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Introduction

Compact Kähler manifolds (and in particular smooth projective
varieties ) are special!

A Kähler group is the fundamental group of a compact Kähler
manifold, such as a smooth projective variety.
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Kähler groups

There are many known constraints for a group to be Kähler.
(Ref: Fundamental groups of compact Kähler manifolds by
Amoros, Burger, Corlette, Kotschick, Toledo )

I (Hodge) The abelianization of a Kähler group has even rank.

I (Deligne-Griffiths-Morgan-Sullivan) The Malcev Lie algebra of
a Kähler group has quadratic relations.

I (Goldman-Millson) The singularities of a representation
variety of a Kähler group are quadratic.

I (A.-Nori, Delzant) Most solvable groups are not Kähler

I (Carlson-Toledo, Simpson) Many lattices in semisimple Lie
groups are not Kähler

I (Gromov-Schoen, A.-Bressler-Ramachandran) “Big” groups,
such as free products, are not Kähler
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Conjecture

A basic open question in the theory

Does the class of Kähler groups = the class of fundamental
groups of smooth projective varieties?

Inspired by work of Voisin, I will

Conjecture

NO

(Unfortunately, Voisin’s examples don’t give anything here.)
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Kähler homomorphisms

A Kähler homomorphism between Kähler groups is a
homomorphism induced by a holomorphic map between compact
Kähler manifolds.

The basic restrictions carry over to Kähler homomorphisms.

Lemma
If h : Γ1 → Γ2 is Kähler then the image, kernel and cokernel of the
induced map

Γ1/[Γ1, Γ1]→ Γ2/[Γ2, Γ2]

has even rank.

Proof.
The Hodge structure on homology is functorial.
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Kähler homomorphisms (examples)

Recall

Theorem (Serre)

Any finite group is Kähler

Lemma (Botong Wang)

Any homomorphism from a Kähler group to a finite group is
Kähler.
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Kähler homomorphisms (examples)

Lemma
If Γ is Kähler , then the canonical map

Γ→ Γ/[Γ, Γ]

is also Kähler

Proof.
Use the Albanese.
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Kähler homomorphisms (examples)

Let
Γg = 〈a1, . . . a2g | [a1, ag+1] . . . [ag , a2g ] = 1〉

be the surface group.

By work of Beaville-Siu

Proposition

A surjective homomorphism h : Γ→ Γg from a Kähler group is
Kähler-surjective if doesn’t factor through a larger surface group.
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Kähler homomorphisms (warning)

The class of Kähler homomorphisms is not closed under
composition.

It’s easy to construct examples using

Lemma
If f : Z2 → Z2 is Kähler, then its eigenvalues lie in an imaginary
quadratic field.

Proof.
f can be realized as an endomorphism of an elliptic curve. The
argument is now standard.
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Splitting Obstruction

Say that a surjective homomorphism of groups h : H → G splits if
it has a right inverse.

H
h

// G
uu

The class e(h) ∈ H2(G ,K/[K ,K ]) associated to the extension

0→ K/[K ,K ]→ H/[K ,K ]→ G → 1

where K = ker(h), gives an obstruction to splitting.
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Splitting theorem

A Kähler-surjective homomorphism between Kähler groups is a
homomorphism induced by a surjective holomorphic map with
connected fibres between compact Kähler manifolds. (Note
Kähler-surjective ⇒ surjective.)

The main result for this talk is

Theorem
If h is Kähler-surjective then e(h)⊗Q = 0.
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Applications

This leads to new obstructions for a group to be Kähler . For
example, the group

Γ = 〈a1, . . . a2g , c | [a1, ag+1] . . . [ag , a2g ] = c , [ai , c] = 1〉
= extension 1→ Z→ Γ→ Γg → 1

classfied by the generator of H2(Γg ,Z)

is not Kähler.

(When g = 1, this is a Heisenberg group, and this
follows from earlier obstructions.)

Proof.
If Γ is Kähler , then the map h : Γ→ Γg is also Kähler . But
e(h)⊗Q 6= 0.
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Proof (algebraic case)

The proof of the splitting theorem is easy for algebraic varieties.

I When f : X → Y admits a section, then e(π1(f )) = 0.

I When f : X → Y is a map of smooth projective varieties,
then it admits a multisection, because the generic fibre has a
rational point over a finite extension of C(Y ).

I Therefore e(π1(f ))⊗Q = 0.
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Proof (general)

This doesn’t work when f : X → Y is analytic, so we use a
different strategy.
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Proof (general)

Step 1: Since ker(π1(f )) may be nonfinitely generated, replace Y
by a suitable orbifold where f has better structure.
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Step 2:

I Interpret e(π1(f )) in terms of Hochschild-Serre.

I Compare f with the map of classifying spaces

X
f //

��

Y

��
Bπ1(X ) // Bπ1(Y )

I Then identify e(π1(f )) as lying in the image of a differential
of a (perverse) Leray spectral sequence. for f .
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Decomposition theorem

Step 3: Use M. Saito’s decomposition theorem to show that this
differential, and therefore e(π1(f )), is zero.

I An orbifold is locally a quotient of a manifold by a finite
group.

A (perverse) sheaf on an orbifold is locally an equivariant
sheaf on the manifold.

I Theorem (Saito+ε)

Suppose that f : X → Y is a proper holomorphic map of orbifolds
with X Kähler. Let L be a perverse sheaf of geometric origin on X .
Then

Rf∗L =
⊕

j

IC (Mj)[mj ]

I Corollary

Perverse Leray degenerates (⇒ splitting theorem).
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Thanks, and Happy Birthday Anatoly
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