
Introduction
Analytic invariants

Topological invariants

Invariants of Normal Surface Singularities

András Némethi

Rényi Institute of Mathematics, Budapest

June 19, 2009

András Némethi Invariants of Normal Surface Singularities



Introduction
Analytic invariants

Topological invariants

Notations
Motivation. Questions.

Normal surface singularities

(X , o) = a normal surface singularity

M = its link (oriented 3�manifold)
assume: M is a rational homology sphere (H1(M,Z) is �nite)

π : X̃ → X = a good resolution with dual graph Γ

L := H2(X̃ ,Z)

freely generated by the classes of the irreducible exceptional curves
identi�ed also with the integral cycles supported on E = π−1(o)

L′ := H2(X̃ ,Z), L′ = Hom(L,Z),
L carries an integral intersection form ( , ) which extends (over Q)
to L′

One has an embedding L ↪→ L′ with L′/L = H1(M,Z)
Notation: H := H1(M,Z), Ĥ = Pontjagin dual of H

θ : H → Ĥ natural isomorphism [l ′] 7→ θ([l ′]) := e2πi(l
′,·)
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Basic invariants of the analytic type

I Cohomology of line bundles on X̃ .

I (Equivariant) Hilbert series

I (Equivariant) multivariable divisorial multi�ltration
(Campillo, Delgado, Gusein�Zade)

I Principle cycles (cycles cut out by sections of line bundles or
holomorphic functions)

I the sheaf π∗(mX ,o), and its base�points

I Multiplicity, Hilbert�Samuel function

Problem: determine these invariants
Question: when are they topological ? (computable from Γ or M)
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Basic invariants of the topological type

I Seiberg�Witten invariants of the link

I Heegaard�Floer (co)homologies of the link (Ozsváth�Szabó)
Monopole Floer (co)homology of the link
(Kronheimer�Mrowka)

I Lattice (co)homology (N.)

Problem: determine these invariants
Question 1: what are their peculiar/additional properties (for a
singularity link M)?
Question 2: how they in�uence the analytic invariants?
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Cohomology of line bundles

Most of the analytic geometry of X̃ (hence of (X , o) too) is
described by its line bundles and their cohomology groups.

Basic problem: For any L ∈ Pic(X̃ ) and e�ective cycle l ∈ L≥0
recover the dimensions

(a) dim
H0
(
X̃ ,L

)
H0
(
X̃ ,L (−l)

) and (b) dimH1(X̃ ,L)

from the combinatorics of Γ (at least for some families of
singularities).
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Natural line bundles

For arbitrary line bundles (and when Pic0(X̃ ) 6= 0) this question
can be very hard.

There is an increasing optimism to understand this problem for
`special' line bundles: the natural line bundles.

They are provided by the splitting of the cohomological exponential
exact sequence:

we associate canonically to each l ′ ∈ L′ = H2(X̃ ,Z)
a line bundle on X̃ whose �rst Chern class is l ′:
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Natural line bundles

L

��||y
y

y
y

y

0 // H1(X̃ ,OeX ) // Pic(X̃ )
c1 //

L′ //
O

oo_ _ _ 0.

The �rst Chern class c1 is surjective and it has an obvious section
on the subgroup L: it maps every element to its associated line
bundle: l 7→ O(l)
This section has a unique extension O to L′. We call a line bundle
natural if it is in the image of this section:

l ′ 7→ O(l ′)
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Natural line bundles

Example of natural line bundle:
Let c : (Y , o)→ (X , o) be the universal abelian cover of (X , o),
πY : Ỹ → Y the normalized pullback of π by c ,
c̃ : Ỹ → X̃ the morphism which covers c . The action of H on
(Y , o) lifts to Ỹ and one has an H-eigenspace decomposition

c̃∗OeY =
⊕
l ′∈Q
O(−l ′),

where O(−l ′) is the θ([l ′])-eigenspace of c̃∗OeY . This is compatible
with the eigenspace decomposition of OY ,o too.

Above: Q = {
∑

l ′vEv ∈ L′, 0 ≤ l ′v < 1}.
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Equivariant Hilbert series

Once a resolution π is �xed, OY ,o inherits the divisorial
multi-�ltration

F(l ′) := {f ∈ OY ,o | div(f ◦ πY ) ≥ c̃∗(l ′)}.
h(l ′) = dimension of the θ([l ′])-eigenspace of OY ,o/F(l ′).
The equivariant divisorial Hilbert series is

H(t) =
∑

l ′=
P

lvEv∈L′
h(l ′)t l11 · · · t

ls
s =

∑
l ′∈L′

h(l ′)tl
′ ∈ Z[[L′]].

The terms of the sum re�ect the H-eigenspace decomposition too:
h · tl ′ covers a h�dimensional subspace of θ([l ′])-eigenspace. E.g.:∑

l∈L h(l)tl= H-invariants of H
Hilbert series of the π−1(o)-divisorial multi-�ltration of OX ,o

Second central problem: Recover H(t) from Γ (for some
families of singularities).
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The Campillo�Delgado�Guzein-Zade series

P(t) = −H(t) ·
∏
v

(1− t−1v ) ∈ Z[[L′]].

(Above, Z[[L′]] is regarded as a module over Z[L′].)

Note: P(t) nd H(t) determine each other.

Campillo, Delgado and Gusein-Zade for rational singularities
proposed a topological description for P(t).

Question: how general is this topological characterization,

and where are its limits?
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Some results:

Theorem [N.] With the notation EI =
∑

v∈I Ev , consider

hL :=
∑
I⊆V

(−1)|I |+1 dim
H0 (L)

H0 (L (−EI ))
,

Then

dim
H0 (L)

H0 (L (−l))
=

∑
a∈L≥0,a�l

hL(−a).

This, for any l ′ ∈ L′ implies

h(l ′) =
∑

a∈L, a 6≥0
hO(−l ′−a).

P(t) =
∑
l ′∈L′

hO(−l ′)t
l ′ .
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Some results:

Moreover,
there exists a constant const[L], depending only on the class of

[L] ∈ Pic(X̃ )/L, such that

−h1 (L) =
∑

a∈L, a�0

hL(a) + const[L] +
(K − 2c1 (L))2 + |V|

8
.

(Above: K= canonical class in L′, |V|= number of vertices in Γ.)
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Corollary:

The invariants

dim
H0 (L)

H0 (L (−l))
and h1 (L)

(for natural line bundles), and the Hilbert series H(t)

are determined by

P(t) and { consth}h∈H .

Question: When are P(t) and { consth}h∈H topological ?
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Positive result:

Theorem [N.] If (X , o) is splice quotient singularity (including
rational, minimally elliptic, weighted homogeneous singularities),
then

P(t) =
∏
v∈V

(
1− tE

∗
v

)δv−2,
(E ∗v ∈ L′ dual basis: (E ∗v ,Ew ) = −δv ,w ; δv= degree of vertex v).

consth = swh∗σcan ,

the Seiberg�Witten invariant of M associated with the
spinc�structure σ = h ∗ σcan.
(Spin(M) is an H�torsor, with a canonical element σcan.)
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Principal cycles:

Principal cycles Pr = it consists of the restrictions to E of the
divisors of π-pullbacks of analytic functions from OX ,o .

Principal Q�cycles: Pr ′ = those rational cycle l ′ ∈ L′ for which
O(−l ′) has a global holomorphic section which is not zero on any
of the exceptional components. (Pr ′ ∩ L = Pr)

Natural topological background for Pr and Pr ′:

S ′ := {l ′ ∈ L′ : (l ′,Ev ) ≤ 0 for all v ∈ V}.

and
S := S ′ ∩ L (Lipman's cone)

Fact: Pr (resp. Pr ′) sub-semigroup of S (resp. Pr)
Problem: Find Pr and Pr ′.

Are they topological (for some singularities)?
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Principal cycles:

Theorem [N.] Assume that (X , o) is splice-quotient.
Then Pr ′ (hence Pr = Pr ′ ∩ L too) is topological.

Indeed, let E be the set of end�vertices . A monomial cycle is
de�ned as D(α) =

∑
i αiE

∗
i ∈ L′, where {αi}i∈E (αi ∈ Z≥0).

Then l ′ ∈ Pr ′ i� there exists �nitely many monomial cycles
{D(α(k))}k ∈ l ′ + L so that l ′ = infk D(α(k)).
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π∗mX ,o , multiplicity

Theorem [N.] Assume that (X , o) is splice-quotient, mX ,o the
maximal ideal of OX ,o , and write

π∗mX ,o = OeX (−Zmax)⊗
⊗
P∈B
IP

(Zmax= maximal (ideal) cycle, B base points.)

Then, Zmax and {IP}p∈B can be characterized topologically.
Moreover, there is an explicit closed combinatorial formula for the
multiplicity too.

(Rational singularities: Artin; minimally elliptic: Laufer; elliptic: N.)
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Heegaard Floer homology

Expectation: Besides the `Seiberg�Witten invariant formula',
there is a deeper, and more complex relation at the level of
Heegaard�Floer homology (of Ozsváth�Szabó)

HF+(M, σ) is a Z[U]-module, with two gradings (a Z2 and a
Q�grading), depending on σ ∈ Spinc(M).

In the sequel we assume σ is the `canonical spinc�structure
(induced by the complex analytic structure, but it can be identi�ed
topologically too).
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Lattice (co)homology

The bridge between singularity invariants and Heegaard�Floer
theory is realized by the lattice cohomology (introduced by the
author).

M = singularity link, σ ∈ Spinc(M), q ≥ 0 integer:

We de�ne: Hq(M, σ), a Z[U]�module.

(we will consider here only σ = σcan)
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Lattice cohomology

L= the lattice, generated by the irreducible exceptional divisors.

χ : L→ Z, χ(l) = −(l , l + K )/2 (the `Riemann-Roch function')

Each l ∈ L and I ⊂ V with |I | = k determines a
�k = a k�dimensional cube in L⊗ R, which has its vertices in the
lattice points (l +

∑
j∈I ′ Ej)I ′ , where I

′ runs over all subsets of I .

For any n ∈ Z: Sn= union of all the cubes (of any dimension) �k ,
such that

χ(any vertex of �k) ≤ n
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Heegaard Floer homology
Lattice (co)homology

Lattice cohomology

De�nition:

Hq(Γ) := ⊕nH
q(Sn,Z)

Z[U]�module structure (U�action): restriction

. . .→ Hq(Sn+1,Z)→ Hq(Sn,Z)→ . . .

Fact: Hq(Γ) is independent of the choice of the
resolution/plumbing graph Γ, it is an invariant of M.

Examples: H∗ is computed for any `almost rational graph'
(including rational, elliptic and `star�shaped graphs').
Rational and elliptic singularities can be characterized via H∗.
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Conjecture: H∗(M) determines HF+(M).

(proved for `almost rational graph�manifolds')

Conjecture: H∗(M) contains a lot of information about the
analytic structure.
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