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Rigid Operators

Let D : Γ(E)→ Γ(F ) be an elliptic differential
operator commuting with an S1 action. D is
rigid if

IndS1D = Tr eiθ|kerD −Tr eiθ|cokerD = const

Example: D = d + d∗ : Ωeven(M) → Ωodd(M).
Then

kerD = Heven(M)

cokerD = Hodd(M)

A rotation on M acts trivially on the cohomol-
ogy. So IndS1D ≡ χ(M).

In more interesting cases, the S1 action may
be non-trivial on kerD and cokerD, even when
IndS1D = const.

Example: (Atiyah-Hirzebruch)

If M is spin, and ∆± the spin bundles, then the
Dirac operator D : Γ(∆+)→ Γ(∆−) is rigid.



Interpretation from Physics

Index theory arises naturally in super-symmetric

quantum mechanics.

Hilbert space of states→ L2 sections of a vb

Supercharges→ Dirac operators

Ground state→ Harmonic sections the vb

In passing to super-string theory, the left side

still makes sense. The right side should be in-

terpreted as Dirac operators and vectorbundles

on the loop space LM .



The loop space LM comes equipped with a

natural circle action whose fixed points are in

1− 1 correspondence with M .

If DL is a Dirac operator on LM , then by formal

application of the Atiyah-Bott-Lefschetz fixed

point formula:

IndDL =
∫
M
Â(M)ch(E) = Ind /D ⊗ E

for some complicated vectorbundle E associ-

ated to the normal bundle of M in LM .

From this physics perspective, Witten predicted

the rigidity of /D⊗E for a number of exotic vec-

torbundles E.



For /D ⊗ E to make sense as a Dirac opera-
tor on LM , M must satisfy various topological
constraints.

Example: To define the signature operator on
the loop space, LM must be orientable, so M

must be spin.

Complex elliptic genus: Ind∂ ⊗ Eq,y.

Eq,y = y−n/2
∞⊗
n=1

Λ−yqn−1T
′′M ⊗ Λ−yqnT

′M⊗

∞⊗
m=1

SqmT
′′M ⊗ SqmT ′M

An operator on the loop space when c1(M) =
0.

Riemann Roch formula: Ind∂⊗Eq,y = Ellip(M)∩
[M ] where

Ellip(M) =
∏
j

xjϑ(
xj

2πi − z, τ)

ϑ(
xj

2πi, τ)



(Liu, Witten): ∂⊗Eq,y is rigid when c1(M) =

0.

Generalization for toric varieties: Make re-

placements

Λ−yqnT
′M →

⊗̀
i=1

Λ−yaiqnO(Di)

SqnT
′M →

⊗̀
i=1

SqnO(Di), ...

etc. Di are the toric divisors.

Call this Eq,y(a1, ..., a`).

(Hattori, W): ∂ ⊗ Eq,y(a1, ..., a`) is rigid when

a1D1+...+a`D` = 0. Moreover, the equivariant

index vanishes identically.



Chern numbers of singular varieties

X almost complex. The Chern numbers of X
are:

ci1,...,in =
∫
X
c1(X)i1 · · · cn(X)in

where i1 + 2i2...+ nin = dimX.

Question: what combinations of Chern num-
bers make sense for singular varieties X?

Partial answer: At minimum, all Chern num-
bers encoded in the Todd-genus (by Hartog).

Naive approach: Find a nice birational model
for X, use Chern numbers from that model.

Different minimal models should be related by
flops; this led Totaro to ask:

What combinations of Chern numbers are in-
variant under classical flops?

Ans: The Chern numbers encoded in the com-
plex elliptic genus.



Sketch of proof: If X1 and X2 differ by a

classical flop, X1−X2 is complex cobordant to

a P3-fibration of the form P(E), where E → B

is a vb. and the almost complex structure on

the fibers is defined so that c1(P3) = 0.

Fibration tangent bundle splits as TB⊕N , where

N = TP3 fiberwise. The integrand of the ellip-

tic genus splits as:

Ellip(B) · Ellip(N)

Integrate this first along the fiber. Ellip(N)

evaluates to the equivariant elliptic genus of

P3 with resp. to the standard torus action,

where we evaluate the equivariant weights at

the Chern roots of E.

By rigidity, this equals 0. Consequently

Ellip(X1)[X1] = Ellip(X2)[X2]



If the singularities of X look locally like the

product of a smooth variety B and the 3-fold

node, the two minimal resolutions of X are

related by a classical flop. Consequently, the

elliptic genus of X (and corresponding combi-

nations of Chern numbers) is well-defined.

Question: What about more general singular

varieties?

Borisov and Libgober introduce elliptic class of

pairs (X,D) :



For D =
∑
aiDi, the elliptic class of (X,D) is

Ellip(X,D) =

∏
j

xjϑ(
xj

2πi − z, τ)

ϑ(
xj

2πi, τ)
×

∏
i

ϑ( Di2πi − (ai + 1)z, τ)ϑ(z, τ)

ϑ( Di2πi − z, τ)ϑ((ai + 1)z, τ)

This satisfies the push-forward formula:

f∗Ellip(X1, D1) = Ellip(X2, D2)

where f a blow-up and

KX1
−D1 = f∗(KX2

−D2).

Proof is closely connected to rigidity of toric

elliptic genus.



By result of Wlodarczyk, birational spaces can

be connected by a sequence of blow-ups and

blow-downs. Can therefore define singular el-

liptic genus as

Ellip(X,D) ∩ [X],

where X is a resolution with exceptional divisor

D.

Works for log-terminal singularities, since the

coefficients ai + 1 6= 0.

Question: What about when some discrepan-

cies ai = −1? How do we define Ellip(X,D) ∩
[X]?



Solution for normal surface singularities that

are not strictly log-canonical:

Exceptional components with −1 discrep. have

locally toric structure.

Introduce perturbation ai + εbi to coefficients

of excep. divisor D, where bi satisfy:∑
biDi ·Dj = 0

whenever aj = −1. Take

lim
ε→0

Ellip(X,D(ε)) ∩ [X]

Limit exists and is independent of choice of bi.



Sketch of proof: Assume one component E

with −1 discrep. UE ↪→ X toric embedding of

an analytic neighborhood of E.

Let D1(ε) and D2(ε) be two possible perturba-

tion divisors.

lim
ε→0

Ellip(X,D1(ε))∩ [X]−Ellip(X,D2(ε))∩ [X]

= lim
ε→0

Ind ∂ ⊗ Eq,y(~a1(ε))− Ind ∂ ⊗ Eq,y(~a2(ε))

The above vb’s are defined on X, and ~ai(ε) are

defined so that the corresponding divisors have

vanishing 1st Chern class.

By rigidity, both indices vanish for all ε.



Overall Theme

Defining singular Chern data using a smooth

birational model introduces a redundancy in

descriptions.

Difference between two possible descriptions

is encoded by data coming from a toric CY

divisor pair.

By rigidity, contribution from this toric data

vanishes.


