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Thanks, Anatoly, for all the great discussions

over the years. Happy Birthday!



INTRODUCTION

Throughout this talk A will be an arrangement

of hyperplanes in C`. This means that A is a fi-

nite collection {H1, . . . , Hn} where Hi = α−1
i (bi)

and each αi is a linear homogeneous form in

the variables (z1, . . . , z`). (See [P. Orlik and

H. Terao, Arrangements of Hyperplanes] for

material on arrangements). We call A an `-

arrangement. If all the bi = 0, we say that

the arrangement is central. Otherwise we call

A an affine arrangement. We let M be the

complement of the union of the hyperplanes

M = C` \ ∪Hi.
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Our focus here is to describe the topology of

M and various related spaces. Surprisingly this

turns out to be more difficult than one would

expect, given the linear nature of the situa-

tion. Since each Hi has real codimension two,

we are in a knotting situation, and the funda-

mental group of M turns out to have consider-

able interest, in some ways analogous to that

of a knot complement. Sometimes M turns

out to be aspherical (as in the classical pure

braid case–see below), but in general it is not,

and so in that way M is not behaving like a

knot complement. Asphericity turns out to be

rare, and generally a consequence of special

geometric or algebraic considerations.
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What is true is that in many ways M behaves

nicely as a topological space. For example, M

has the homotopy type of a CW complex of

real dimension `. In fact, this CW complex is

minimal in that the number of k-cells is equal

to the k-th betti number bk(M). If the ar-

rangement is real (the coefficients of the defin-

ing polynomial are real), there are techniques

for explicitly determining the attaching maps

in this CW structure. As a further example

of this topological niceness the ordinary coho-

mology of M is generated by rank one classes

(the “logarithmic forms” dαi/αi).
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After we sketch some basic constructions, ex-

amples and results below, we intend to high-

light a number of areas of current interest,

mentioning along the way a somewhat per-

sonal list of open problems. We focus on what

should be true for all, or at least large classes

of, arrangements, rather than on properties of

rather special families.

4



BASIC TOPOLOGY, COMBINATORICS

AND ALGEBRA

Coning, De-coning, and fibering

Let’s start with a central arrangement in C`,

given by a product Q =
∏

(αi) = 0 of linear

forms. We may regard Q as a smooth func-

tion Q : M → C − {0}. In fact, this is just

the Milnor fibration, global here because Q is

homogeneous. Let F = Q−1(1) be the fiber.

Also, one has the Hopf map h : M →M∗, where

M∗ is the complement of the projective variety

defined by Q. Notice that M∗ is an affine ar-

rangement in its own right, simply by removing

any of the n projective hyperplanes from pro-

jective space.
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Then one has the following basic diagram (which

I first saw in the work of M. Oka):

C∗

↓
F → M → C∗

↘ ↓
M∗

Here the vertical bundle map is the Hopf map

and the horizontal bundle map is the Milnor

fibration. The diagonal map is the cyclic n-

fold cover map (z1, . . . , z`)→ [z1 : . . . : z`].
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We say that the affine arrangement space M∗

is the decone of M with respect to the hy-

perplane removed. If we choose coordinates

so that the removed hyperplane is given by

zn = 0 then M∗ is associated to the affine ar-

rangement obtained by taking zn = 1 in the

defining equation Q for M . Conversely, given

an affine arrangement given by possibly non-

homogeneous defining polynomial, we obtain

a central arrangement (the cone ) by homog-

enization.
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Notice that the Hopf map is the projection

of a trivial bundle, provided that there is at

least one hyperplane, because it is the pullback

of a bundle over a contractible base given by

removing a single hyperplane from projective

space. Thus topologically M = M∗ ×C∗.
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We draw arrangements as in the picture of Q =

(x+ z)(x− z)(y + z)(y − z)(x− y)z.
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COMBINATORICS

Define a poset L(A) whose elements are the

intersections of the hyperplanes, with X ≤ Y

if and only if Y ⊂ X. The rank of X, denoted

rk(X) is defined to be the complex codimen-

sion of X in the ambient space.

Consider again the simple example, deconed to

an affine arrangement.

Q = (x+ 1)(x− 1)(y + 1)(y − 1)(x− y).

There are five rank one elements and four rank

two elements.
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A basic question is: to what extent does the

combinatorics determine the topology? A first

answer was given by the following theorem of

Orlik and Solomon:

Theorem 1 (P. Orlik and L. Solomon, 1980)

The lattice of A determines the cohomology

ring of M .

In particular, the lattice determines the Poincaré

polynomial PA(t). To begin to understand this

result we need some algebra, and we need to

examine the beginnings of the subject.
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HISTORY AND ALGEBRA

The first hyperplane arrangement studied was

the braid arrangement, Q =
∏

(zi − zj), which

was studied by Fadell and Neuwirth in order to

better understand the braid groups. (The fun-

damental group of the associated M is the pure

braid group.) In 1969 V. I. Arnol’d studied this

braid space as the complement of the discrim-

inant for polynomial equations, and showed

that the cohomology algebra was generated by

logarithmic one forms dαi/αi and was in fact

isomorphic to the graded subalgebra of the

DeRham complex generated by these forms.

He conjectured that such a result should be

true always (i.e. for any complex hyperplane

arrangement), and this was soon proved by E.

Brieskorn, in 1971.
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In particular, there is the result

Theorem 2 (Arnol’d for braid case, Brieskorn

in general) H∗(M) is the the subalgebra of

the DeRham complex generated by logarith-

mic one forms associated to the hyperplanes.
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In the course of his work Brieskorn observed

a fundamental property of arrangements, that

cohomology is given by the direct sum of local

contributions. That is, consider any element

X of the lattice. Now X has rank p and is the

intersection of a collection AX = {Hi}, i ∈ S.

If one sets MX to be the complement of the

arrangement AX, then

Theorem 3 (Brieskorn) There is an isomor-

phism

Hp(M,Z) ∼= ⊕Hp(MX ,Z)

the sum taken over all X of rank p.
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The key element in the proof is the Lefschetz

hyperplane theorem. As a consequence of this

result one is able to compute easily the co-

homology groups of the complement from a

Moebius function attached to the lattice of

the arrangement. For example, we have the

Poincaré polynomials shown in the illustration.
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Now Orlik and Solomon considered the exterior

algebra over the ring R = Z[ai] where ai is a

formal generator in degree one (corresponding

to the one form dα/α considered by Arnol’d).

For any lattice element X which is the inter-

section of Hi, i as above, consider aX = ∧i(ai)
and let ∂aX be given by the usual boundary

formula. Let I be the ideal in R generated by

these ∂aX. Then the quotient algebra R/I is

determined by the intersection lattice of the

arrangement. It is generally called the Orlik-

Solomon algebra–Orlik and Solomon showed

that it is isomorphic to the cohomology alge-

bra of the complement, giving the combinato-

rial result above.
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MORE TOPOLOGY

Now given that the cohomology (even over Z)

is determined by the intersection lattice, it is

natural to ask what else is so determined. In

particular, is the homotopy type of the com-

plement determined by the intersection lattice.

The answer to this turns out to be no, as

shown by an example of Rybnikoff (see also

Artal, Carmona, Cogolludo and Marco). This

example, consisting of two thirteen hyperplane

arrangements of rank four, obtained by “amal-

gamating” two copies of the MacLane matroid

in complex conjugate ways, gives two complex

hyperplane arrangements with isomorphic in-

tersection lattices but non-isomorphic funda-

mental groups.
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So the combinatorics does not determine ho-

motopy type–

Theorem 4 (Rybnikoff) There are complex hy-

perplane arrangements with isomorphic inter-

section lattices and non-homotopy equivalent

complements.

By the way, the determination that the fun-

damental groups in these examples are non-

isomorphic is rather specific to these examples,

and quite subtle, involving the lower central se-

ries and more. It would be of interest to have

invariants of hyperplane arrangements which

separate these two examples.
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So what does determine the topology? In this

vein there are are number of results. First,

one can in obvious ways consider the moduli

space of all arrangements of n hyperplanes in

C`. Within this space there are the subsets

of those arrangements with constant intersec-

tion lattice. Such subsets need not be path-

connected (there are examples), but there is

the following result.

Theorem 5 (R.) The diffeomorphism type of

the complement (and even of the Milnor fibra-

tion) is constant within smooth families with

constant intersection lattice.

Such smooth families are called lattice iso-

topies.
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So how does one understand the structure of
the complement as a CW or simplicial com-
plex? First of all, work of Milnor shows that
the complement has the homotopy type of an
`-dimensional CW complex. In the case of real
arrangements (coefficients are real), there is a
canonical regular cell complex, called the Sal-
vetti complex, associated to the complement.
In the case of real arrangements in C2, for ex-
ample, this complex has one vertex for each
chamber, two edges for each edge of the pic-
ture, and 2k two-cells for each point of multi-
plicity k, where k > 1.

Theorem 6 The Salvetti complex has the ho-
motopy type of the complement.

The Salvetti complex allows one to write down
the fundamental group of the complement, and
has been crucial in work of L. Paoluzzi and
L. Paris, for example, on understanding (from
an arrangements point of view) the faithful
Lawrence-Krammer-Bigelow representations of
the braid groups.
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The Salvetti complex elegantly uses the ge-

ometry of the arrangement as a template for

constructing the complex. On the other hand,

it has lots of cells. It is now known, however,

that the complement has a minimal cell struc-

ture:

Theorem 7 (Dimca-Papadima, R.) There is

a CW structure for M for which the number

of cells in each dimension is equal to the betti

number in that degree.

As one might expect, the proofs use Morse

theory, together with the fact that the ranks

of the homology groups can be read from the

intersection lattice. In these minimal CW com-

plexes the attaching maps are thus homolog-

ically trivial. (One can see this exemplified

in standard presentations for the fundamental

group, for which the relators lie in the com-

mutator subgroup.) It is a natural question
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to ask exactly how the cells are attached in

general. Recent work of Yoshinaga, Salvetti-

Settepanella, Delucchi-Settepanella has clari-

fied this issue, and there are now classes of ar-

rangements (though by no means all) for which

the attaching maps can be written down. This

works (with some effort) for the “discriminan-

tal” arrangements which arise in the theory of

hypergeometric functions and in the LKB rep-

resentations.



It is worth noting that the existence of these

minimal structures on the complement pro-

vides a way in which arrangements comple-

ments differ from knot complements, which

hardly ever have minimal CW structures–the

complement of a knot in S3 has the homology

of a circle, so a minimal CW structure would

be a 0-cell and a 1-cell, implying that the ho-

motopy type of the complement was that of

the circle, which implies that the knot in ques-

tion is the unknot (by Dehn’s lemma).
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FUNDAMENTAL GROUPS

Fadell and Neuwirth studied the pure braid ar-

rangement via iterated fiberings. Using these

one can show for the pure braid groups P`:

• the complement of the pure braid arrange-

ment is an Eilenberg-MacLane K(P`,1) space.

• P` has finite cohomological dimension.

• P` has type FL (it has the homotopy type

of a finite CW complex).

• P` is torsion-free.

• P` is residually nilpotent, and the lower cen-

tral series is well-behaved (T. Kohno, Falk-

R.).

23



These observations motivated considerable fur-

ther study. It is known now that not all ar-

rangement complements are Eilenberg-MacLane

spaces (Hattori), and that not all have funda-

mental groups of type FL (Arvola). The other

three questions above are still interesting for

general arrangements.



FUNDAMENTAL GROUPS, COVERS AND

LOCAL SYSTEMS

“Topological properties of the curve f(x, y) =

0 can be derived by studying the surface F ,

zk = f(x, y) ...” , Oscar Zariski

“If Γ = π1(P2 − C), Γ′ = [Γ,Γ],Γ′′ = [Γ′,Γ′] ,It

would be interesting to investigate the struc-

ture of Γ′/Γ′′ as a Z[Γ/Γ′] module.” David Mum-

ford, in comments in Zariski’s book “Algebraic

Surfaces”.
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Anatoly (on a bench near UI campus in Chicago,

about 1979–it was Lib30ber) “I’m going to do

that.”.
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Recall that we have the diagram

C∗

↓
F → M → C∗

↘ ↓
M∗

The space F in this diagram is closely related

to the F of Zariski, in the arrangements (com-

pletely reducible) case, where the degree k of

the cover is just the number n of hyperplanes in

the associated central arrangement. Of course,

covers of the affine arrangement M∗ corre-

spond to subgroups of the fundamental group,

and homology of the covers corresponds to ho-

mology of M∗ with local coefficients. Our un-

derstanding of these owes much to the work

of Anatoly Libgober.
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ABELIAN COVERS OF HYPERPLANE

COMPLEMENTS

For many reasons alluded to above, one is es-

pecially interested in (co)-homology of an ar-

rangement complement, with coefficients in a

local system. There are two particular cases:

• (Covers) Hi(M ; Z[π/π′]) where π′ is a sub-

group of π = π1(M), corresponding to cov-

ers. Generally one takes H = π/π′ to be

abelian. Thus one has Alexander invari-

ants.

• (Complex local systems) Here there are rich

connections with various topics, including

hypergeometric functions.
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COVERS (FROM Z to A)

I want to mention a few results here which
give a feel for the subject and as well a feel
for the contributions of Libgober to these and
related topics. It should be mentioned too that
Anatoly’s work applied much more generally
than to just arrangement varieties–usually to
complements of general hypersurfaces.

A first result generalizes work of Zariski, who
showed that for a finite abelian cover of P2

branched over a plane curve with only nodes
and cusps as singularities, the first betti num-
ber of the desingularization of cl(F ) vanishes
unless both the degree of the curve and the
degree of the covering are divisible by six. Lib-
gober’s result (Duke Math. J., 1982) is

Theorem 8 (Libgober) For an irreducible curve
the global Alexander polynomial divides the
product of the local Alexander polynomials for
all branches of singularities of the curve.
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The connection between the two results is due

to the influence of roots of the Alexander poly-

nomial on the betti numbers. An interest-

ing example here is the complement of the 4-

strand braid arrangement. This is an arrange-

ment of six hyperplanes. One associates the

reducible curve in P2 with six linear compo-

nents, which has only double and triple points.

The Milnor fiber F is the six-fold cover of the

complement. It has an excess of two in its first

betti number (which is seven, as determined by

Artal), giving an example in which the conclu-

sion of Zariski’s theorem fails to hold. Lib-

gober’s theorem shows why this behavior is

possible.
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Before we move on to local systems, I want

to mention a subtle related question. From

the above we know that the Milnor fiber F

associated to a central arrangement as in the

main diagram above has interesting homology,

which has a subtle reliance on properties of

the arrangement. We’ll see more on this be-

low. It turns out that in all known cases,

Hi(F ; Z) is torsion-free. (There are examples

of G. Denham-D. Cohen-Suciu of homology

torsion when one allows multiplicity on the hy-

perplanes). For local reasons, however, it is

reasonable to conjecture that the actual Milnor

fiber associated to an arrangement has torsion-

free homology groups.
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COMPLEX LOCAL SYSTEMS

For the remainder of the talk we will be con-

cerned with complex local systems–we will fo-

cus on the rank one case. We discuss briefly

the relationship between higher homotopy and

local homology, and then we will describe the

characteristic and resonance varieties of an ar-

rangement, objects of great current interest in

the subject.
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Recall that the cohomology ring of M is gener-

ated in degree one, so that it is somewhat like

that of a torus. As a consequence one can-

not use homology to detect non-trivial higher

homotopy classes:

Theorem 9 (R.) On arrangement complements

the image of the Hurewicz homomorphism

h:πi(M)→ Hi(M)

is trivial for all i > 1.

It follows that H2(M) ∼= H2(π).
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On the other hand, M. Yoshinaga recently proved

(with M ′′ = M
⋂
Hgeneric)

Theorem 10 (Yoshinaga) Suppose (M,M ′′) is

an arrangement pair and N is a non-resonant

local system of rank r on M . Then hM ′′ :

πn−1(M ′′)⊗π N → Hn−1(M ′′;N) is onto.

Thus it is natural to ask the following question:

Question: Let A be any complex hyperplane

arrangement in C`, ρ ∈ πk(M) with k ≤ `.

When is there a rank one local system L on

M so that for the appropriate Hurewicz map

h : πk(M)⊗Z Lm → Hk(M ;L)

one has h(ρ) 6= 0?
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For the purposes of Yoshinaga’s theorem, the

term non-resonant may as well mean “coho-

mology concentrated in top degree”. The pre-

cise formulation is due to A. Varcenko in the

study of hypergeometric functions. One wants

to consider local systems derived from weights

on each hyperplanes. Resonant then means

that the weights satisfy certain numerical con-

ditions on certain ”dense edges” (a very check-

able condition). Esnault-Schechtman-Viehweg

and Schechtman-Terao-Varcenko showed that

in the nonresonant case the twisted Brieskorn

complex cohomology is isomorphic to the twisted

Aomoto complex cohomology (see later). The

latter is combinatorial in the lattice and the

weights, and Orlik and Terao showed that the

homology of this complex in concentrated in

the top degree in the nonresonant case.
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CHARACTERISTIC AND RESONANCE

VARIETIES

The characteristic varieties on any space X are

the jumping loci for the cohomology of X with

coefficients in rank one local systems. That is,

V id(X) = {t ∈ Hom(π1(X),C∗) : dimCH
i(X,Ct) ≥ d}

Here the π1-module structure of Ct is given

by the representation t : π1(X) → C∗. In the

arrangements case, and since C∗ = Aut(C)

is abelian the representation factors through

H1(M) which has basis small loops transverse

to the hyperplanes. Thus we can think of a

rank one local system as associated with an

assignment of a weight wi ∈ C∗ to each hyper-

plane Hi, that is, as an element of the charac-

ter torus Hom(π1(X),C∗) ∼= ((C∗)n.
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Example 11 Consider the pure braid arrange-

ment on four strands. This is an arrangement

(central but non-essential) of six hyperplanes

in C4 . It has four triple points in rank two,

each with Alexander polynomial (t−1)(t3−1).

These cube roots of unity, and the fact that

there are six hyperplanes and therefore the Mil-

nor fiber is a six-fold cover, allows the “extra”

rank one homology.
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A second variety associated to an arrangement

is the resonance variety defined by M. Falk.

One looks at the Orlik-Solomon algebra A over

a field and for any a ∈ A1 converts it to a

cochain complex by setting the i-th cochain

group to be the degree i part of A, and letting

the differential be multiplication by a. The

resonance varieties are then

Rid(A) = {a ∈ A : dimHi(A, a) ≥ d}

These two varieties are related as follows. Ara-

pura showed very generally that the irreducible

components of the characteristic varieties of

X are algebraic subtori of the character torus,

possibly translated by unitary characters. Falk

conjectured that the resonance varieties were

always linear; this follows from the result be-

low, proved by Libgober-Yuzvinsky and D. Cohen-

Suciu.
37



Theorem 12 (Libgober-Yuzvinsky, D. Cohen-

Suciu) The tangent cone at the identity to

V id(X) is equal to Rid(A).

Now the resonance varieties come from the

Orlik-Solomon algebra and are therefore com-

binatorially determined. Thus the algebraic

subtori in the characteristic varities are deter-

mined by the intersection lattice. Examples

of Suciu show that there are arrangements for

which the characteristic varieties have compo-

nents (positive-dimensional) which do not pass

through the identity. It’s unknown if such are

combinatorially determined.
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The properties of the resonance varieties are

closely connected with combinatorics of sub-

arrangements of A. For example, Libgober

and Yuzvinsky used the Vinberg classification

of generalized Cartan matrices to place strong

restrictions and elegant structure on the un-

derlying arrangement.
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Thank you.
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