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Milnor Fibers of Line Arrangements

Anatoly and me, the true story...

Anatoly, one of my guiding stars...

Alternative approaches to a question, e.g.
A. Libgober: Eigenvalues for the monodromy of the Milnor fibers
of arrangements. In: Libgober, A., Tibăr, M. (eds) Trends in
Mathematics: Trends in Singularities. Birkhäuser, Basel (2002).
D. Cohen, A. Dimca and P. Orlik: Nonresonance conditions for
arrangements. Ann. Institut Fourier (Grenoble) 53, 1883-1896
(2003).

Joint papers, e.g.
Regular functions transversal at infinity, Tohoku Math. J. (2)
Volume 58, Number 4 (2006), 549-564.
Counter-example to a claim: ’Tangent Cone Theorem’:
A. Libgober: First order deformations for rank one local systems
with a non-vanishing cohomology, Topology Appl. 118 (2002),
no. 1-2, 159-168.
A. Dimca, S. Papadima and A. Suciu: Topology and geometry of
cohomology jump loci, preprint, math.AT 0902.1250. (to appear
in Duke Math. J.).
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Definitions, notations, basic results

Line arrangements

A line arrangement A in the complex projective plane P2 is a finite
collection of lines L1, ...,Ld . Choose a linear equation fj = 0 for each
line Lj and set

Q(A) = f1 · ... · fd ∈ C[x , y , z].

Then the corresponding arrangement complement is

M(A) = P2 \ ∪j=1,dLj .

The cohomology algebra H∗(M(A)) with any coefficients is known
(Orlik-Solomon, Invent. Math. 1980). In particular, H∗(M(A)) is
determined by the combinatorics of A, expressed in the incidence
lattice L(A).
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Milnor fibers and monodromy
The Milnor fiber of a line arrangement A is the smooth surface
defined in C3 by the equation

F (A) : Q(A)(x , y , z) = 1.

The monodromy automorphism h : F (A)→ F (A) is given by

h(x , y , z) = α · (x , y , z)

with α = exp(2πi/d). It induces the algebraic monodromy
h∗ : H∗(F (A))→ H∗(F (A)). Since hd = Id , we get an eigenspace
decomposition

H∗(F (A),C) = ⊕β∈µd H∗(F (A),C)β

such that
H∗(F (A),C)1 = H∗(M(A),C).

For simplicity, we assume A known, and write simply M for M(A),
and F for F (A).
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Definitions, notations, basic results

Open questions

Is the first Betti number b1(F ) = dim H1(F ,Q) determined by the
combinatorics described in the lattice L(A)?

Similar question for the Hodge numbers hp,q(H1(F ,C)) of the
Deligne MHS on H∗(F ,Q). Here H1(F ,C) = H1,0 ⊕ H0,1 ⊕ H1,1

(special case of Deligne splitting).
Similar question for the numbers b1(F )β = dim H1(F ,C)β . This is
the same as computing the characteristic polynomial of
h∗ : H1(F )→ H1(F ), which is precisely the Alexander polynomial
of the arrangement (R. Randell).
Similar question for dim(H1(F ,C)β ∩ Hp,q) for
(p,q) = (1,0), (0,1), (1,1).
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Definitions, notations, basic results

Relation to the spectrum

If Q = 0 is the defining equation of a hyperplane arrangement A in
Pn, one defines as above the Milnor fiber F , the monodromy h and
the spectrum of Q as the formal sum

Sp(Q) =
∑
a∈Q

nQ,ata

where
nQ,a =

∑
j

(−1)j−n dim Grp
F H̃ j (F ,C)β

with p = [n + 1− a] and β = exp(−2πia).

Theorem BS. (N. Budur, M. Saito 2009) The spectrum Sp(Q) is
determined by the combinatorics described in the lattice L(A).
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Rank one local systems and characteristic varieties

The rank one local systems L on M are parametrized by the affine
algebraic torus

T(M) = Hom(π1(M),C∗) = H1(M,C∗) = (C∗)d−1.

The first characteristic varieties of M are defined by

Vk (M) = {ρ ∈ T(M) | dim H1(M,Lρ) ≥ k}.

To know the dimension dim H1(M,L) means exactly to know the
position of L ∈ T(M) with respect to the subvarieties Vk (M).

Open question: Are the first characteristic varieties of M determined
by the combinatorics described in the lattice L(A)?
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Rank one local systems, characteristic varieties

Rank one local systems and monodromy

A rank 1 local system on M is determined by given a set of d complex
numbers λ1, ..., λd such that λ1 · ... · λd = 1. (λj is the monodromy
about the line Lj ). For β ∈ µd , we denote by Lβ the rank 1 local
system corresponding to the choice

λ1 = ... = λd = β.

One has the isomorphism

H1(F ,C)β = H1(M,Lβ)

for any β ∈ µd .
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Rank one local systems, characteristic varieties

Example.

Theorem L. (A. Libgober, 2002, hyperplane arrangement case)
Let β ∈ µd and assume that there is a line in A, say L1, such that the
multiplicity mp of any multiple point p of A situated on L1 satisfies
either mp = 2 or βmp 6= 1. Then H1(F ,C)β = 0.

For a generalization, see D. Cohen, A. Dimca and P. Orlik (2004).

Remark If H1(F ,C)β = 0 for all β 6= 1, then H1(F ,C) = H1(M,C) and
the answer to the first set of open questions above is affirmative.
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Reduced Pencils

Some non trivial examples

D. Cohen and A. Suciu (1995)

The A3-arrangement: Q = xyz(x − y)(x − z)(y − z) and A
consists of the 3 reducible fibers of the pencil of conics
(x(y − z), y(z − x)). Then b1(F )β = 1 for β = α2 and β = α4.

The Pappus configuration (93)1:

Q = xyz(x−y)(y−z)(x−y−z)(2x+y+z)(2x+y−z)(−2x+5y−z)

consists of the 3 reducible fibers of a cubic pencil (find it!). One
has b1(F )β = 1 for β = α3 and β = α6.
The Hesse arrangement consists of the 4 reducible fibers of the
pencil (x3 + y3 + z3, xyz), 12 lines in all. One has b1(F )β = 2 for
β = αk and k = 3,6,9.
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Mixed Hodge Structure on H1(F )

Consider the natural direct sum decomposition

H1(F ,Q) = H1(F ,Q)1 ⊕ H1(F ,Q)6=1

where H1(F ,Q)1 = ker(h∗ − 1) = p∗H1(M,Q) is the eigenspace
corresponding to the eigenvalue λ = 1 of the monodromy operator
h∗ : H1(F ,Q)→ H1(F ,Q), and H1(F ,Q)6=1 = ker((h∗)d−1 + ...+ 1).

Theorem A. (A.D. and S. Papadima, N. Budur, A.D. and M. Saito,
2009)
The mixed Hodge structure on H1(F ,Q) is split, i.e., the subspaces
H1(F ,Q)1 and H1(F ,Q)6=1 inherit pure Hodge structures from
H1(F ,Q), such that H1(F ,Q)1 (respectively H1(F ,Q)6=1) has weight 2
(respectively 1).
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The main results
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Monodromy and pencils

Let A1 ∪ ... ∪ Ak be a partition of the set {1,2, . . . ,d} into k ≥ 3
subsets of the same cardinality e > 0. Set Qj =

∏
i∈Aj

fi , for
j = 1, ..., k . Clearly, Q = Q1 · · ·Qk . The relation between such
(multi)nets and the characteristic varieties has been explored first by
M. Falk and S. Yuzvinsky, Compositio Math 2007.

Theorem B.(A.D. and S. Papadima, 2009) With the above notation,
assume that the vector space < Q1, ...,Qk > of degree e
homogeneous polynomials has dimension 2. Then b1(F )β ≥ k − 2,
for any β with βk = 1.

In [N. Budur, A.D. and M. Saito, 2009] a sufficient condition to have
equality is given, and a more general setting is discussed (though
interesting examples beyond nets are still missing).
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The main results

Monodromy and multiplier ideals

Some notations

Set Σ = {y ∈ Z | my = multy Z ≥ 3} where Z : Q(x , y , z) = 0 in
Y = P2. For a fixed k , 1 ≤ k ≤ d − 1, we set

Σ(k) = {y ∈ Σ | my k/d ∈ Z}.

For y ∈ Σ, let I{y} ⊂ OY be the reduced ideal of {y} ⊂ Y , and define

J (k) :=
⋂

y∈Σ
Idmy k/de−2
{y} , J (>k) :=

⋂
y∈Σ
Ibmy k/dc−1
{y} .

Here dae := min{k ∈ Z | k ≥ a}, bac := max{k ∈ Z | k ≤ a}, and
I j
{y} = OY for j ≤ 0. Let C[X ]j denote the space of homogeneous

polynomials of degree j . This is identified with Γ(Y ,OY (j)). Define

J(k)
j := Γ(Y ,OY (j)⊗OY J (k)) ⊂ Γ(Y ,OY (j)) = C[X ]j .
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The main results

Monodromy and multiplier ideals

Theorem C.

Theorem C. (N. Budur, A.D. and M. Saito, 2009)
For k ∈ [1,d − 1], let k ′ = d − k and β = αk . Then

dim Gr0
F H1(Ff )β = dim Coker

(
ρ(k) : J(k)

k−3 →
⊕

y∈Σ(k)
J (k)

y /J (>k)
y

)
= dim Coker

(
ρ̃(k) : C[X ]k−3 →

⊕
y∈Σ
OY ,y/J (>k)

y

)
,

dim Gr1
F H1(Ff )β = dim Coker

(
ρ(k ′) : J(k ′)

k ′−3 →
⊕

y∈Σ(k)
J (k ′)

y /J (>k ′)
y

)
= dim Coker

(
ρ̃(k ′) : C[X ]k ′−3 →

⊕
y∈Σ
OY ,y/J (>k ′)

y

)
,

and b1(Ff )β = dim Gr1
F H1(Ff )β + dim Gr0

F H1(Ff )β .
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The main results

Monodromy and multiplier ideals

An example

Assume that d is divisible by 3 and that Z has only double and triple
points. By Theorem L. only the cubic roots of unity β may give a
nonzero b1(F )β . Set k = 2d/3, k ′ = d/3. Then the target of ρ(k ′)

vanishes, and ρ(k) coincides with ρ̃(k) which is identified with the
evaluation map⊕

y∈Σ(k)
evk−3

y : C[X ]k−3 →
⊕

y∈Σ(k)
Cy .

In particular, for β = exp(4πi/3), one has H1(F )β ⊂ H0,1 and its
dimension is given by the superabundance or defect of the linear
system C[X ]k−3 with respect to the finite set Σ. If γ = exp(2πi/3),
then H1(F )γ ⊂ H1,0, as this eigenspace is the complex conjugate of
H1(F )β .
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The main results

Monodromy and multiplier ideals

Idea of proof for Theorem C.

Using a result by M. Mustaţǎ, we get the following.

Key Lemma.
For λ = exp(2πik/d), we have a canonical isomorphism

Gr0
F H1(Ff ,C)λ = H1(Y ,OY (k − 3)⊗O J (k/dZ ))∨.

Results of similar flavour were obtained by E. Artal-Bartolo(1991), H.
Esnault (1982), A. Libgober (adjunction ideals),.., and myself
(rational differential forms), book 1992.



Milnor Fibers of Line Arrangements

Other (open) questions

Other (open) questions
One may ask which properties of the line arrangement complement
M continue to hold for the Milnor fiber F , e.g.

Is the first homology group H1(F ,Z) torsion free?

Is F a minimal CW-complex? Is F a formal space?
Does the Tangent Cone Theorem hold for F? This means:
does the resonance variety R1(F ) of F equal the tangent cone of
the characteristic variety V1(M) at the trivial local system CF ?
Here α ∈ R1(F ) if and only if α ∈ H1(F ) and there is β ∈ H1(F )
not a multiple of α such that α ∧ β = 0.
Anatoly Libgober has shown that

TC1V1(X ) ⊂ R1(X )

for X a finite CW-complex and claimed equality for X a smooth
quasiprojective variety X . S. Papadima, A. Suciu and A.D. gave
counterexamples to this claim (some configuration spaces) and
showed that if X is in addition 1-formal, then

TC1V1(X ) = R1(X ).
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Other (open) questions

A result by Hugues Zuber, Nice

Theorem (H. Zuber, arXiv:0906.3658)

Let F : (x3 − y3)(y3 − z3)(z3 − x3) = 1
Then the inclusion TC1V1(F ) ⊂ R1(F ) is strict. In particular, F is not
even a 1-formal space.

The proof uses the description by D. Arapura of the irreducible
components of V1(F ) and the properties of MHS on H1(F ,Q) given
above.
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