Milnor Fibers of Line Arrangements

Alexandru Dimca

Université de Nice, France

Lib60ber–Topology of Algebraic Varieties Jaca, Aragón June 25, 2009

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Outline

Outline

- 1 Anatoly and me, the true story...
- 2 Definitions, notations, basic results
- 3 Rank one local systems, characteristic varieties

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 4 Reduced Pencils
- 5 The main results
 - Mixed Hodge Structure on $H^1(F)$
 - Monodromy and pencils
 - Monodromy and multiplier ideals
- 6 Other open questions

Anatoly and me, the true story...

Anatoly, one of my guiding stars...

Alternative approaches to a question, e.g.

A. Libgober: Eigenvalues for the monodromy of the Milnor fibers of arrangements. In: Libgober, A., Tibăr, M. (eds) Trends in Mathematics: Trends in Singularities. Birkhäuser, Basel (2002). D. Cohen, A. Dimca and P. Orlik: Nonresonance conditions for arrangements. Ann. Institut Fourier (Grenoble) 53, 1883-1896 (2003).

Anatoly and me, the true story...

Anatoly, one of my guiding stars...

Alternative approaches to a question, e.g.

A. Libgober: Eigenvalues for the monodromy of the Milnor fibers of arrangements. In: Libgober, A., Tibăr, M. (eds) Trends in Mathematics: Trends in Singularities. Birkhäuser, Basel (2002). D. Cohen, A. Dimca and P. Orlik: Nonresonance conditions for arrangements. Ann. Institut Fourier (Grenoble) 53, 1883-1896 (2003).

Joint papers, e.g.

Regular functions transversal at infinity, Tohoku Math. J. (2) Volume 58, Number 4 (2006), 549-564.

Anatoly and me, the true story...

Anatoly, one of my guiding stars...

■ Alternative approaches to a question, e.g.

A. Libgober: Eigenvalues for the monodromy of the Milnor fibers of arrangements. In: Libgober, A., Tibăr, M. (eds) Trends in Mathematics: Trends in Singularities. Birkhäuser, Basel (2002). D. Cohen, A. Dimca and P. Orlik: Nonresonance conditions for arrangements. Ann. Institut Fourier (Grenoble) 53, 1883-1896 (2003).

Joint papers, e.g.

Regular functions transversal at infinity, Tohoku Math. J. (2) Volume 58, Number 4 (2006), 549-564.

 Counter-example to a claim: 'Tangent Cone Theorem': A. Libgober: First order deformations for rank one local systems with a non-vanishing cohomology, Topology Appl. 118 (2002), no. 1-2, 159-168.

A. Dimca, S. Papadima and A. Suciu: Topology and geometry of cohomology jump loci, preprint, math.AT 0902.1250. (to appear in Duke Math. J.).

Line arrangements

A line arrangement A in the complex projective plane \mathbb{P}^2 is a finite collection of lines $L_1, ..., L_d$. Choose a linear equation $f_j = 0$ for each line L_i and set

$$Q(\mathcal{A}) = f_1 \cdot \ldots \cdot f_d \in \mathbb{C}[x, y, z].$$

Then the corresponding arrangement complement is

$$M(\mathcal{A}) = \mathbb{P}^2 \setminus \cup_{j=1,d} L_j.$$

The cohomology algebra $H^*(M(\mathcal{A}))$ with any coefficients is known (Orlik-Solomon, Invent. Math. 1980). In particular, $H^*(M(\mathcal{A}))$ is determined by the combinatorics of \mathcal{A} , expressed in the incidence lattice $L(\mathcal{A})$.

Milnor fibers and monodromy

The Milnor fiber of a line arrangement ${\cal A}$ is the smooth surface defined in \mathbb{C}^3 by the equation

$$F(\mathcal{A}): Q(\mathcal{A})(x, y, z) = 1.$$

The monodromy automorphism $h: F(\mathcal{A}) \to F(\mathcal{A})$ is given by

$$h(x, y, z) = \alpha \cdot (x, y, z)$$

with $\alpha = \exp(2\pi i/d)$. It induces the algebraic monodromy $h^* : H^*(F(\mathcal{A})) \to H^*(F(\mathcal{A}))$. Since $h^d = Id$, we get an eigenspace decomposition

$$H^*(F(\mathcal{A}),\mathbb{C}) = \oplus_{eta \in \mu_d} H^*(F(\mathcal{A}),\mathbb{C})_{eta}$$

such that

$$H^*(F(\mathcal{A}),\mathbb{C})_1 = H^*(M(\mathcal{A}),\mathbb{C}).$$

For simplicity, we assume A known, and write simply M for M(A), and F for F(A).

Open questions

■ Is the first Betti number b₁(F) = dim H¹(F, Q) determined by the combinatorics described in the lattice L(A)?

Open questions

- Is the first Betti number b₁(F) = dim H¹(F, Q) determined by the combinatorics described in the lattice L(A)?
- Similar question for the Hodge numbers h^{p,q}(H¹(F, C)) of the Deligne MHS on H^{*}(F, Q). Here H¹(F, C) = H^{1,0} ⊕ H^{0,1} ⊕ H^{1,1} (special case of Deligne splitting).

Open questions

- Is the first Betti number b₁(F) = dim H¹(F, Q) determined by the combinatorics described in the lattice L(A)?
- Similar question for the Hodge numbers h^{p,q}(H¹(F, C)) of the Deligne MHS on H^{*}(F, Q). Here H¹(F, C) = H^{1,0} ⊕ H^{0,1} ⊕ H^{1,1} (special case of Deligne splitting).
- Similar question for the numbers $b_1(F)_{\beta} = \dim H^1(F, \mathbb{C})_{\beta}$. This is the same as computing the characteristic polynomial of $h^* : H^1(F) \to H^1(F)$, which is precisely the Alexander polynomial of the arrangement (**R. Randell**).

Open questions

- Is the first Betti number b₁(F) = dim H¹(F, Q) determined by the combinatorics described in the lattice L(A)?
- Similar question for the Hodge numbers h^{p,q}(H¹(F, C)) of the Deligne MHS on H^{*}(F, Q). Here H¹(F, C) = H^{1,0} ⊕ H^{0,1} ⊕ H^{1,1} (special case of Deligne splitting).
- Similar question for the numbers $b_1(F)_\beta = \dim H^1(F, \mathbb{C})_\beta$. This is the same as computing the characteristic polynomial of $h^* : H^1(F) \to H^1(F)$, which is precisely the Alexander polynomial of the arrangement (**R. Randell**).

(日) (日) (日) (日) (日) (日) (日)

■ Similar question for dim $(H^1(F, \mathbb{C})_{\beta} \cap H^{p,q})$ for (p,q) = (1,0), (0,1), (1,1).

Relation to the spectrum

If Q = 0 is the defining equation of a hyperplane arrangement A in \mathbb{P}^n , one defines as above the Milnor fiber F, the monodromy h and the spectrum of Q as the formal sum

$$Sp(Q) = \sum_{a \in \mathbb{Q}} n_{Q,a} t^a$$

where

$$n_{Q,a} = \sum_{j} (-1)^{j-n} \dim \operatorname{Gr}_{F}^{p} \tilde{H}^{j}(F, \mathbb{C})_{\beta}$$

with p = [n + 1 - a] and $\beta = \exp(-2\pi i a)$.

Theorem BS. (N. Budur, M. Saito 2009) The spectrum Sp(Q) is determined by the combinatorics described in the lattice L(A).

Rank one local systems and characteristic varieties

The rank one local systems \mathcal{L} on M are parametrized by the affine algebraic torus

$$\mathbb{T}(M) = Hom(\pi_1(M), \mathbb{C}^*) = H^1(M, \mathbb{C}^*) = (\mathbb{C}^*)^{d-1}$$

The first characteristic varieties of *M* are defined by

$$\mathcal{V}_k(M) = \{ \rho \in \mathbb{T}(M) \mid \dim H^1(M, \mathcal{L}_\rho) \geq k \}.$$

To know the dimension dim $H^1(M, \mathcal{L})$ means exactly to know the position of $\mathcal{L} \in \mathbb{T}(M)$ with respect to the subvarieties $\mathcal{V}_k(M)$.

Open question: Are the first characteristic varieties of *M* determined by the combinatorics described in the lattice L(A)?

Rank one local systems, characteristic varieties

Rank one local systems and monodromy

A rank 1 local system on *M* is determined by given a set of *d* complex numbers $\lambda_1, ..., \lambda_d$ such that $\lambda_1 \cdot ... \cdot \lambda_d = 1$. (λ_j is the monodromy about the line L_j). For $\beta \in \mu_d$, we denote by \mathcal{L}_β the rank 1 local system corresponding to the choice

$$\lambda_1 = \ldots = \lambda_d = \beta.$$

One has the isomorphism

$$H^1(F,\mathbb{C})_{\beta} = H^1(M,\mathcal{L}_{\beta})$$

(日) (日) (日) (日) (日) (日) (日)

for any $\beta \in \mu_d$.

Example.

Theorem L. (A. Libgober, 2002, hyperplane arrangement case) Let $\beta \in \mu_d$ and assume that there is a line in \mathcal{A} , say L_1 , such that the multiplicity m_p of any multiple point p of \mathcal{A} situated on L_1 satisfies either $m_p = 2$ or $\beta^{m_p} \neq 1$. Then $H^1(F, \mathbb{C})_\beta = 0$.

For a generalization, see D. Cohen, A. Dimca and P. Orlik (2004).

Remark If $H^1(F, \mathbb{C})_{\beta} = 0$ for all $\beta \neq 1$, then $H^1(F, \mathbb{C}) = H^1(M, \mathbb{C})$ and the answer to the first set of open questions above is affirmative.

Reduced Pencils

Some non trivial examples

D. Cohen and A. Suciu (1995)

The *A*₃-arrangement: Q = xyz(x - y)(x - z)(y - z) and *A* consists of the 3 reducible fibers of the pencil of conics (x(y - z), y(z - x)). Then $b_1(F)_\beta = 1$ for $\beta = \alpha^2$ and $\beta = \alpha^4$.

Reduced Pencils

Some non trivial examples

D. Cohen and A. Suciu (1995)

The A_3 -arrangement: Q = xyz(x - y)(x - z)(y - z) and A consists of the 3 reducible fibers of the pencil of conics (x(y - z), y(z - x)). Then $b_1(F)_\beta = 1$ for $\beta = \alpha^2$ and $\beta = \alpha^4$.

■ The Pappus configuration (9₃)₁:

$$Q = xyz(x-y)(y-z)(x-y-z)(2x+y+z)(2x+y-z)(-2x+5y-z)$$

consists of the 3 reducible fibers of a cubic pencil (find it!). One has $b_1(F)_{\beta} = 1$ for $\beta = \alpha^3$ and $\beta = \alpha^6$.

Reduced Pencils

Some non trivial examples

D. Cohen and A. Suciu (1995)

The A_3 -arrangement: Q = xyz(x - y)(x - z)(y - z) and A consists of the 3 reducible fibers of the pencil of conics (x(y - z), y(z - x)). Then $b_1(F)_\beta = 1$ for $\beta = \alpha^2$ and $\beta = \alpha^4$.

■ The Pappus configuration (9₃)₁:

$$Q = xyz(x-y)(y-z)(x-y-z)(2x+y+z)(2x+y-z)(-2x+5y-z)$$

consists of the 3 reducible fibers of a cubic pencil (find it!). One has $b_1(F)_{\beta} = 1$ for $\beta = \alpha^3$ and $\beta = \alpha^6$.

The Hesse arrangement consists of the 4 reducible fibers of the pencil $(x^3 + y^3 + z^3, xyz)$, 12 lines in all. One has $b_1(F)_\beta = 2$ for $\beta = \alpha^k$ and k = 3, 6, 9.

 \square Mixed Hodge Structure on $H^1(F)$

Mixed Hodge Structure on $H^1(F)$

Consider the natural direct sum decomposition

$$H^1(F,\mathbb{Q}) = H^1(F,\mathbb{Q})_1 \oplus H^1(F,\mathbb{Q})_{\neq 1}$$

where $H^1(F, \mathbb{Q})_1 = \ker(h^* - 1) = p^* H^1(M, \mathbb{Q})$ is the eigenspace corresponding to the eigenvalue $\lambda = 1$ of the monodromy operator $h^* : H^1(F, \mathbb{Q}) \to H^1(F, \mathbb{Q})$, and $H^1(F, \mathbb{Q})_{\neq 1} = \ker((h^*)^{d-1} + ... + 1)$.

Theorem A. (A.D. and S. Papadima, N. Budur, A.D. and M. Saito, 2009)

The mixed Hodge structure on $H^1(F, \mathbb{Q})$ is split, i.e., the subspaces $H^1(F, \mathbb{Q})_1$ and $H^1(F, \mathbb{Q})_{\neq 1}$ inherit pure Hodge structures from $H^1(F, \mathbb{Q})$, such that $H^1(F, \mathbb{Q})_1$ (respectively $H^1(F, \mathbb{Q})_{\neq 1}$) has weight 2 (respectively 1).

Monodromy and pencils

Monodromy and pencils

Let $A_1 \cup ... \cup A_k$ be a partition of the set $\{1, 2, ..., d\}$ into $k \ge 3$ subsets of the same cardinality e > 0. Set $Q_j = \prod_{i \in A_j} f_i$, for j = 1, ..., k. Clearly, $Q = Q_1 \cdots Q_k$. The relation between such (multi)nets and the characteristic varieties has been explored first by **M. Falk and S. Yuzvinsky, Compositio Math 2007**.

Theorem B.(A.D. and S. Papadima, 2009) With the above notation, assume that the vector space $\langle Q_1, ..., Q_k \rangle$ of degree *e* homogeneous polynomials has dimension 2. Then $b_1(F)_{\beta} \ge k - 2$, for any β with $\beta^k = 1$.

In **[N. Budur, A.D. and M. Saito, 2009]** a sufficient condition to have equality is given, and a more general setting is discussed (though interesting examples beyond nets are still missing).

Monodromy and multiplier ideals

Some notations

Set $\Sigma = \{y \in Z \mid m_y = \text{mult}_y Z \ge 3\}$ where Z : Q(x, y, z) = 0 in $Y = \mathbb{P}^2$. For a fixed $k, 1 \le k \le d - 1$, we set

$$\Sigma(k) = \{ y \in \Sigma \mid m_y k/d \in \mathbb{Z} \}.$$

For $y \in \Sigma$, let $\mathcal{I}_{\{y\}} \subset \mathcal{O}_Y$ be the reduced ideal of $\{y\} \subset Y$, and define

$$\mathcal{J}^{(k)} := \bigcap_{y \in \Sigma} \mathcal{I}_{\{y\}}^{\lceil m_y k/d \rceil - 2}, \ \mathcal{J}^{(>k)} := \bigcap_{y \in \Sigma} \mathcal{I}_{\{y\}}^{\lfloor m_y k/d \rfloor - 1}$$

Here $\lceil a \rceil := \min\{k \in \mathbb{Z} \mid k \ge a\}, \lfloor a \rfloor := \max\{k \in \mathbb{Z} \mid k \le a\}$, and $\mathcal{I}^{j}_{\{y\}} = \mathcal{O}_{Y}$ for $j \le 0$. Let $\mathbb{C}[X]_{j}$ denote the space of homogeneous polynomials of degree *j*. This is identified with $\Gamma(Y, \mathcal{O}_{Y}(j))$. Define

$$J_j^{(k)} := \Gamma(Y, \mathcal{O}_Y(j) \otimes_{\mathcal{O}_Y} \mathcal{J}^{(k)}) \subset \Gamma(Y, \mathcal{O}_Y(j)) = \mathbb{C}[X]_j.$$

・ロト・四ト・モー・ ヨー うへぐ

Monodromy and multiplier ideals

Theorem C.

Theorem C. (N. Budur, A.D. and M. Saito, 2009) For $k \in [1, d-1]$, let k' = d - k and $\beta = \alpha^k$. Then $\dim \operatorname{Gr}^0_F H^1(F_f)_{\beta} = \dim \operatorname{Coker} \left(\rho^{(k)} : J^{(k)}_{k-3} \to \bigoplus_{v \in \Sigma(k)} \mathcal{J}^{(k)}_{y} / \mathcal{J}^{(>k)}_{y} \right)$ $= \dim \operatorname{Coker} \left(\tilde{\rho}^{(k)} : \mathbb{C}[X]_{k-3} \to \bigoplus_{y \in \Sigma} \mathcal{O}_{Y,y} / \mathcal{J}_{y}^{(>k)} \right),$ $\dim \operatorname{Gr}_{F}^{1} H^{1}(F_{f})_{\beta} = \dim \operatorname{Coker} \left(\rho^{(k')} : J_{k'-3}^{(k')} \to \bigoplus_{v \in \Sigma(k)} \mathcal{J}_{y}^{(k')} / \mathcal{J}_{y}^{(>k')} \right)$ $= \dim \operatorname{Coker} \Big(\tilde{\rho}^{(k')} : \mathbb{C}[X]_{k'-3} \to \bigoplus_{v \in \Sigma} \mathcal{O}_{Y,y} / \mathcal{J}_{y}^{(>k')} \Big),$ and $b_1(F_f)_{\beta} = \dim \operatorname{Gr}_F^1 H^1(F_f)_{\beta} + \dim \operatorname{Gr}_F^0 H^1(F_f)_{\beta}$.

Monodromy and multiplier ideals

An example

Assume that *d* is divisible by 3 and that *Z* has only double and triple points. By **Theorem L.** only the cubic roots of unity β may give a nonzero $b_1(F)_{\beta}$. Set k = 2d/3, k' = d/3. Then the target of $\rho^{(k')}$ vanishes, and $\rho^{(k)}$ coincides with $\tilde{\rho}^{(k)}$ which is identified with the evaluation map

$$\bigoplus_{y\in\Sigma(k)}\operatorname{ev}_y^{k-3}:\mathbb{C}[X]_{k-3} o \bigoplus_{y\in\Sigma(k)}\mathbb{C}_y.$$

In particular, for $\beta = \exp(4\pi i/3)$, one has $H^1(F)_{\beta} \subset H^{0,1}$ and its dimension is given by the superabundance or defect of the linear system $\mathbb{C}[X]_{k-3}$ with respect to the finite set Σ . If $\gamma = \exp(2\pi i/3)$, then $H^1(F)_{\gamma} \subset H^{1,0}$, as this eigenspace is the complex conjugate of $H^1(F)_{\beta}$.

Monodromy and multiplier ideals

Idea of proof for Theorem C.

Using a result by M. Mustață, we get the following.

Key Lemma. For $\lambda = \exp(2\pi i k/d)$, we have a canonical isomorphism

$$\operatorname{Gr}_F^0 H^1(F_f,\mathbb{C})_\lambda = H^1(Y,\mathcal{O}_Y(k-3)\otimes_\mathcal{O}\mathcal{J}(k/dZ))^ee.$$

Results of similar flavour were obtained by **E. Artal-Bartolo(1991), H. Esnault (1982), A. Libgober (adjunction ideals),...**, and myself (rational differential forms), book 1992.

Conter (open) questions

Other (open) questions

One may ask which properties of the line arrangement complement M continue to hold for the Milnor fiber F, e.g.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

■ Is the first homology group $H_1(F, \mathbb{Z})$ torsion free?

Other (open) questions

Other (open) questions

One may ask which properties of the line arrangement complement M continue to hold for the Milnor fiber F, e.g.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Is the first homology group $H_1(F, \mathbb{Z})$ torsion free?
- Is F a minimal CW-complex? Is F a formal space?

Conter (open) questions

Other (open) questions

One may ask which properties of the line arrangement complement M continue to hold for the Milnor fiber F, e.g.

- Is the first homology group $H_1(F, \mathbb{Z})$ torsion free?
- Is *F* a minimal CW-complex? Is *F* a formal space?
- Does the Tangent Cone Theorem hold for *F*? This means: does the resonance variety $\mathcal{R}_1(F)$ of *F* equal the tangent cone of the characteristic variety $\mathcal{V}_1(M)$ at the trivial local system \mathbb{C}_F ? Here $\alpha \in \mathcal{R}_1(F)$ if and only if $\alpha \in H^1(F)$ and there is $\beta \in H^1(F)$ not a multiple of α such that $\alpha \land \beta = 0$.

Cher (open) questions

Other (open) questions

One may ask which properties of the line arrangement complement M continue to hold for the Milnor fiber F, e.g.

- Is the first homology group $H_1(F, \mathbb{Z})$ torsion free?
- Is F a minimal CW-complex? Is F a formal space?
- Does the Tangent Cone Theorem hold for *F*? This means: does the resonance variety $\mathcal{R}_1(F)$ of *F* equal the tangent cone of the characteristic variety $\mathcal{V}_1(M)$ at the trivial local system \mathbb{C}_F ? Here $\alpha \in \mathcal{R}_1(F)$ if and only if $\alpha \in H^1(F)$ and there is $\beta \in H^1(F)$ not a multiple of α such that $\alpha \land \beta = 0$.

Anatoly Libgober has shown that

$$TC_1\mathcal{V}_1(X)\subset \mathcal{R}_1(X)$$

for X a finite CW-complex and claimed equality for X a smooth quasiprojective variety X. **S. Papadima, A. Suciu and A.D.** gave counterexamples to this claim (some configuration spaces) and showed that if X is in addition 1-formal, then

$$TC_1\mathcal{V}_1(X) = \mathcal{R}_1(X).$$

Conter (open) questions

A result by Hugues Zuber, Nice

Theorem (H. Zuber, arXiv:0906.3658)

Let $F : (x^3 - y^3)(y^3 - z^3)(z^3 - x^3) = 1$ Then the inclusion $TC_1\mathcal{V}_1(F) \subset \mathcal{R}_1(F)$ is strict. In particular, *F* is not even a 1-formal space.

The proof uses the description by D. Arapura of the irreducible components of $\mathcal{V}_1(F)$ and the properties of MHS on $H^1(F, \mathbb{Q})$ given above.