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Recall Virtual Knot Theory
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Figure 1. Moves
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Figure 3. Forbidden Moves




Figure 4. Surfaces and Virtuals
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Our Sign Convention




A Simple Invariant of Virtuals -- The Odd Writhe

Bare Gauss Code
1 ) 1212

Crossings 1 and 2 are
odd.

A crossing is odd
if it flanks an odd
number of symbols
in the Gauss code.

The odd writhe of K, J(K).
J{K) = Sum of signs of the odd crossings of K.
Here J(K) = -2.

Facts: J(K) is an invarant of vitual isotopy.
J{K) = 0is K is classical.
J{Mirror Image of K) = -J{(K).

Hence this example is not classical and is
not isotopic to its mirror image.




Long Flats Embed in Long Virtuals via the Ascending Map.
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Figure 5. Ascending Map




The Bracket Polynomial Model for
the Jones Polynomial Extends to Virtual Links.




Bracket Polynomial is Unchanged
when smoothing flanking virtuals.
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Figure 7. Switch and Virtualize
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<Virt(K)> = <Switch(K)>
and

1Q(Virt(K)) = IQ(K).

Conclusion: There exist infinitely many
non-trivial Virt(K) with unit Jones
polynomial.
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A Well-Known Culprit

Figure 9. Kishino Diagram




Oriented Bracket State Sum

XX
\/\ _A\AA ><
k() =0k

6—A A2

Figure 10. Oriented Bracket Expansion




Our Approach:

Retain the reverse oriented vertex if possible.
Think of the reverse oriented vertex as
endowed with a spring that holds the ends together.
Reduce states to graphs.

Determine reduction rules from the
Reidemeister moves.
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Figure 13: The Type One Move
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Figure 18: Oriented Second Reidemeister Move
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Figure 19: Reverse Oriented Second Reidemeister Move







THE ARROW POLYNOMIAL

All paired vertices are allowed to come apart.
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In the arrow polynomial the paired vertices
at a disoriented crossing come apart and
the reduction relations simplify.
The end graphs are disjoint unions of
simplified circle graphs. Each reduced
circle graph becomes a new polynomial variable.
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Returning to Extended Bracket
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Key Example

V/\ Wf/\

.
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If SA is a state obtained from S by
making one of these replacements, then
SN and S have the same unique graphical reduction.
The summation

<< K >>=3%g < K|S > dIIFlI=19]

where [S] denotes the reduced graph
corresponding to the state S, is a regular
isotopy invariant of virtual knots and links.




Reduced States with zigzags cannot be
embedded in the plane.
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Zig-zags survive in higher genus.




State Reduction




Figure 12. Multiplicity




Special Replacements Avoid Multiplicity

Figure 15. Well-definedness of Special Replacement A




Figure 18: Uniqueness of Special Replacement B




Figure 22: Networks of C' - Moves
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Figure 22. Examplel




In this example <<L>> detects the non-triviality
of a Iong virtual whose closure is unknotted.
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Figure 23. Example2




The Trivial Closure
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Figure 27. Virtualized Trefoil States
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Figure 28. Flattened Virtualized Trefoil States




Virtualized Trefoil is Non-Classical with
Virtual Crossing Number Two.
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Figure 29. Extended Bracket for the Virtualized Trefoil




Let #<<K>> the maximal number of
necessary virtual crossings among all the
virtual graphs that appear in <<K>>,

THEOREM. The virtual crossing number
of K is bounded below by #<<K>>,

Conclusion: The virtualized trefoil (previous
slide) had virtual crossing number two.

Nota Bene. T lives on a
torus.
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Extended Bracket for Kishino Diagram




Expanding a Virtualized Crossing
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Detecting Non-Classicality of Single
Virtualizations
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Nobody’s Perfect
A Culprit (discovered by Slavik Jablan)

&

This virtual knot is undetectable by the extended bracket.

It is not classical as is shown by a look at its
Alexander module.




THE ARROW POLYNOMIAL

All paired vertices are allowed to come apart.
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In the arrow polynomial the paired vertices
at a disoriented crossing come apart and
the reduction relations simplify.
The end graphs are disjoint unions of
simplified circle graphs. Each reduced
circle graph becomes a new polynomial variable.
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The arrow polynomial A[K] is
presented here as a natural simplication of
the extended bracket <<K>>.

In joint work with Heather Dye, we
found the very same invariant
by a different set of motivations
related to the work by
Miyazawa and Kamada.

HD and LK show that the maximum monomial
degree of the variables Kn
with deg(Kn) = n
gives a
a lower bound on the crossing number of
the knot.




We let A[K] denote the arrow polynonmial.

A[K] = <<K>> (replacing each graph by the corresponding
product of Kn’s)

Setting all Kn = | gives the old bracket.
<K>=B[K] (I =Kl =K2=K3=..)

Setting A = | gives a polynomial invariant of
flat virtuals.

F[K] = B[K](A =1)




Coding A[K]
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Using the Extended Bracket to
Determine Virtual Genus.

The virtual genus is the least genus orientable surface
on which the virtual knot (or flat virtual knot)
can be represented.




{4 P P

L is a flat virtual link whose virtual genus is 2.
We prove this by using the arrow polynomial to
show that the state S survives and thus
the graph G survives in the extended bracket.
One then sees that G is a virtual graph of

genus 2.

This example shows
how extended bracket
has more information

than arrow poly.
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Here we have a similar story for the
flat virtual knot K.The state S reduces to S'.
And §’ gives the surviving graph H.
H has genus 2. And the graph of K itself
has genus 2.This proves that K is a virtual flat
knot of virtual genus 2.




The Arrow Polynomial for Surface Embeddings

Lemma 4.1. Let C be a curve in a state of the generalized arrow polynomial applied
to a link in a surface. If C' has non-zero arrow number then C is an essential curve
in the surface.

Proposition 4.2. For any i > 1, there exists a virtual knot (and a virtual link), L,
with minimal genus 1 such that some summand of (L) contains the variable K;.




Theorem 4.3. Let S be an oriented, closed, 2-dimensional surface with genus
g>1.1If g=1, then S contains at most 1 nonintersecting, essential curve and if
g > 1, then S contains at most 3g — 3 non-intersecting, essential curves.

Theorem 4.4. If S is an oriented, closed, 2-dimensional surface that contains
39 — 3 non-intersecting, essential curves with g > 2 then the genus of S 1is at
least g.

Theorem 4.5. Let L be a virtual link diagram with arrow polynomial (L) s. Sup-
pose that (L) 4 contains a summand with the monomial K;, K;, - - - K;, where i; # iy
for all i,k in the set {1,2,...,n}. Then n determines a lower bound on the genus
g of the minimal genus surface in which L embedds. That is, if n > 1, then the

minimum genus s 1 or greater and if n > 3g — 3 then the minimum genus is g or
higher.




Proof. The proof of the this theorem is based on Theorem 4.3. Let L be a virtual
link diagram with minimal genus one. Suppose that the arrow polynomial contains
a summand with the monomial K;K; with ¢ # j. The summand corresponds to
a state of expansion of L in a torus that contains two non-intersecting, essential
curves with non-zero arrow number. As a result, these curves cobound an annulus
and either share at least one crossing or both curves share a crossing with a curve
that bounds a disk in some state obtained from expanding the link L. Smoothing
the shared crossings results in a curve that bounds a disk and has non-zero arrow
number (either |i — j| or |i + j|) resulting in a contradiction. Hence, the minimum
genus of L can not be one.

Suppose that L is a virtual link diagram and that (L) 4 contains a summand with
the factor K;, K, - - - K,,_,. Hence, the corresponding state of the skein expansion
contains 3g — 3 non-intersecting, essential curves in any surface representation of
L. If any of these curves cobound an annulus in the surface, then some state in

the expansion of L contains a curve that bounds a disk and has non-zero arrow

number, a contradiction. Hence, none of the 3g — 3 curves cobound an annulus and
as a result, the minimum genus of a surface containing L is at least g. O




Z - Equivalence

Z - Equivalent Links have the
same Jones polynomial

Kauffman, Fenn, Manturov conjectured that virtual
knots of unit Jones polynomial are Z-equivalent to
classical knots.

Here are some recent examples to ponder.




The Knot S3 (work with Slavik Jablan) has unit Jones
polynomial. Is it Z-equivalent to a classical knot?

S~
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Answer: It is not!
(Proof via a new parity
technique due to
Manturov.)

A[S3] = -2K1°2 + K2 + A (1 - 2K172 + K2)




The knot S7 has unit Jones polynomial. Is it Z-equivalent
to a classical knot!? Does it have crossing number 3!

(Our best lower bound is 2.)

A[ST7] = (A1) + ABKI12 + (A-1))K2




Legendrian Knots

X' (t)y(t) = Z'(t)
no tangents parallel to z-axis
project into x-z plane
finite number of points with tangent parallel to y axis




no vertical tangencies.
only non-smooth points are generalized cusps.
at each crossing the slope of th overcrossing is smaller
(more negative) than the slope of the undercrossing.

S ==

Converting a knot diagram (left) into a Legendrian front (right).

See survey article by John Entnyre.
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Legendrian Reidemeister Moves
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FIGURE 9. Various fronts of the same Legendrian unknot.
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FIGURE 10. Two fronts of the same Legendrian figure eight knot.




Work In Progress:
The Arrow Polynomial generalizes to
an invariant of Legendrian knots.

Stay tuned for more
developments.




Many Questions

|. Find better bounds on virtual crossing numbers.
2. Understand virtual graph classes.

3. Relative strength of <<K>> and A[K].

4. Categorify these invariants (work with Heather
Dye and Vassily Manturov. see recent paper on
arxiv.)

5. Relationship of these invariants with
with the virtual Temperley Lieb algebra.

6. Second order generalizations to invariants
of knots in surfaces and to long flats.

/. Deeper oriented structure in other state sums!
8. Legendrian knots.




