro-geometric Feynman rules’
(I vetoed ‘Feynman rules in algebraic geometry’)
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Back to the challenges presented earlier:

Challenge: Understand the organization of invariants such as
[Pn−1 r XΓ], cSM(11Pn−1rXΓ

) for all graphs. Understand relation
between the combinatorics of a graph and the corresponding
invariants.

Ways to formalize these:

Give formulas for the behavior of invariants after combinatorial
operations such as splitting edges, adding edges. . .

Look for ‘Feynman rules’ based on the class in the
Grothendieck ring and on cSM classes.

First task: some formulas are obtained in CNTP 2009.
Second task: maybe more interesting.
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The following recipe is part of a larger picture:

Γ: finite graph (may be non-connected, non-1-PI. . . ), n edges

X̂Γ: corr. hypersurface in An; view as locally closed in Pn

c∗(11X̂Γ
) = a0[P0] + · · ·+ an[Pn]

Define GΓ(T ) = a0 + a1T + · · ·+ anT
n

Define CΓ(T ) = (T + 1)n − GΓ(T )

Example: Γ = banana graph  CΓ(T ) = T (T − 1)n−1 + nT n−1

Remarks:

Coefficient of T n−1 in CΓ(T ) equals n − `.

C ′
Γ(0) = χ(Pn−1 r XΓ).
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Theorem (—, Marcolli, arXiv:0811.2514)

The invariant CΓ(T ) obeys the Feynman rules, with inverse
propagator (T + 1).

Proof:
Show that Feynman rules correspond to homomorphisms from a
‘Grothendieck ring’ of conical immersed subvarieties of An.
The function GΓ(T ) is such a homomorphism.
Proof of this fact: study cSM classes of joins in projective
space.

 ‘Feynman rules’ for cSM classes of graph hypersurfaces are a
particular case of behavior of cSM classes with respect to natural
constructions in projective geometry.
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Note that this answers the objection on χ(Pn−1 r XΓ):
This is one coefficient of CΓ(T ); it is not multiplicative under
disjoint union, but CΓ(T ) is.

Similar story at the level of motives:

Γ [An r X̂Γ].

Theorem (—, Marcolli, arXiv:0811.2514)

This invariant also satisfies the Feynman rules, with inverse
propagator L = [A1].

In arXiv:0811.2514, we obtain a ‘universal’ invariant.
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Back to Broadhurst-Kreimer

More recent work with Marcolli: a possible approach to explaining
the BK evidence. (Reference: arXiv:0901.2107.)

Idea: Transfer the integral computation to a fixed variety D`

(for given number ` of loops)  for all graphs with ` loops, the
Feynman integral is a period of a fixed D` relative to a locus S`

supported on strata of a fixed normal crossing divisor.

Here, D` is the complement of the determinant hypersurface,
clearly MT.

The translation holds for graphs satisfying reasonable
combinatorial conditions, e.g.: 3-vertex connected, each vertex
admits a wheel neighborhood.
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Definition
Explicit computations
Feynman rules
Back to Broadhurst-Kreimer

This reduces the question to ‘linear algebra’: describe a variety of
frames (v1, . . . , v`) with v1 ∈ V1, . . . , v` ∈ V`, where V1, . . .V` are
(arbitrary) subspaces of a fixed vector space.

Prove this is MT!

Ravi Vakil: This is bound to be hard.
(‘Murphy’s law in algebraic geometry’)

Low ` (=few loops): fun exercise.

Example: V1, V2: arbitrary subspaces of a fixed vector space V ;
F(V1,V2) = variety of pairs (v1, v2) s.t. vi ∈ Vi , and (v1, v2)
linearly independent.

[F(V1,V2)] =??
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Back to Broadhurst-Kreimer

di = dim Vi ; d12 = dim(V1 ∩ V2):

[F(V1,V2)] =Ld1+d2 − Ld1 − Ld2 − Ld12+1 + Ld12 + L

` = 3, notation as above (δ = dim(V1 + V2 + V3)):

[F(V1,V2,V3)] = (Ld1 − 1)(Ld2 − 1)(Ld3 − 1)

−(L− 1)
(
(Ld1 − L)(Ld23 − 1) + (Ld2 − L)(Ld13 − 1) + (Ld3 − L)(Ld12 − 1)

)
+(L− 1)2

(
Ld1+d2+d3−δ − Ld123+1

)
+ (L− 1)3

In particular, both are mixed-Tate. (Both from arXiv:0901.2107.)

` = 4: some work by J. Fullwood; but it gets very messy very fast.

F(V1, . . . ,Vr ) may be expressed as an intersection of Schubert
varieties in flag manifolds; these tend to be very complex gadgets.
(And remember: intersections of MT are not necessarily MT!)
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Back to Broadhurst-Kreimer

SUMMARY:

Numerical evidence suggests that individual contributions of
graphs to Feynman integrals may be ‘very special’ numbers.

One way to approach this question is to study certain (very)
singular varieties associated to graphs.

Classes in the Grothendieck group and characteristic classes
are natural ways to quantify ‘how singular’ these varieties are.

It turns out that these invariants satisfy the ‘Feynman rules’, a
natural set of constraints in the theory of Feynman integrals.

A new approach reduces the question to the study of certain
varieties of frames, with relations to e.g. the geometry of
Schubert varieties in flag manifolds.

Just two more things. . .
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http://www.journalofsingularities.org/
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HAPPY BIRTHDAY, ANATOLY!
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