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The Lipschitz category

Topic:
The metric theory of complex analytic (or algebraic) germs.

The Lipschitz category is the appropriate category for this.

Definition (The Lipschitz category)
A map f : Y — Z of metric spaces is Lipschitz if 3K:

dv(p.q) < d2(F(p). 7(a)) < Kdv(p, ).

Bi-Lipschitz means bijective and Lipschitz.

Two metrics on X are Lipschitz equivalent if the identity map
(X, d1) — (X, dn) is bi-Lipschitz.
In the Lipschitz category we consider them to be “the same.”
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The Lipschitz category

Topic:
The metric theory of complex analytic (or algebraic) germs.
The Lipschitz category is the appropriate category for this.

Definition (The Lipschitz category)
A map f: Y — Z of metric spaces is Lipschitz if 3K:

dv(p.q) < dz(F(p). F(a)) < Ky (p. ).

Bi-Lipschitz means bijective and Lipschitz.

Two metrics on X are Lipschitz equivalent if the identity map
(X, d1) — (X, dn) is bi-Lipschitz.
In the Lipschitz category we consider them to be “the same.”



Metrics on germs

Let (X, p) be a complex algebraic germ, x1,...,xy generators of
local ring Ox p.
Then (x1,...,xn): (X,p) — CN is an embedding.
Definition
e Outer metric on X is given by distance in CV.

e Inner metric on X is arc length in X (Riemannian metric).

Proposition

Inner metric is determined by outer metric. In the Lipschitz
category these metrics on X are independent of choices.

If you change generating set of Ox ,, the identity map
(X, old metric) — (X, new metric) is bi-Lipschitz.
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outer metric). ... What do we mean by “non-trivial"?



Introduction Separating sets Theorem 1 Theorem 2 Theorem 3
ooe 0000 000 000 0000

The inner metric on (X, p) is usually non-trivial.

The inner metric on (X, p) is usually non-trivial (hence also the
outer metric). ... What do we mean by “non-trivial"?

A germ (Y, p) is metrically trivial if it is equivalent to a metric
cone:

(Y.p) = ({ry:y € L,r€[0,1]},0) where ¥ CS"CR"



Introduction Separating sets Theorem 1 Theorem 2 Theorem 3
ooe 5

The inner metric on (X, p) is usually non-trivial.

The inner metric on (X, p) is usually non-trivial (hence also the
outer metric). ... What do we mean by “non-trivial”?

A germ (Y, p) is metrically trivial if it is equivalent to a metric
cone:

(Y.p) = ({ry:y € L,r€[0,1]},0) where ¥ CS"CR"
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The inner metric on (X, p) is usually non-trivial (hence also the
outer metric). ... What do we mean by “non-trivial”?

A germ (Y, p) is metrically trivial if it is equivalent to a metric
cone:

(Y.p) = ({ry:y € L,r€[0,1]},0) where ¥ CS"CR"

The first example of non-triviality of complex germs was found by
Birbrair and Fernandes: for k > 1 and odd, the Ay surface
singularity Ay = {(x,y,z) € C3: x> + y2 + zk*1 = 0}, has a
separating set, and is hence non-trivial.

Later we showed, using mostly other techniques, that for weighted
homogeneous surface singularities non-triviality is very common.

It appears now that separating sets are very common.
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Separating set

Let (X, p) be a real k-dimensional semialgebraic germ. A
separating set (Y, p) C (X, p) is a subgerm of zero (k — 1)—density
which (locally) separates (X, p) into pieces of positive k—density.
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k—Density

If (X,0) C (R",0) is a rectifiable subset, the k—density of (X, p) is

Here H* is k-dimensional Hausdorff measure.

In the situations that interest us the limit exists.
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k—Density

If (X,0) C (R",0) is a rectifiable subset, the k—density of (X, p) is

Here H* is k-dimensional Hausdorff measure.

In the situations that interest us the limit exists.

But, more generally, use liminf and limsup to define lower and
upper k-density and define a separating set to be a set of zero
upper (k — 1)—density that locally divides (X, p) into sets of
positive lower k—density.
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Fact
In the semi-algebraic category, separating sets are preserved by
bi-Lipschitz maps (inner metric)
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The reason is that separating sets can be defined equally well in
the inner metric, and so long as things are semi-algebraic, one gets
the same definition. This follows from:
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Fact

In the semi-algebraic category, separating sets are preserved by
bi-Lipschitz maps (inner metric)

The reason is that separating sets can be defined equally well in
the inner metric, and so long as things are semi-algebraic, one gets
the same definition. This follows from:

Pancake Decomposition Theorem (Kurdyka)

A semialgebraic set has a finite semi-algebraic decomposition into
pieces whose inner and outer metrics are Lipschitz equivalent.



Separating sets
oooe

Of course, implicit in our discussion so far is that separating sets
detect metric non-triviality:

Theorem
If ¥ is a compact manifold, the metric cone C¥ on ¥ has no

separating set.



Separating sets
oooe

Of course, implicit in our discussion so far is that separating sets
detect metric non-triviality:

Theorem

If ¥ is a compact manifold, the metric cone C¥ on ¥ has no
separating set.

In particular, an isolated singularity germ which has a separating
set is metrically non-trivial (not bi-Lipschitz homeomorphic to a
metric cone).



Separating sets
oooe

Of course, implicit in our discussion so far is that separating sets
detect metric non-triviality:

Theorem
If ¥ is a compact manifold, the metric cone C¥ on ¥ has no
separating set.

In particular, an isolated singularity germ which has a separating
set is metrically non-trivial (not bi-Lipschitz homeomorphic to a
metric cone).

Our theme is that separating sets are ubiquitous in germs of
isolated complex singularities; so the metric structure of
singularities is rich.
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Theorem 1

Let (X,0) C (C3,0) be an isolated weighted homogeneous
singularity with weights wi > wy > ws. Suppose X N {z =0} is
reducible. Then (X,0) has a separating set.
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Example (A again)

A ={(x,y,2z) € C3: x%2 4+ y2 + Zk+1}

has weights (k + 1,k + 1,2) or (55, &5 1),

{z = 0} is the union of two lines: {x = +iy}. So A, has a
separating set if k > 1.
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Theorem 1

Let (X,0) C (C3,0) be an isolated weighted homogeneous
singularity with weights wi > wy > ws. Suppose X N {z =0} is
reducible. Then (X,0) has a separating set.

Example (A again)

A ={(x,y,2z) € C3: x%2 4+ y2 + Zk+1}

has weights (k + 1,k + 1,2) or (55, &5 1),

{z = 0} is the union of two lines: {x = +iy}. So A, has a
separating set if k > 1.

Example (More generally:)

V(p,q,r):={(x,y,z) € C3: xP 4 y9 + z'} has a separating set if
p<g<randgc(p,q)>1.
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Briancon Speder example

Example (Briangon Speder family)
BS: :={(x,y,2) € C*: x* + 2 + y'z + txy® = 0},

Weighted homogeneous with weights (3,2, 1).

Theorem 3
0000

teC
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Example (Briangon Speder family)
BS: :={(x,y,2) €C*: x>+ 2% 4+ y'z + txy® =0}, teC

Weighted homogeneous with weights (3,2, 1).
BS: N {z = 0} is the curve {x(x* + ty®) = 0}.
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BS: :={(x,y,2) €C*: x>+ 2% 4+ y'z + txy® =0}, teC

Weighted homogeneous with weights (3,2, 1).
BS: N {z = 0} is the curve {x(x* + ty®) = 0}.
This has 3 components if t # 0, so

BS; has separating sets if t # 0.
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Briancon Speder example

Example (Briangon Speder family)
BS: :={(x,y,2) €C*: x>+ 2% 4+ y'z + txy® =0}, teC

Weighted homogeneous with weights (3,2, 1).
BS: N {z = 0} is the curve {x(x* + ty®) = 0}.
This has 3 components if t # 0, so

BS; has separating sets if t # 0.

Theorem (Lipschitz non-triviality in a topological trivial family)

BSy has no separating set.
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Proof of Theorem 1
Theorem 1
X C C3 is a weighted homogeneous germ with weights
wy > we > ws. X N {z =0} is reducible. Then (X,0) has a
separating set.
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separating set.

e Y := X NS> the link of the singularity, is a 3-manifold.
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Theorem 1
X C C3 is a weighted homogeneous germ with weights
wy > we > ws. X N {z =0} is reducible. Then (X,0) has a
separating set.

e Y := X NS> the link of the singularity, is a 3-manifold.

Y N{z=0} =V UW, disjoint closed sets.

In X, let Yy be the conflict set

Yo={xeX:d(x,V)=d(x, W)}

Y := R*Yy U {0} using R* in the C*—action.

Y divides X into pieces A and B.

Tangent cone TgY C z—axis. So it has real dimension < 2. It
follows that the 3—density ©3(Y,0) is zero.

ToA and TyB each contains a complex plane. It follows that
©%(A) > 0, ©*(B) > 0.
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Theorem 2

Let (X, p) be a complex isolated singularity of complex dimension
n. Suppose that the tangent cone T,X is separated by an analytic
subset S of dimension < n. Then (X, p) has a separating set with
tangent cone in S.
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Theorem 2

Let (X, p) be a complex isolated singularity of complex dimension

n. Suppose that the tangent cone T,X is separated by an analytic
subset S of dimension < n. Then (X, p) has a separating set with
tangent cone in S.

Example (Dimension n)

The Brieskorn singularity

V(po,---,pn) = {(x0,- - Xn) : X§° + -+ +x5"}

with 2 < pg = p1 < p2 < p3 -+ < p, has tangent cone consisting
of pg intersecting planes. So it has separating sets.
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Example: Quotient singularities

If G € GL,C is a finite subgroup which acts freelly on C?, then
the tangent cone of X = C?/G is irreducible only for:

e the homogeneous cyclic quotients C2 /i, with i, C C* acting
diagonally, and

e the simple singularities of type D and E.

Thus all other quotient singularities have separating sets.
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Example: Quotient singularities

If G € GL,C is a finite subgroup which acts freelly on C?, then
the tangent cone of X = C?/G is irreducible only for:

e the homogeneous cyclic quotients C2 /i, with i, C C* acting
diagonally, and

e the simple singularities of type D and E.

Thus all other quotient singularities have separating sets.

This is a rich class of examples: Cyclic quotients are classified by
pairs (r,s), with 0 < s < r and ged(r,s) = 1.

There are examples with arbitrarily many separating sets.

The other quotients are classified by tuples (n; p1, q1; P2, g2; p3, g3)
with (p1, p2, p3) = (2,2,p), (2,3,3), (2,3,4), or (2,3,5) and
0<qi<pi, ged(pj,q)=1 n+3 E>0.
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The above examples show that Theorem 2 is quite powerful. Could
it be that every separating set arises through this theorem?

Answer: No: The Briangon-Speder singularity BS; has tangent
cone C?, but has separating sets if t # 0.

We will describe a resolution.

Proof of Theorem 2.
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Theorem 3

Theorem 3

A semialgebraic germ (X, p) has a semialgebraic separating set if
and only if its metric tangent cone has a semialgebraic separating
subset of codimension > 1.



rating sets Theorem 1 Theorem 2 Theorem 3
000 000 0000

Introduction

Metric Tangent Cone

The metric tangent cone 7,X of a semialgebraic germ (X, p) was
studied in depth by Bernig and Lytchak (the definition goes back
to Gromov, and versions are used in many fields).

Definition

%X — |im Gromov—Hausdorff(X’ P, *d)
t—00 t
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Note that 7,X is metrically a strict cone. But even if (X, p) is a
complex germ, 7,X may not be a complex cone; in fact it is not
clear that it always admits a complex structure (probably not).
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Metric Tangent Cone

The metric tangent cone 7,X of a semialgebraic germ (X, p) was
studied in depth by Bernig and Lytchak (the definition goes back
to Gromov, and versions are used in many fields).

Definition

%X — |im Gromov—Hausdorff(X’ P, *d)
t—00 t

Note that 7,X is metrically a strict cone. But even if (X, p) is a

complex germ, 7,X may not be a complex cone; in fact it is not
clear that it always admits a complex structure (probably not).

Example

The Dy singularity V/(2, 3, 3) is metrically conical [BFN], from
which follows: 7oD; = D,. But D4 is not a complex cone, since
then its link would be the total space of an S'-bundle (it is not).
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Proof of Theorem 3

Theorem 3

A semialgebraic germ (X, p) has a semialgebraic separating set if
and only if its metric tangent cone has a semialgebraic separating
subset of codimension > 1.

Proof.

e [Birbrair-Mostowski] Normal embedding theorem
e For an normally embedded semialgebraic set 7,X = T,X

e A semi-algebraic separating set in a normally embedded
singularity induces a separating set in the tangent cone.
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