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1. Introduction

Let X be a smooth complex variety and Y
be a closed subscheme of X . We are inter-
ested in invariants attached to the singular-
ities of the pair (X, Y ). We discuss various
methods to construct such invariants, coming
from the log-resolutions of the pairs, and the
geometry of the space of arcs. We present sev-
eral applications of these invariants to algebra,
higher dimensional birational geometry and to
singularities. The general setup is to assume
only that X is normal and Q-Gorenstein, as
in Kollár’s paper [32]. However, several of
the approaches we will discuss become par-
ticularly transparent if we assume, as we do,
the smoothness of the ambient variety.
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2. Multiplier ideals

Multiplier ideals were first introduced by
J. Kohn for solving certain partial differential
equations. Siu and Nadel introduced them to
complex geometry. We discuss below these
ideals in the context of algebraic geometry.

Let X be a smooth complex affine variety
and Y be a closed subscheme of X . Suppose
that the ideal of Y is generated by f1, . . . , fm,
and let λ be a positive real number. We define
the multiplier ideal of (X, Y ) of coefficient λ
as follows:

J (X,λ·Y ) =

{
g ∈ OX |

|g|2

(
∑m
i=1 |fi|2)λ

is locallyL1

}
.

Example 2.1. Let X = Cn and let Y be
the closed subscheme of X defined by f =
x
a1
1 · · · x

an
n . Then

J (X,λ · Y ) = (x
bλa1c
1 . . . x

bλanc
n ),
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where bαc denotes the integer part of α.

We can use a log resolution of singulari-
ties and the above example to give in gen-
eral a more geometric description of the mul-
tiplier ideals of (X, Y ). By Hironaka’s The-
orem there is a log resolution of singularities
of the pair (X, Y ), i.e. a proper birational
morphism

µ : X ′ −→ X

with the following properties. The variety X ′

is smooth, µ−1(Y ) is a divisor, and the union
of µ−1(Y ) and the exceptional locus of µ has
simple normal crossings. The relative canon-
ical divisor KX ′/X is locally defined by the

determinant of the Jacobian J(µ) of µ, We

write µ−1(Y ) =
∑N
i=1 aiEi and KX ′/X =∑N

i=1 kiEi, where the Ei are distinct smooth

irreducible divisors in X ′ such that
∑N
i=1Ei

has only simple normal crossing singularities.
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The local integrability of a function g on X
can be expressed as a local integrability condi-
tion on X ′ via the change of variable formula.
This reduces us to a monomial situation, sim-
ilar to that in Example 2.1. On deduces that
g ∈ J (X,λ · Y ) if and only if

ordEig ≥ bλaic − ki
for every i. Equivalently, if we put bλµ−1(Y )c =∑
ibλaicEi, then

(1)
J (X,λ·Y ) = µ∗OX ′(KX ′/X−bλµ

−1(Y )c).

Note that because of the original definition,
it follows that this expression for J (X,λ · Y )
is independent of the choice of a resolution of
singularities. We note that if λ1 ≥ λ2, then

J (X,λ1 · Y ) ⊆ J (X,λ2 · Y ).

If λ is small enough, then λai < ki + 1 for
i = 1, . . . , N . This implies that

ordEi1 ≥ bλaic − kEi,



5

hence J (X,λ · Y ) = OX . This leads us to
the definition of the log canonical threshold of
the pair (X, Y ): this is the smallest λ such
that J (X,λ · Y ) 6= OX , i.e.

c = lc(X, Y ) = min
i

{
ki + 1

ai

}
.

We may regard 1
c as a refined version of multi-

plicity. In general a singularity with a smaller
log canonical threshold tends to be more com-
plex.

The first appearance of the log canonical
threshold was in the work of Arnold, Gusein-
Zade and Varchenko (see [2] and [48]), in con-
nection with the behavior of certain integrals
over vanishing cycles.

In the last decade this invariant has enjoyed
renewed interest due to its applications to bi-
rational geometry. The following is probably
the most interesting open problem about log
canonical thresholds.
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Conjecture 2.2. (Shokurov’s ACC Conjec-
ture) For every n, Consider the set

Tn = {lc(X, Y ) | X dimX = n, Y ⊂ X}
where X is a log-canonical variety. Then Tn
satisfies the Ascending Chain Condition: The
set Tn contains no infinite strictly increasing
sequences.

This conjecture attracted considerable in-
terest due to its implications to the Termina-
tion of Flips Conjecture (see [Bir] for a result
in this direction). For this talk, we’ll only dis-
cuss about

T smn = {lc(X, Y ) | X dimX = n, Y ⊂ X}
where X is smooth variety The first uncon-
ditional results on sequences of log canoni-
cal thresholds on smooth varieties of arbitrary
dimension have been obtained deFernex and
Mustaţǎ in [dFM] using nonstandard meth-
ods from model theory, and they were subse-
quently reproved and strengthened by Kollár



7

in [Kol2] using the recent spectacular results of
Birkir, Cascini, Hacon and McKernan [BCHM]
on existence of minimal models. In particu-
lar, Kollár proves that the set of accumulation
points of T smn is exactly the set T smn−1.

Theorem 2.3. (de Fernex, Ein and Mustaţǎ)
T smn satisfies the ascending chain condition.

The proof is in fact rather elementary and
does not need to use the results from [BCHM].
I understand that Mustaţǎ will discuss the
problem in a later talk. I would leave the de-
tails to his talk.

We can consider also higher jumping num-
bers. In general, we say that λ is a jumping
number of (X, Y ), if

J (X,λ · Y ) ( J (X, (λ− ε) · Y )

for all ε > 0. If λai is not an integer, then
bλaic = b(λ− ε)aic for sufficiently small pos-
itive ε. We see that a necessary condition for λ
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to be a jumping number is that λai is an inte-
ger for some i. In particular, if λ is a jumping
number, then it is rational and has a bounded
denominator.

The following theorem gives a periodicity
property of the jumping numbers.

Theorem 2.4. (i) If Y = D is a hypersur-
face in X, then

J (X,λ ·D) · OX(−D) = J (X, (λ+ 1) ·D).

(ii) (Ein and Lazarsfeld [16]) For every Y de-
fined by the ideal IY , if λ ≥ dimX − 1,
then

J (X,λ ·D) · IY = J (X, (λ + 1) · Y ).

Corollary 2.5. Suppose that λ > dimX −
1. Then λ is a jumping number for (X, Y )
if and only if so is (λ + 1).

It follows from the sub-additivity theorem
of multiplier ideals (Demailly, Ein and Lazars-
feld [13] that the following result holds.
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Theorem 2.6. (Ein, Lazarsfeld, Smith and
Varolin) Suppose c is the log-canonical thresh-
old of (X, Y ). Let λ ≥ 0 be a non-negative
real number. Then there is a jumping λ′ in
the interval (λ, λ + c].

We conclude that the set of jumping num-
bers of the pair (X, Y ) is a discrete subset
of Q and it is eventually periodic with period
one.

Example 2.7. If Y is a smooth subvariety of
X of codimension e, then the set of jumping
numbers of the pair (X, Y ) is {e, e + 1, · · · }.
In particular lc(X, Y ) = e.

Example 2.8. (Howald) LetX = Cn and let
Y be the closed subscheme defined by a mono-
mial ideal a. If a = (a1, a2, . . . , an) ∈ Nn,
we denote the monomial x

a1
1 · · · x

an
n by xa.

Consider the Newton polyhedron Pa associ-
ated with a: this is the convex hull of those
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a ∈ Nn such that xa ∈ a. Using toric geome-
try Howald showed in [27] that

J (X,λ · Y ) = (xa | a + e ∈ λ · Int(Pa)),

where e = (1, . . . , 1). In particular, the log
canonical threshold c of (X, Y ) is character-
ized by the fact c · e lies on the boundary of
Pa.

Example 2.9. (Howald) Let X = Cn and
let Y be the closed subscheme defined by the
monomial ideal a = (x

a1
1 , . . . , x

an
n ). In this

case, the boundary of the Newton polyhedron
Pa is

{u = (u1, . . . , un) ∈ Rn+ |
n∑
i=1

ui
ai

= 1}.

Applying Howald’s theorem , one sees that
lc(X, Y ) =

∑
i

1
ai

.

One reason that multiplier ideals have been
very powerful in studying questions in higher
dimensional algebraic geometry is that they
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appear naturally in a Kodaira type vanishing
theorem. The following statement is the alge-
braic version of a result due to Nadel. In our
context, it can be deduced from the Kawamata-
Viehweg Vanishing Theorem (see [34]). Let
X be a smooth complex variety and Y be a
closed subscheme of X . Let µ : X ′ −→ X be
a log resolution of (X, Y ). Let E = µ−1Y

Theorem 2.10. (Nadel’s vanishing theorem)
Suppose that L is a divisor on X and λ is
a positive real number. Assume that µ∗L−
λ · E is nef and big, then for every i > 0

Hi(X,OX(KX + L)⊗ J (X,λ · Y )) = 0.

3. Applications of multiplier ideals

One of the most important applications of
multiplier ideals is the following theorem of
Siu (see [44] and [45]) on the deformation in-
variance of plurigenera.
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Theorem 3.1. Let f : X −→ T be a smooth
projective morphism of relative dimension
n between two smooth irreducible varieties.
If we denote by Xt the fiber f−1(t) for each
t ∈ T , then for every fixed m > 0, the di-
mension of the cohomology group H0(Xt, (Ω

n
Xt

)⊗m)
is independent of t.

The techniques of extending sections of line
bundle from a divisor involved in the proof of
this theorem have been recently extended by
Hacon and McKernan to study existence of
flips. Using these results and other important
techniques introduced by Shokurov, we have
the following theorem.

Theorem 3.2. (Birkir, Cascini, Hacon and
McKernan) If X is a smooth complex pro-
jective variety. Then the canonical ring of
X is finitely generated.
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Remark 3.3. Siu independently using more
analytic techniques proved the same result for
varieties of general type.

The following extension theorem is essen-
tially due to Hacon-McKernan.

Theorem 3.4. (Hacon-McKernan, Ein-Popa)
Let (X,∆) be a log-pair, with X a nor-
mal projective variety and ∆ an effective
Q-divisor with [∆] = 0. Let S ⊂ X be an
irreducible normal effective Cartier divisor
such that S 6⊂ Supp(∆), and A a big and
nef Q-divisor on X such that S 6⊆ B+(A).
Let k be a positive integer and M a Cartier
divisor such that M ∼Q k(KX+S+A+∆).
Assume the following:

• (X,S + ∆) is a plt pair.
•M is pseudo-effective.
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• the restricted base locus B−(M) does
not contain any irreducible closed sub-
set W ⊂ X with minimal log-discrepancy
mld(µW ;X,∆) < 1 which intersects S.
• the restricted base locus B−(MS) does

not contain any irreducible closed sub-
set W ⊂ S with minimal log-dicrepancy
mld(µW ;S,∆S) < 1.1

Then the restriction map

H0(X,OX(mM)) −→ H0(S,OS(mMS))

is surjective for all m ≥ 1.

In a different direction, there are applica-
tions of multiplier ideals to singularities of theta
divisors on abelian varieties. Let (X,Θ) be a
principally polarized abelian variety, i.e. Θ is
an ample divisor on an abelian variety X such
that dimH0(X,OX(Θ)) = 1. The following
result is due to Ein and Lazarsfeld [17].

1By inversion of adjunction, these last two conditions can be expressed in a unified was as saying
that B−(M) does not contain any irreducible closed subset W ⊂ X with mld(µW ;X,∆ + S) < 1 which
intersects S but is different from S itself.
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Theorem 3.5. Let (X,Θ) be a principally
polarized abelian variety.

(i) (Kollár) (X,Θ) is log-canonical.
(ii) (Ein and Lazarsfeld)If Θ is irreducible,

then Θ has at most rational singulari-
ties.

Proof. (i) Observe that (X,Θ) is log-canonical
is equivalent to J (X, (1− ε)Θ) = OX for all
ε > 0. Suppose for contradiction that IZ =
J (X, (1− ε)Θ) is a nontrivial ideal for some
ε > 0. Observe that Z is closed subscheme
contains in the singular locus of Θ. Observe
that KX is trivial. Now Nadel’s vanishing
says that Hi(IZ ⊗OX(Θ + x0)) = 0 for i >
0 and any x0 ∈ X . Observe that χ(IZ ⊗
OX(Θ)) = h0(IZOX(Θ)) > 0, since Z ⊂
Θ. It follows from the vanishing theorem that
χ(IZ ⊗ OX(Θ + x0)) = h0(IZ ⊗ OX(Θ +
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x0)) > 0. We conclude that

Z ⊂
⋂
x0∈X

(Θ + x0) = ∅

This is a contradiction. �

Corollary 3.6. Let (X,Θ) be a principally
polarized abelian variety of dimension g,
with Θ irreducible. If

Σk(Θ) = {x ∈ X | multx(Θ) ≥ k},
then for every k ≥ 2 we have codim(Σk(Θ), X) ≥
k + 1. In particular, Θ is a normal variety
and multx(Θ) ≤ g − 1 for every singular
point x on Θ.

Remark 3.7. The fact that Θ is normal was
first conjectured by Arbarello, De Concini and
Beauville. When X is the Jacobian of a curve,
the fact that Θ has only rational singulari-
ties was proved by Kempf. It was Kollár who
first observed in [31] that one can use vanish-
ing theorems to study the singularities of the
theta divisor.
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Multiplier ideals have been applied in sev-
eral other directions: to Fujita’s problem on
adjoint linear systems [3], to Effective Nullstel-
lensatz, to Effective Artin-Rees Theorem [20].
Building on work of Tsuji, recently Hacon and
McKernan and independently, Takayama have
used multiplier ideals to prove a very inter-
esting result on boundedness of pluricanonical
maps for varieties of general type (see [24] and
[47]). We end this section with an application
to commutative algebra due to Ein, Lazarsfeld
and Smith [19].

Let X be a smooth n-dimensional variety
and Y ⊆ X defined by the reduced sheaf of
ideals a. Themthth symbolic power of a is the
sheaf a(m) of functions on X that vanish with
multiplicity at least m at the generic point
of every irreducible component of Y . If Y is
smooth, then the symbolic powers of a agree
with the usual powers, but in general they are
very different.
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Theorem 3.8. If X is a smooth n-dimensional
variety and if a is a reduced sheaf of ideals,
then a(mn) ⊆ am for every m.

Multiplier ideals have been applied in sev-
eral other directions: to Fujita’s problem on
adjoint linear systems [3], to Effective Nullstel-
lensatz, to Effective Artin-Rees Theorem [20]
and to the symbolic powers of ideals. [19].

4. Bounds on log canonical
thresholds and birational

rigidity

In this section we compare the log canon-
ical threshold with the classical Samuel mul-
tiplicity. We give then an application of the
inequality between these two invariants to a
classical question on birational rigidity. Let
X be a smooth complex variety and x ∈ X
a point. Denote by R the local ring of X at
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x, and by m its maximal ideal. The follow-
ing result was proved by de Fernex, Ein and
Mustaţǎ in [10].

Theorem 4.1. Let a be an ideal in R that
defines a subscheme Y supported at x. Let
c be the log canonical threshold of (X, Y ),
l(R/a) be the length of R/a and e(a) be
the Samuel multiplicity of R along a. If
n = dimR, then we have the following in-
equalities.

(i) l(R/a) ≥ nn

n!·cn.

(ii) e(a) ≥ nn

cn . Furthermore, this is an equal-
ity if and only if the integral closure of
a is equal to mk for some k.

Example 4.2. Suppose that a = (x
a1
1 , . . . , x

an
n ).

In this case e(a) =
∏n
i=1 ai and lc(a) =

∑n
i=1

1
ai

.

The inequality in Theorem 4.1(ii) becomes
n∏
i=1

ai ≥
nn(∑n
i=1

1
ai

)n.
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This is equivalent to1

n

n∑
i=1

1

ai

n

≥
n∏
i=1

1

ai
,

which is just the classical inequality between
the arithmetic and the geometric mean.

Theorem 4.1 is used in [11] to study the
behavior of the log canonical threshold under
a generic projection. Using the above theo-
rems and some beautiful geometric ideas of
Pukhlikov [42], one gives in [11] a simple uni-
form proof for the following result.

Theorem 4.3. If X is a smooth hypersur-
face of degree N in CPN , with 4 ≤ N ≤ 12,
then X is birationally super-rigid. In par-
ticular, every birational automorphism of
X is bi-regular.
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Remark 4.4. Consider the group AutC(C(X)),
the automorphism group of the field of ratio-
nal functions of X . This is naturally isomor-
phic to BirC(X), the group of birational au-
tomorphisms of X . If X is birationally super-
rigid, then BirC(X) ' AutC(X), the auto-
morphism group of X . When X is a hyper-
surface of degree N in PN , X has no nonzero
vector fields and therefore AutC(X) is a finite
group. If C(X) is purely transcendental, then
AutC(X) will contain a subgroup isomorphic
to the general linear group GLn. In partic-
ular this shows that these hypersurfaces are
not rational. In a recent preprint, de Fernex
has overcame some of the technical difficulties
that we encountered in [11]. He is now able
to extend the arguments to all N ≥ 4. When
N=4, it is a classical theorem of Iskovskikh
and Manin that X is birationally rigid [28].
They used this to show that the function field



22

of a suitable quartic threefold provides a coun-
terexample to the classical Luroth’s problem.

5. Spaces of arcs and contact loci

Let X be a smooth n-dimensional complex
variety. Given m ≥ 0, we denote by

Xm = Hom
(

Spec C[t]/(tm+1) , X
)

the space of mth order jets on X . This car-
ries a natural scheme structure. Similarly we
define the space of formal arcs on X as

X∞ = Hom
(

Spec C[[t]] , X
)
.

These constructions are functorial, hence to
every morphism µ : X ′→ X we associate cor-
responding morphisms µm and µ∞. Thanks
to the work of Kontsevich, Denef, Loeser and
others on motivic integration, in recent years
these spaces have been very useful in con-
structing invariants of singular algebraic va-
rieties. For instance, the following is one of
the applications.
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Definition 5.1. Suppose thatX1 andX2 are
two smooth projective varieties. We say that
X1 is K−equivalent to X2, if there are proper
birational morphisms from a smooth projec-
tive variety Y , φi : Y −→ Xi for i = 1 and
2 with property φ∗1(KX1

) ∼ φ∗2(KX2
) on Y .

Theorem 5.2. (Kontsevich) Suppose that
X1 is K− equivalent to X2. Then the Hodge
number hp,q(X1) = hp,q(X2) for all p and
q.

In what follows we describe some applica-
tions of these spaces to the singularities of
pairs.

Consider a divisorial valuation of the form
valE with center cX(E) in X (the center is
the image of E in X). The log discrepancy
of the pair (X,λ · Y ) along E is

a(E,X, λ · Y ) = kE + 1− λ · valE(IY ),

where IY is the ideal of Y in X . The idea is
to measure the singularities of the pair (X,λ ·
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Y ) along B using the log discrepancies along
divisors with center contained in B.

Definition 5.3. Let B ⊂ X be a nonempty
closed subset. The minimal log discrepancy of
(X,λ · Y ) over B is defined by
(2)
mld(B;X,λ·Y ) := inf

cX(E)⊆B
{a(E;X,λ·Y )}.

Theorem 5.4. (Ein, Mustaţǎ, and Yasuda)(Inversion
of Adjunction) Let D be a smooth divisor
on the smooth variety X and let B be a
nonempty proper closed subset of D. If Y is
a closed subscheme of X such that D 6⊆ Y ,
and if λ ∈ R+, then

mld(B;X,D + λ · Y ) = mld(B;D,λ · Y |D).

Remark 5.5. The notion of minimal log dis-
crepancy plays an important role in the Mini-
mal Model Program. It can be defined under
weak assumptions on the singularities of X :
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one requires only that X is normal and Q-
Gorenstein. Kollár and Shokurov have con-
jectured the statement of Theorem 5.4 with
the assumption that X and D are only nor-
mal and Q-Gorenstein. It is easy to see that
the inequality ”≤” holds in general, and the
opposite inequality is known as Inversion of
Adjunction. Theorem 5.4 has been general-
ized in [21] to the case when both X and D
are normal locally complete intersections.

We have natural projection maps induced
by truncation Xm+1 → Xm. Since X is
smooth, this is locally trivial in the Zariski
topology, with fiber An. We similarly have
projection maps X∞ → Xm. A subset C of
X∞ is called a cylinder if it is the inverse im-
age of a constructible set S in some Xm. If C
is a closed cylinder that is the inverse image of
a closed subset S ⊂ X∞, its codimension in
X∞ is equal to the codimension of S in Xm.
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Consider a nonzero ideal sheaf a ⊆ OX
defining a subscheme Y ⊂ X . Given a finite
jet or an arc γ on X , the order of contact of
the corresponding scheme Y — along γ is de-
fined in the natural way. Pulling a back via
γ yields an ideal (te) in C[t]/(tm+1) or C[[t]],
and one sets

ordγ(a) = ordγ(Y ) = e.

For a fixed integer p ≥ 0, we define the con-
tact locus

Contp(Y ) = Contp(a) =def

{
γ ∈ X∞ | ordγ(a) = p

}
.

Note that this is a locally closed cylinder. A
subset of X∞ is called an irreducible closed
contact subvariety if it is the closure of an
irreducible component of Contp(Y ) for some
p and Y .

Suppose now that W is an arbitrary irre-
ducible closed cylinder in X∞. We can natu-
rally associate a valuation of the function field
ofX toW as follows. If f is a nonzero rational
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function of X , we put

valW (f ) = ordγ(f ) for a general γ ∈ W.

This valuation is not identically zero if and
only if W does not dominate X .

If µ : X ′ −→ X is a proper birational
morphism, with X ′ smooth, and if E is an ir-
reducible divisor on X ′, then we define a val-
uation by

valE(f ) = the vanishing order of f ◦ µ along E.

A valuation on the function field of X is called
a divisorial valuation (with center on X) if
it is of the form m · valE for some positive
integer m and some divisor E as above.

A key invariant associated to a divisorial
valuation v is its log discrepancy. If E is a
divisor as above, Suppose that kE is the co-
efficient of E in the relative canonical divisor
KX ′/X . Note that kE depends only on valE
(it does not depend on the model X ′). Given
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an arbitrary divisorial valuation m · valE, we
define its log discrepancy as m(kE + 1).

Consider a divisor E on X ′ as above. If
Cm(E) is the closure of µ∞(Contm(E)), then
it is not hard to see that Cm(E) is an irre-
ducible closed contact subvariety of X∞ such
that valCm(E) = m·valE. The following result

of Ein, Lazarsfeld and Mustaţǎ [18] describes
in general the connection between cylinders
and divisorial valuations.

Theorem 5.6. Let X be a smooth variety.

(i) If W is an irreducible, closed cylinder
in X∞ that does not dominate X, then
the valuation valW is divisorial.

(ii) For every divisorial valuation m · valE,
there is a unique maximal irreducible
closed cylinder W such that valW = m ·
valE: this is W = Cm(E).
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(iii) The map that sends m · valE to Cm(E)
gives a bijection between divisorial val-
uations of C(X) with center on X and
the set of irreducible closed contact sub-
varieties of X∞.

The applicability of this result to the study
of singularities is due the following description
of log discrepancy of a divisorial valuation in
terms of the codimension of a certain set of
arcs.

Theorem 5.7. Given a divisorial valuation
v = m · valE with center on X, if Cm(E)
is its associated irreducible closed contact
subvariety in X∞, then the log discrepancy
of v is equal to codim(Cm(E), X∞).

Combining the statements of the above the-
orems, we deduce a lower bound for the codi-
mension of an arbitrary cylinder in terms of
the discrepancy of the corresponding divisor.
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Corollary 5.8. If W is a closed, irreducible
cylinder in X∞ that does not dominate X,
then codim(W,X∞) is bounded below by the
log discrepancy of valW .

Remark 5.9. The above two theorems also
hold for singular varieties after some minor
modifications using Nash’s blow-up and Mather’s
canonical class.

As an application of Theorems 5.6 and 5.7,
one gives in [18] a simple proof of the follow-
ing result of Mustaţǎ [37] describing the log
canonical threshold in terms of the geometry
of the space of jets.

Theorem 5.10. Let X be a smooth com-
plex variety and Y be a proper closed sub-
scheme of X. Let Xm and Ym be the spaces
of mth order jets of X and Y , respectively.
If c = lc(X, Y ), then

(i) For every m we have codim(Ym, Xm) ≥
c · (m + 1).
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(ii) If m + 1 is sufficiently divisible, then
codim(Ym, Xm) = c · (m + 1).

The above results relating divisorial valu-
ations with the space of arcs can be used to
study more subtle invariants of singularities
of pairs. Let Y be a closed subscheme of the
smooth variety X , and let λ be a positive real
number. We associate a numerical invariant
to the pair (X,λ · Y ) and to an arbitrary
nonempty closed subset B ⊆ X , as follows.

We end with a result that translates prop-
erties of the minimal log discrepancy over the
singular locus of a locally complete intersec-
tion variety into geometric properties of its
spaces of jets.

Theorem 5.11. Let X be a normal locally
complete intersection variety of dimension
n.

(i)Xm is irreducible for every m (and in
this case it is also reduced) if and only
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if mld(Xsing;X, ∅) ≥ 1 (this says that X
canonical singularities).

(ii)Xm is normal for every m if and only
if mld(Xsing;X, ∅) > 1 (this says that X
has terminal singularities).

(iii) In general, we have codim((Xm)sing, Xm) ≥
mld(Xsing;X, ∅) for every m.

Remark 5.12. The description in (ii) above
was first proved in [38]. Note that since X is
in particular Gorenstein, it is known that X
has canonical singularities if and only if it has
rational singularities. All the statements in
the above theorem were obtained in [22] and
[21] combining the description of minimal log
discrepancies in terms of spaces of arcs and
Inversion of Adjunction.
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[43] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential
equations, Algorithms and Computation in Mathematics 6, Springer-Verlag, Berlin, 2000.

[44] Y.-T. Siu, Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical
bundles, in Finite or infinite dimensional complex analysis and applications, Adv. Complex Anal.
Appl., 2, Kluwer Acad. Publ., Dordrecht, 2004, 45–83.

[45] Y.-T. Siu, Invariance of plurigenera, Invent. Math. 134 (1998), 661–673.
[46] S. Takagi and K.-i. Watanabe, On F -pure thresholds, J. Algebra 282 (2004), 278–297.
[47] S. Takayama, Pluricanonical systems on algebraic varieties of general type, preprint 2005.
[48] A. Varchenko, Asymptotic Hodge structures in the vanishing cohomology, Math. USSR Izv. 1982,

469–512.
[49] T. Yano, b-functions and exponents of hypersurface isolated singularities, Proc. Symp. Pure Math

40 (1983), 641–652.


