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Abstract. We show how to use numerical continuation to compute the intersection C = A∩B of
two algebraic sets A and B, where A, B, and C are numerically represented by witness sets. Enroute
to this result, we first show how to find the irreducible decomposition of a system of polynomials
restricted to an algebraic set. The intersection of components A and B then follows by considering
the decomposition of the diagonal system of equations u− v = 0 restricted to {u, v} ∈ A × B. One
offshoot of this new approach is that one can solve a large system of equations by finding the solution
components of its subsystems and then intersecting these. It also allows one to find the intersection
of two components of the two polynomial systems, which is not possible with any previous numerical
continuation approach.
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1. Introduction. In a series of papers [12, 13, 14, 15, 17], we have proposed
numerical continuation algorithms that use witness sets as the basic construct for
representing solution components of a system of polynomial equations on CN . Wit-
ness sets are the central concept of a young subject that we call numerical algebraic
geometry, which uses numerical continuation [1, 2] and generalizes earlier work in
computing isolated solutions of polynomial systems [8, 9]. The main concern of this
paper is to provide an algorithm for computing the intersection of two solution com-
ponents A,B from two possibly identical polynomial systems f, g, whose witness sets
have been given. It is important to realize that naively combining f, g into one sys-
tem h = {f, g} is not sufficient, even if we were willing to put aside the potentially
prohibitive size of the combined system. For example, suppose A is the line x2 = 0
as a solution component of f(x) = x1x2 and B is the line x1 − x2 = 0 as a solution
component of g(x) = x1(x1 − x2). Then, A ∩ B, which is the isolated point (0, 0),
does not appear as an irreducible component of the system h = {f, g}.

Questions involving intersection of components arise naturally in applications.
Just as a single polynomial in one variable has multiple roots, a system of polynomial
equations in several variables can have multiple solution components; these compo-
nents can even appear at different dimensions (points, curves, surfaces, etc.) from
the same set of equations. We may wish to find the intersection of just one of those
components with another algebraic set. In our new approach, only the degrees of the
components being intersected come into play in the determination of the number of
paths followed by the homotopies that we use. This is important since the degree of
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a component of a given system of polynomials is typically much less than the number
of paths required to find even all isolated solutions of the given system.

Viewed another way, the intersection operation is required for a Boolean algebra
of constructible algebraic sets; a complete Boolean algebra also requires the operations
of union and complement. Suppose W is a witness set for a component X . There
are several probability-one algorithms for deciding if a point x ∈ CN is a member of
X , using numerical continuation and the data in W . (We review witness sets and
membership tests in §2.) The complement operation is just the logical inversion of
a membership test, and the union operation is just a union of witness sets, utilizing
membership tests to eliminate duplications. However, the operation of intersection is
more difficult.

In our previous work, we have shown how to find the solution set of a system
of polynomial equations as a union of witness sets, and further, we have shown how
to decompose these into witness sets for the irreducible components. Said another
way, this solves the problem of intersecting a collection of hypersurfaces defined by
polynomial equations. But this does not give us an effective means of computing the
intersection of two components represented by witness sets.

Our first step in creating an algorithm for the intersection of components is to
generalize an earlier algorithm for generating the witness sets for the solution set of
a system of polynomial equations on CN . The generalization instead considers the
polynomial equations restricted to an algebraic set. The intersection of components
A and B then follows by considering the decomposition of the diagonal system of
equations u − v = 0 restricted to {u, v} ∈ A × B. Hence, we call the intersection
algorithm the diagonal homotopy.

This paper is organized as follows. First, in §2, we review the definition of a wit-
ness set and its role in finding the numerical irreducible decomposition of the solution
set of a system of polynomial equations. In §3 we introduce a slight generalization
of the randomization procedure of [17], and in §4 we give a general construction of
homotopies. These sections give the basic definitions and results that will be needed
later in the article.

The original algorithm for constructing witness supersets was given in [17]. A
much more efficient algorithm for constructing witness supersets was given in [12] by
means of an embedding theorem. In §5, we show how to carry out the generalization
of [12] to the case of a system of polynomials on a pure N -dimensional algebraic
set X ⊂ Cm, i.e., an algebraic subset of Cm all of whose irreducible components
are N -dimensional. We call this the “abstract embedding theorem” because it does
not rely on any specific numerical description of X . In this generality we lose some
control of multiplicities. However, since our main objective is to find the underlying
reduced algebraic solution components, this loss of multiplicity information is of minor
importance.

In §6 we show how to implement the abstract embedding theorem numerically.
We need only the information about X that would be produced by the algorithm for
the numerical irreducible decomposition of a polynomial system f , for which X is an
irreducible component of the solution set of f .

In §7 we specialize to the situation where we have two polynomial systems f

and g on CN and we wish to describe the irreducible decompositions of A ∩B where
A is an irreducible component of V (f) and B is an irreducible component of V (g).
Computational experiments are discussed in §8.
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In Appendix §A, we give some further discussion of the method of constructing
homotopies described in §4.

In Appendix §B, we give the proof of Theorem 5.1 from §5.

We would like to thank the referees for their helpful suggestions.

2. Witness Sets. We begin by reviewing the basics of numerical algebraic ge-
ometry, wherein the most fundamental concept is a witness set. We refer the reader to
[13, 15, 17] for more details on irreducible components, the irreducible decomposition,
and reduced algebraic sets.

Given a system of polynomials on CN

f(x) :=




f1(x)
...

fn(x)


 ,(2.1)

we denote the underlying point set
{
x ∈ CN

∣∣ f(x) = 0
}
by V (f), i.e., the algebraic

set f−1(0) (with all multiplicity information that comes with f−1(0) ignored). A pure
i-dimensional algebraic subset X of V (f) is a subset X ⊂ V (f) equal to the closure
of a union of i-dimensional connected components of the smooth points of V (f). We
emphasize that X is reduced, i.e., that we are ignoring the multiplicity of X within
f−1(0). We represent X numerically by a witness set, defined as follows.

Definition 2.1. A witness set for a pure i-dimensional algebraic set X ⊂ V (f) ∈
CN consists of:

1. the dimension, i, of X;
2. the polynomial system f(x);
3. a general (N − i)-dimensional affine linear subspace LN−i ⊂ CN ; and
4. the set of degX distinct points X = LN−i ∩X.

In other words, a witness set W for X is the ordered set W = {i, f, LN−i,X}. We
use the notation V (W ) to denote the component represented by W ; in the current
context V (W ) = X .

This definition is useful because it allows us to numerically represent and manip-
ulate the irreducible decomposition of the solution set of a polynomial system. Let
us quickly review that concept before describing our new results. Everything we say
is over the complex numbers, e.g., even if the polynomials have real coefficients, we
always deal with the sets of solutions on complex Euclidean space.

We start with a system of polynomials f on CN as in (2.1) above. Let V (f) denote
the set of solutions of f on CN , i.e., the set of points x ∈ CN such that f(x) = 0.
The set Z := V (f) is an affine algebraic set and decomposes into a union of distinct
irreducible components. Recall that an algebraic set X is irreducible if and only if
the Zariski open dense subset of manifold points on X is connected. We have the
decomposition

Z =

dimZ⋃

i=1

Zi =

dimZ⋃

i=1


 ⋃

j∈Ii

Zi,j


 ,(2.2)

where

1. For each i, Zi := (∪j∈Ii
Zi,j);
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2. the sets Ii are finite and each Zi,j is irreducible of dimension i;
3. Zi,j is not contained in a union of a collection of the Za,b unless Zi,j occurs

in the collection.

Any collection of irreducible components Zi,j having the same dimension, i, can
be numerically represented by a witness set. A “numerical irreducible decomposition”
is a list having one witness set Wi,j for the reduction of each irreducible component
Zi,j .

In a series of papers [12, 13, 14, 15, 17], we showed how to compute a numerical
irreducible decomposition of Z := V (f). The approach is to intertwine two numerical
algorithms: a witness generating algorithm, which finds a superset of witness points
for each pure-dimensional algebraic set Zi, and a decomposition algorithm, which
eliminates spurious points from the superset and breaks it into irreducible compo-
nents. To be more precise, at each dimension i = 0, . . . , dimZ, the witness generating
algorithm gives a finite set of points Ŵi satisfying LN−i∩Zi ⊂ Ŵi ⊂ LN−i∩(∪j≥iZj),
where LN−i ⊂ CN is a general (N− i)-dimensional affine linear subspace. The second

algorithm decomposes the Ŵi. Precisely:

1. Ŵi decomposes into the disjoint union

Ji ∪


 ⋃

j∈Ii

Zi,j


 ,(2.3)

where Ji ⊂ ∪k>iZk and Zi,j consists of the degZi,j points of LN−i ∩ Zi,j ;
and

2. JdimZ = ∅.

The points Zi,j along with the dimension i, the system of equations f , and the linear
subspace LN−i, form a witness set for the irreducible component Zi,j .

The key theoretical advance of this paper is to observe that the previous algo-
rithms for numerical irreducible decomposition still work with restrictions of a polyno-
mial system to a pure-dimensional algebraic set. Only the first algorithm constructing
the witness point supersets Ŵi needs to be generalized. The decomposition algorithms
starting with the witness point supersets Ŵi are proved in the papers [13, 14, 15] in
sufficient generality to cover the present situation.

The above implicitly assumed that the components Zi,j are reduced, i.e., of mul-
tiplicity one in f−1(0). The algorithms in [12, 17] in fact produce sets Zi,j consisting
of degZi,j distinct points each repeated µi,j times, where µi,j is greater than or equal
to the multiplicity of Zi,j in f−1(0). Moreover the multiplicity of Zi,j is one if and
only if µi,j = 1. Unfortunately, in the algorithm in this article we can only assert that
µi,j > 0 for any irreducible component Zi,j .

As we mentioned in the introduction, an important aspect of a witness set X is
that we can use it to test a point for membership in the algebraic setX = V (X ) that X
represents. This stems from the fact that we can sampleX by continuously perturbing
the linear slice and numerically tracking its intersection with X , starting from the
witness points in X . Several different membership tests can be employed. At one
expensive extreme, by sampling and fitting, we might compute a set of polynomials,
whose set of common zeroes is exactly X . A much more efficient “probability-one”
test for a point x ∈ CN to be in X is whether the pullback from CdimX+1 of a degX
defining polynomial for π(X) ⊂ CdimX+1 is zero on x, where π is a general linear
projection from CN to CdimX+1. Finally, a very different sort, and quite efficient
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test, for x ∈ CN to be in X is to see whether x is one of the images of the set X
under the homotopy taking LN−i to a general (N − i)-dimensional linear subspace of
CN that contains x. This test depends on the real-one-dimensional path between the
general linear subspaces to remain general, which occurs with probability one.

3. Randomizing Systems. Randomization is a key element of our approach.
This section introduces some notation for randomized systems and gives a lemma
describing their most important properties. Given a system of n equations defined on
CN , as in Eq.(2.1), and a positive integer k, we define a randomization operation

R(f(x); k) := Λf(x), Λ ∈ Ck×n,(3.1)

where Λ is chosen generically from Ck×n. Note that k does not have to equal n.
Gaussian elimination does not change the ideal generated by Λf(x). Therefore, when
k ≥ n, Λf(x) is equivalent to the system consisting of f(x) plus k−n identically zero
equations. For the same reason, when k ≤ n, Λf(x) is equivalent to the system

[
Ik R

]
f(x), R ∈ Ck×(n−k),(3.2)

where Ik is the k × k identity matrix. Consequently, we may without loss of gen-
erality assume that R(f(x); k) is of the form of Eq.(3.2) with a generic choice of
R ∈ Ck×(n−k). This form allows us to take some advantage of the original equations.
For example, if k = N and the original equations had total degrees d1 ≥ d2 ≥ · · · ≥ dn,
then the total degree of the original form of R(f(x);N) is dN1 , but the total degree of
the modified form is d1d2 · · · dN .

The following lemma gives the main properties of randomization.

Lemma 3.1. Let

f(x) :=




f1(x)
...

fn(x)


(3.3)

be a system of restrictions of n polynomials on Cm to a pure N -dimensional affine
algebraic set X ⊂ Cm. Assume that k ≤ min{n,N}. Assume that f does not vanish
on any component of X. The following conclusions follow.

1. The dimension of any component of V (R(f(x); k)) is ≥ N − k.
2. The irreducible components of V (R(f(x); k)) and V (f) of dimension greater
than N−k are the same, and the irreducible (N−k)-dimensional components
of V (f) are components of V (R(f(x); k)).

Proof. This variant of Bertini’s Theorem follows by the same type of reasoning
as the analogous result in [12, 17] for systems of N polynomials on CN . For the
convenience of the reader, we give a proof.

The first conclusion is simply [11, Corollary 3.14].

Since V (f) ⊂ V (R(f(x); k)), the second conclusion will follow if we show that all
irreducible components V (R(f(x); k)) ∩ (X \ V (f)) have dimension N − k. Thus it
suffices to show that if V (f) is empty, then it follows that all irreducible components
V (R(f(x); k)) have dimension N − k. This is immediate from Theorem B.1.

4. Construction of Homotopies. Our algorithm for intersecting algebraic va-
rieties is based on constructing homotopies to solve a system of polynomial equations
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restricted to an algebraic set. This is a generalization of existing homotopies, which
have until now always worked on complex Euclidean space, Cm. Accordingly, in this
section we give a very general construction for homotopies on varieties.

Let X ⊂ Cm be an irreducible N -dimensional affine algebraic set and let Y be an
irreducible r-dimensional smooth algebraic set with r ≥ 1. Let

f(x, y) =




f1(x, y)
...

fN(x, y)


 = 0(4.1)

be a system of N algebraic functions on X × Y . In practice, Y is a parameter space
defining a family of systems of interest, and for any one member of the family, we
wish to find its solution points in X .

More precisely, suppose we have some parameter value y∗ ∈ Y for which we want
to find a finite set F∗ of solutions of the system f(x, y∗) = 0, such that all the isolated
solutions of f(x, y∗) = 0 are contained in F∗. A procedure to do this proceeds in a
number of steps in the same manner as if Y is CN .

1. Choose a point y′ ∈ Y for which we can find the isolated solutions F ′ of
f(x, y′) = 0, and the number of isolated solutions is the maximum number
D for any system f(x, y) = 0 as a system in the x variables. We assume here
that y′ 6= y∗, since otherwise we are done.

2. Construct a smooth connected algebraic curve B ⊂ Y which contains y∗ and
y′. (Typically Y is a Euclidean space and we choose B equal to the complex
line joining the points y∗ and y′.)

3. Construct a differentiable mapping c : [0, 1]× Γ → B where Γ is an interval
or the unit circle, c(0,Γ) = y∗, c(1,Γ) = y′, and where there is a positive
integer K such that given any point y′′ ∈ c([0, 1]× Γ) not equal to y∗ or y′,
it follows that c−1(y′′) has at most K inverse images.

4. Choose a random γ ∈ Γ and starting with the isolated solutions F ′ of
f(x, y′) = 0 use “homotopy continuation” of the system f(x, c(t, γ)) = 0
to continue from the solutions F ′ at t = 1 to solutions F∗ at t = 0.

Let us show that if we can make the choices specified by this procedure, we will find a
finite set F∗ of solutions of the system f(x, y∗) = 0, such that all the isolated solutions
of f(x, y∗) = 0 are contained in F∗. In Appendix A we show how to relax item (2)
so that the procedure can be carried in all situations where Y is irreducible.

It may well happen that the solution sets of f(x, y) = 0 for some or all the y ∈ Y

also contain positive dimensional solution components. Nevertheless, the number D
in item (1) exists and is finite by general results, e.g., [10]. Now choose B as in
item (2) above. Lemma A.1 guarantees that for all but a finite number of points
ŷ ∈ B, f(x, ŷ) = 0 has D isolated solutions, and that the closure of the union of the
isolated solutions of f(x, ŷ) = 0 as ŷ runs over B is an algebraic curve B which surjects
generically D-to-one onto B. Since the set of points in B over which this mapping is
not a covering is an algebraic set and hence finite, the procedure is seen to work.

Remark 4.1. Algebraic functions on an affine algebraic set X ⊂ Cm are the
restrictions of polynomials from Cm. If by deg fi we denote a degree of a polynomial
on Cm restricting to fi, it follows that the number D above is at most degX ×
ΠNi=1 deg fi. From this it further follows that if we can find a y′ such that f(x, y′) = 0
has degX ×ΠNi=1 deg fi nonsingular isolated solutions, we can use y′.
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Remark 4.2. Lemma A.1, which justifies the above procedure, is strong enough
to yield the algorithms we need to construct witness points. However, the lemma is
too weak to relate the multiplicity of the points as they appear in these algorithms to
the multiplicity of the components that they represent. See App. A for more details.

5. An Abstract Embedding Theorem. The object of this section is to pre-
sent Theorem 5.1, a generalization of the main theorem of [12]. We are aiming for the
same results as in that article except that CN is replaced by a pure N -dimensional
affine algebraic set X . We call the generalization in this section “abstract,” because
we do not specify an explicit description of X ; a numerical version is the topic of the
next section. Since the proof of Theorem 5.1 follows the same line of reasoning of
[12], we only state and discuss the parts of that article that need changes. Before we
can state the theorem, we need some notation.

5.1. Definitions. LetX ⊂ Cm be a reduced pureN -dimensional affine algebraic
set, i.e., an affine algebraic subset of Cm, all of whose irreducible components are of
multiplicity one and dimension N . We assume that we have a system of restrictions
of polynomials on Cm to X

f(x) :=




f1(x)
...

fN (x)


(5.1)

We assume that f does not vanish identically on any irreducible component of X . We
will occasionally abuse notation and use the same notation fi to denote the polynomial
on Cm and its restriction to X . In line with this abuse, we let

x :=




x1
...
xm


(5.2)

denote both the coordinates on Cm and the restrictions of the coordinates to X .

Let Y denote the matrix space CN×(1+m+N), with submatrices denoted as
[
A0 A1 A2

]
,(5.3)

where A0 ∈ CN×1, A1 ∈ CN×m, and A2 ∈ CN×N . We have the stratification of Y

Y0 ⊂ Y1 ⊂ · · · ⊂ YN ,(5.4)

where Yi is the subspace of Y obtained by setting the last N − i rows of Y equal to
0, and we define πi : Y → Yi as the corresponding projection. Note in particular that
YN is Y , whereas Y0 is a N × (1+m+N) matrix of zeroes. Defining ei as the N ×N

matrix of all zeros except a 1 in the i-th diagonal element and letting Pi =
∑i

j=1 ej ,
we can explicitly write πi(Y ) = PiY . We define P0 to be the N ×N matrix with all
entries zero. This notation will be useful in defining a homotopy below.

We let

z :=




z1
...
zN


(5.5)

denote coordinates on CN .
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5.2. Embedding and Cascade. For Y = (A0,A1,A2) ∈ Y , we define the
system

E(f)(x, z, Y ) :=

[
f(x) +AT2 z
z −A0 −A1x

]
,(5.6)

which admits the embeddings

Ei(f)(x, z, Y ) = E(x, z, πi(Y )) = E(x, z, PiY ).(5.7)

We often refer to Ei(f)(x, z, Y ) by Ei or Ei(f). We regard Ei as a family of systems of
equations on X × CN parameterized by Yi. Note that

1. the Ei are the restrictions of systems EN to Yi; and
2. the Ei can be identified with systems on X × Ci with coordinates z1, . . . , zi

on Ci. (This is because zj = 0 for j > i.) Thus, E0 is naturally identified
with the system f .

For i from 1 to N and γi ∈ {γ ∈ C | |γ| = 1}, we define a cascade of homotopies
that connect the embedded systems:

Hi(x, z, t, Y, γi) :=




f(x) +AT2 z

Pi−1(z −A0 −A1x)
+ei((1− t)z + γit(z −A0 −A1x))
+(IN − Pi)z


 .(5.8)

The nonzero parts of the three terms in the lower block of this expression occupy
separate rows, with only the i-th row depending on t. At t = 1, Hi(x, z, 1, Y, γi)
is equivalent to Ei(x, z, Y ) (they differ only in that the i-th row of the lower block
has been scaled by γi), and at t = 0, Hi(x, z, 0, Y, γi) = Ei−1(x, z, Y ). Homotopy Hi

allows us to compute solutions to the embedded systems by continuation, as described
in the next paragraph.

For i from 1 to N , Fi denotes the solutions to Ei = 0 with z 6= 0. In the case of
i = 0, we make the convention that F0 is the empty set. Of course, like Ei, Fi depends
on Y ∈ Y . We do not emphasize the dependence since the thrust of the main result
is that a generic choice of Y , which is done once and for all using a random number
generator in implementations, has a number of nice properties:

1. the solutions Fi of Ei = 0 are nonsingular and isolated and equal to the set
of solutions of Ei = 0 with zi 6= 0;

2. the solutions of Ei = 0 equal Fi for i > dimV (f); and
3. for all u ∈ Fi and but a finite number of γi, there is a unique continuous map

su(t) : [0, 1]→ X × Ci such that
(a) su(1) = u;
(b) Hi(su(t), t, Y, γi) = 0; and
(c) the Jacobian of Hi(x, z, t, Y, γi) with respect to (x, z) is invertible at

(su(t), t) for t ∈ (0, 1].
4. The limits of the functions su(t) as t→ 0, which exist by the last properties,

consists of the set Fi−1 plus a finite set Ŵi−1.

The collection of sets Ŵi for i = 1, . . . , N contains the witness points for the
irreducible decomposition of f−1(0). This is stated formally in the following theorem,
a generalization of the main theorem of [12].
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Theorem 5.1. Let f be the restriction of a system of N polynomials on Cm to
a pure N -dimensional affine algebraic set X ⊂ Cm. Assume that f is not identically
zero on any irreducible component of X and that (A0,A1,A2) is chosen generically.

If j is the largest integer with Ŵj nonempty, then the dimension of f
−1(0) is j.

Moreover given any irreducible component W of f−1(0) of dimension i ≤ j, then,

the finite set, Ŵi contains deg(Wred) generic points of Wred, each counted νW times,
where νW is a positive integer, and Wred is the reduction of W . The remaining points
Ji ⊂ Ŵi lie on components of f

−1(0) of dimension > i.

Theorem 5.1 is a consequence of Lemma A.1 and Lemmas B.2 and B.4 in the
appendices.

6. Numerical Embedding. In this section we show how to numerically imple-
ment the algorithm of §5. We assume that we have f and X ⊂ Cm as in Theorem 5.
We assume that we have a system of polynomials on Cm

g(x) :=




g1(x)
...

gn(x)


(6.1)

such that X is a union of dimension N irreducible components of V (g). Once and
for all choose a randomized system of m −N polynomials G(x) := R(g(x);m−N).
By Lemma 3.1 we know that X is a union of dimension N irreducible components of
V (G).

We further assume that we begin with a witness set for X ; that is, we know
its dimension N , and have found the degX smooth isolated witness points W =
Lm−N ∩X for a general linear subspace Lm−N of dimension m−N . (This will be on
hand after computing the numerical irreducible decomposition of g(x) = 0.)

To convert the “abstract” systems of the previous section to systems we can
compute with, we append G. Thus regarding the fi as polynomials on Cm, we replace
Ei(f) by

[
G(x)

Ei(f)(x, z)

]
,(6.2)

which by abuse we still call Ei(f). We let Ẽi(f) denote the original Ei(f) without the
G(x): we only use this in Equations 6.6 and 6.7.

To start the algorithm we need to solve EN (f) = 0. Assume the total degree of
fi as a polynomial on Cm is di for each i.

Choosing d1 + · · ·+ dN general linear forms

L1,1(x), . . . , L1,d1(x), . . . , LN,1(x), . . . , LN,dN
(x)(6.3)

on Cm, we want them to have the good property that for any choice of integers ij in
1, . . . , dj for each j in 1, . . . , N , the solution set Si1 ,...,iN of the system of restrictions
to X of the linear equations

L1,i1(x) = 0
...

LN,iN (x) = 0

(6.4)
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consists of degX nonsingular isolated solutions, and moreover Si1,...,iN ∩ Sk1,...,kN
=

∅ unless (i1, . . . , iN ) = (k1, . . . , kN ). Let π : Cm → CN denote a general linear
projection. As discussed in [14], πX is proper and (degX)-to-one. Let B be the proper
algebraic subset such that πX is an unramified cover when restricted toX\π−1(B). By
composing with π we have reduced to the straightforward observation that choosing
d1+ · · ·+dN general linear functions Li on CN for i from 1 to d1+ · · ·+dN , it follows
that

1. the unique zero of the linear functions Li1 , . . . , LiN for distinct i1, . . . , iN
between 1 and d1 + · · ·+ dN vanishes at a general point of CN \B; and

2. given any N + 1 of the d1 + · · ·+ dN linear functions, there are no solutions
on CN .

The system

L̂(x) =




L1,1(x) · · ·L1,d1(x)
...

LN,1(x) · · ·LN,dN
(x)


 = 0(6.5)

has d1 · · · dN · degX nonsingular isolated solutions wα contained in Xreg, the Zariski
open set of smooth points of X . By homotopy continuation tracking from Lm−N to

each of the d1 · · · dN linear systems that occur in the system L̂(x), we can compute

all the solutions wα of L̂(x) = 0.

Fix the homotopy

H(x, z, t) :=




G(x)

(1− t)ẼN (f)(x, z) + tγ

[
L̂(x)
z

]

 = 0.(6.6)

where γ is any of all but a finite number of norm one complex numbers. The solutions
of EN (f) = 0 are the nonsingular limits as t→ 0 on X of paths starting at t = 1 with
the wα and zi = 0 for all i.

Remark 6.1. In actual practice we often have some estimate, say N − 1 of the
largest dimension of any component of the solution set of f on X . This will happen,
for example, in §7. In such a situation we need only start with EN . In this case we
can replace the homotopy 6.6 with

H(x, z, t) :=




G(x)

(1− t)ẼN (f)(x, z) + tγ

[
L̂(x)
z

]

 = 0.(6.7)

Note that the smooth nonsingular solutions of Ei(f) on X are generic. Thus they
miss E := (G−1(0) \X) ∩ X except for a proper algebraic set of parameter values.
Thus for a Zariski open dense set of the homotopy parameters the homotopies with
G compute the abstract homotopies. Though E might well contain the limits of a
homotopy, the value of the limit is not influenced by G.

It is important to realize that serious numerical difficulties can arise, even when
we are dealing with a nice smooth reduced component C of the system f on X . These
occur if C is contained in a component of V (g) other than those in X . If this happens
path tracking to decompose the witness point superset containing generic points of C
will be ‘singular,’ and require the path tracker used in [15].
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7. Diagonal Homotopies. Assume that A is an irreducible component of the
solution set of polynomial system fA(u) = 0 in u ∈ Ck of dimension a > 0, and that B
is an irreducible component of the solution set of polynomial system of a polynomial
system fB(v) = 0 in v ∈ Ck of dimension b > 0. An important special case of
this is when fA and fB are the same system, and A and B are distinct irreducible
components. After renaming if necessary, we assume a ≥ b. Moreover we assume
that B is not contained in A, since we would check this at the start of the algorithm
and terminate if B was contained in A. Thus all components of A∩B are of dimension
at most b− 1.

We wish to compute the irreducible decomposition of A∩B. Note that the product
X := A × B ⊂ C2k is irreducible of dimension a + b. The theory of the preceding
sections applies with m = 2k and N = a + b. The intersection of A and B can be
identified, e.g., [4, Ex. 13.15], with X ∩∆ where ∆ is the diagonal of C2k defined by
the system on X

δ(u, v) :=




u1 − v1
...

uk − vk


 = 0.(7.1)

Remark 7.1. Notice that δ(u, v) plays the role of f in (5.1) in §5.

If a+ b ≥ k set D(u, v) equal to δ(u, v) with a+ b− k identically zero equations
adjoined. If k < a + b, fix a randomization D(u, v) := R(δ(u, v); a+ b) once and
for all. Note that the smallest dimensional nonempty component of A ∩ B is of
dimension at least max{0, a+b−k}. Thus by Lemma (3.1), we can find the irreducible
decomposition of A ∩ B by finding the irreducible decomposition of D(u, v) = 0 on
X .

Fix randomizations FA(u) := R(fA(u); k − a) and FB(v) := R(fB(v); k − b) once
and for all. We assume that we have already processed fA and fB through our
numerical irreducible decomposition. So our data for A consists of a generic system
LA(u) = 0 of a = dimA linear equations and the degA solutions {α1, . . . , αdegA} ∈ Ck

of the system
[
FA(u)
LA(u)

]
= 0,(7.2)

and the data for B consists of a generic system LB(v) = 0 of b = dimB linear
equations and the degB solutions {β1, . . . , βdegB} ∈ Cm of the system

[
FB(v)
LB(v)

]
= 0.(7.3)

Remark 7.2. We are not assuming that A and B occur with multiplicity one.
If the multiplicity is greater than one, we must use a singular path tracker [15].

Note that A×B is an irreducible component of the solution set of the system

F(u, v) :=

[
FA(u)
FB(v)

]
= 0.(7.4)

In the following paragraphs, we write zh:k to mean the column vector of variables
zh, . . . , zk.
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Since we know that all components of A ∩ B are of dimension at most b− 1, the
first system of the cascade of homotopies is

Eb(u, v, z1:b) =



F(u, v)
R(D(u, v), z1, . . . , zb; a+ b)
z1:b −R(1, u, v; b)


 = 0.(7.5)

This system consists of k−a+ k− b+a+ b+ b = 2k+ b equations in 2k+ b variables.

To start the cascade, we must find the solutions of Eq. (7.5). Recall a ≥ b.
Specializing the system from the end of §6, we have the homotopy




F(u, v)

(1− t)

[
R(D(u, v), z1, . . . , zb; a+ b)
z1:b −R(1, u, v; b)

]
+ tγ




LA(u)
LB(v)
z1:b





 = 0.(7.6)

At t = 1, solution paths start at the degA× degB nonsingular solutions

{(α1, β1), . . . , (αdegA, βdegB)} ⊂ C2k(7.7)

obtained by combining the witness points for A and B. At t = 0, the solution paths
terminate at the desired start solutions for Eq. (7.5).

Since A ∩ B 6= ∅ implies that

dimA ∩ B ≥ a+ b− k,(7.8)

we see that when a + b ≥ k, we do not have to continue the cascade beyond level
a+ b− k. We can codify this into the numerics by noting that the system Eb is, with
probability one, the same as the system

Êb(u, v, zb−ā+1, . . . , zb) =




F(u, v)
R(δ(u, v), zb−ā+1, . . . , zb; k)
R(1, u, v; b− ā)
z(b−ā+1):b −R(1, u, v; ā)


 = 0,(7.9)

where ā = k−a. This system has (k−a)+ (k− b)+ k+(k−a)+ (a+ b− k) = 3k−a

equations in 3k − a variables. Notice that a + b ≥ k implies 3k − a ≤ 2k + b. To
appreciate this, consider the case when a and b are both k − 1 and fA and fB are
each a single equation. In this case the first system of the cascade is

Ê1(u, v, z1) =




fA(u)
fB(v)

u− v +Rk×1z1
R(1, u, v; k − 2)
z1 −R(1, u, v; 1)



= 0,(7.10)

where Rk×1 is a generic complex k-vector.

In the important case when a+ b ≥ k, we want to compute the start solutions for
Eq. (7.9). Then, letting ā = k − a, the homotopy (7.6) reduces with probability one
to




F(u, v)

(1− t)




R(δ(u, v), zb−ā+1, . . . , zb; k)
R(1, u, v; b− ā)
z(b−ā+1):b −R(1, u, v; ā)


+ tγ




LA(u)
LB(v)

z(b−ā+1):b





 = 0(7.11)
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8. Computational Experiments. The diagonal homotopies are implemented
in the software package PHCpack [18], recently upgraded to deal with positive dimen-
sional solution components.

To compute witness points on all positive dimensional components of the inter-
section, we distinguish three stages:

1. given witness points on the two components, construct the top dimensional
system in the cascade and the start system to start the cascade;

2. use polynomial continuation to compute the solutions at the start of the
cascade; and

3. follow all paths defined by the cascade, in b stages, until all slack variables in
z1:b are eliminated or until no more paths are left to trace. When a+ b ≥ k,
we need work only with z(b−ā+1):b.

The complexity of this procedure thus depends on

1. the number of variables (and equations) in the top dimensional system in the
cascade;

2. the number of paths it takes to compute the solutions at the start of the
cascade; and

3. the number of paths defined by the cascade.

Although we will mention timings of runs done on a 2.4 Ghz Linux machine, the
numbers describing the complexity are less transient.

8.1. An illustrative example. Consider the following example:

f(x, y, z, w) =




xz

xw

yz

yw


 = 0.(8.1)

There are two solution components of dimension two, characterized by the equations
{x = 0, y = 0} and {z = 0, w = 0}. Pretending we do not know the two compo-
nents intersect in the origin, we will set up a cascade of homotopies to compute the
intersection of the two components.

Since we start out with four variables (k = 4), and work with two dimensional
components (a = b = 2), the total number of variables at the start of the cascade
is 2k + b = 10. The components are characterized by one witness point each, so
there is only one path to trace. Tracing one path to start the cascade only takes 80
milliseconds CPU time, and gives a point with z2 6= 0, z1 6= 0. In the first stage of
the cascade, we take z2 to zero, but z1 remains nonzero, showing that there is not a
1-dimensional component. The second stage of the cascade takes z1 to zero and yields
the origin as the point of intersection of the two components, as expected. The two
stages of the cascade together take just 30 milliseconds.

8.2. Intersection of a cylinder with a sphere. In Figure 8.1 we see a sphere
intersected by a cylinder. The curve C defined by this intersection is

C := { (x, y, z) | x2 + y2 − 1 = 0 ∩ (x+ 0.5)2 + y2 + z2 − 1 = 0 }.(8.2)

The total user CPU time of all path tracking is about a tenth of a second. First
we track two paths to find a witness set for the cylinder, which takes 20 milliseconds.
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Fig. 8.1. Intersection of a sphere with a cylinder. At the right we see the curve of degree four
defined by the intersection.

Then it takes also 20 milliseconds to compute a witness set for the sphere. We have
a = b = 2 and k = 3, thus a+ b > k and the diagonal homotopy requires 7 variables,
as 7 = 3k − a. Tracking the 2 × 2 paths defined by the diagonal homotopy takes
70 milliseconds CPU user time. At the end of the paths we find four points in the
witness set for the curve C.

We may now move the slicing plane of the witness set to find the intersection of
C with any desired plane. For example, to find the points on C of the form (x, x, z),
we move the slice in a continuous fashion to x− y = 0. Tracking the four solutions in
the witness set to this special plane takes only 10 milliseconds CPU time and gives
two real and two complex-conjugate solutions.

8.3. Adding an extra leg to a moving platform. In this section we give an
application of the important case where one of the components is a hypersurface. We
consider a special case of a Stewart-Gough platform proposed by Griffis and Duffy [6].
When further specialized to have equilateral upper and lower triangles connected by
six legs in cyclic fashion from a vertex of one triangle to a midpoint of an edge of the
other triangle, and vice versa, the platform permits motion. This property was first
identified and analyzed by Husty and Karger [7] and subsequently re-examined by the
authors of this paper in [15].

When the legs of the mechanism described above have general lengths, a formu-
lation of the kinematic equations using Study coordinates has one curve of degree 28
and 12 lines [15]. The lines are mechanically irrelevant, so we ignore them. Suppose
we form a tetrahedron by adding a fourth point in general position to the base triangle
and similarly for the upper triangle and then add a seventh leg of known length con-
necting these two points. The condition for assembling the mechanism is equivalent
to intersecting the motion curve of degree 28 for the first six legs with a quadratic
hypersurface that equates the length of the seventh leg to the distance between its
points of connection. This hypersurface is of the same form as the main equations in
the system defining the curve. With the addition of the seventh leg, the platform will
no longer move, but will have instead a finite number of fixed postures.

The number of variables and equations in the original system is eight (k = 8).
We intersect a one dimensional component with a hypersurface, for k = 8, this hy-
persurface is of dimension seven. Since a ≥ b, we have a = 7 and b = 1. So the
cascade starts with 17 variables, as 2k + b = 2 × 8 + 1 = 17. The hypersurface is
represented by 2 witness points and the curve we intersect has 28 witness points. To
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start the cascade, we trace 2 × 28 = 56 paths in dimension 17, using 20.3 seconds
user CPU time. The cascade just has to remove one hyperplane to arrive at the 40
intersection points (16 of the 56 paths diverge), which requires 14.4 seconds user CPU
time. Interestingly, a general Stewart-Gough platform also has 40 solution points.

Finally, we point out that the CPU time spent on the diagonal homotopy is con-
siderably less than solving the system directly. For the direct approach the input is
a system in 9 equations and 8 variables. Before giving it to the blackbox solver of
PHCpack, we add to every equation one monomial, which is a new slack variable mul-
tiplied with a random constant. The mixed volume of this new 9-dimensional system
is 164. The computation of the mixed volume and tracking of all 164 paths takes
108.5 seconds (1.8 minutes) CPU time. At the end we find the same 40 intersection
points, the other 124 paths diverged to infinity. Notice that in the diagonal homotopy,
only 16 paths diverged.

9. Conclusions. In this paper, we extend the cascade of [12] to compute witness
points on all components of the intersection of two irreducible varieties. This is done
by computing the irreducible decomposition of the diagonal of the product of the two
irreducible varieties, and so we call the new procedure a “diagonal homotopy.” The
procedure is justified as a special case of a method, also described herein, for the
irreducible decomposition of the solution set of any polynomial system restricted to
an irreducible algebraic set.

The diagonal homotopy given here always has at least twice the number of vari-
ables as the ambient space of the varieties being intersected. In a sequel to this paper,
we will describe a modification to the diagonal homotopy that avoids the explicit dou-
bling of the system, which leads to more efficient computation.
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Appendix A. Homotopy on an Algebraic Set.

In §4, we give a procedure for constructing homotopies to solve a system of pa-
rameterized polynomials restricted to an algebraic set. In that procedure, Y is the
parameter space, B is a smooth curve in Y , and we compute solution paths along a
one-real-dimensional curve in B. Both Y and B are irreducible algebraic sets.

While choosing a smooth B is a difficulty when Y is irreducible and singular, it
is always easy to find an irreducible curve B that contains y′ and y∗ with y′ 6∈ BSing.
If y′ is not in the singular set YSing of Y , then B is not contained in YSing. This is
more than enough for the procedure to find a finite set F∗ of solutions of the system
f(x, y∗) = 0, such that all the isolated solutions of f(x, y∗) = 0 are contained in F∗.

In fact, the procedure given in §4, works with item (2) relaxed to finding an
irreducible curve B containing y′ and y∗ such that

1. B is not contained in the singular set YSing of Y ; and
2. y′ 6∈ BSing.

That the procedure finds a finite set F∗ of solutions of the system f(x, y∗) = 0,
such that all the isolated solutions of f(x, y∗) = 0 are contained in F∗ may be shown
by reducing to the nonsingular case:

a) Desingularize Y , i.e., let π : Y → Y denote a surjective birational morphism
which gives an isomorphism from Y \ π−1(YSing) to Y \ YSing.

b) Note that since B 6⊂ YSing, there is an algebraic curve B′ ⊂ Y that maps
generically one-to-one and onto B. By using embedded resolution of Y , it
can be further assumed that B′ is smooth.

c) By composition with π we get algebraic functions f ′i on X × Y .
d) Note that given y∗ ∈ B ⊂ Y , there is a point y′∗ ⊂ B′ that maps onto y∗.
e) Note that the result shown holds for X,Y , f ′, B′, and that (with the obvious

identifications) the system f(x, y∗) = 0 on X×{y∗} is identical to the system
f ′(x, y′∗) on X × {y′∗}.

The lemma which justifies the homotopy is as follows.

Lemma A.1. Let X ⊂ Cm be an irreducible N -dimensional affine algebraic set
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and let Y be an irreducible smooth algebraic set. Let

f(x, y) =




f1(x, y)
...

fN(x, y)


 = 0(A.1)

be a system of N algebraic functions on X × Y . Let x∗ be an isolated solution of
f(x, y∗) = 0 for a fixed value y∗ ∈ Y , i.e., assume that there is an open set O ⊂ X

containing x∗ with x∗ the only solution of f(x, y∗) = 0 on O. Then there exists a
neighborhood V of y∗ ∈ Y such that for any y ∈ V there exists at least one isolated
solution of x ∈ O of f(x, y) = 0.

Proof. This result is a special case of a basic general result from complex algebraic
geometry, e.g., [11, (3.10)]. Any irreducible component of f(x, y) = 0 is of dimension
≥ dimY . Choose such a component C through (x∗, y∗). Consider C ⊂ X × Y where
we close up X within Pm. Since the induced projection π : C → Y is proper, and there
is a Euclidean neighborhood O of x∗ as in the lemma with π−1O (y∗) = x∗, we conclude
that there is a neighborhood V ⊂ Y of y∗ such that πC∩(O×V ) : C ∩ (O × V ) → V

is proper. By the proper mapping theorem the image is an algebraic subset, and by
the upper semicontinuity of fiber dimension it must be surjective. This proves the
lemma.

We conclude this appendix with a few remarks on multiplicity. Lemma (A.1) is
strong enough yield the algorithms we need to construct witness points, but unfor-
tunately too weak for us to relate the multiplicity of x∗ as a solution of f(x, y∗) = 0
to the multiplicity of the projection map from C to Y at (x∗, y∗). If X was a local
complete intersection, then it would follow that C was Cohen-Macaulay in a neigh-
borhood of (x∗, y∗), and we could use the stronger result [12, Lemma 6], and conclude
the two multiplicities are the same, and thus have the same multiplicity statements
as in [12, Theorem 3].

In the situation when we apply Lemma A.1 we know a bit more information,
i.e., that for a general point y′ near y∗, the solutions of f(x, y′) = 0 near (x∗, y′)
are nonsingular. It is worth noting in this case, e.g., using [11, Appendix to Chapter
6] that when we choose a sufficiently generic smooth curve in Y through y∗, e.g.,
a generic line through y∗ when Y is Euclidean space, the number of paths coming
into (x∗, y∗) is the multiplicity of the local ring of X at x∗ with respect to the ideal
generated by the functions fi(x, y

∗). Unfortunately, this multiplicity is in general only
bounded by the multiplicity of (x∗, y∗) as a solution of f(x, y∗) = 0.

Appendix B. Proof of the Main Theorem. For algebraic sets, there is a
very strong version of Sard’s Theorem, e.g., [11, Theorem 3.7]. This result has a large
number of consequences, going under the name Bertini’s Theorem, asserting that
the zero set of a suitably general function inherits properties of the set the function
is defined on. For the convenience of the reader we collect in one place a Bertini
Theorem of sufficient generality to cover the needs of this article. Given a complex
vector space V we let V r denote the Cartesian product of V with itself r times, i.e.,
the space of are r-tuples of elements of V . V r has a natural vector space structure
given by addition of r-tuples and multiplication of an r-tuple by a complex number
being defined as the r-tuple obtained by componentwise multiplication of elements of
the r-tuple by the complex number. V r with this vector space structure is denoted
by V ⊕r. We use notation close to that of Fulton [5, Lemma B.9.1] in the Theorem
B.1.
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Theorem B.1 (Bertini’s Theorem). Let X denote an irreducible algebraic subset
of Ck. Let Z1, . . . , Zq denote a finite number of irreducible algebraic subsets of X
(with one of the Xi possibly equal to X). Let V denote the restriction to X of a finite
dimensional vector space of polynomial functions on Ck. Assume that for each point
of X at least one element of V does not evaluate to zero. Then for any integer r > 0,
there is a Zariski open dense set U ⊂ Vr such that for f := (f1, . . . , fr) ∈ U it follows
for each Zi that

1. if V (f) ∩ Zi is nonempty, then dimV (f) ∩ Zi = dimZi − r; and
2. letting Sing(Zi) denote the singular set of Zi, V (f)∩(Zi\Sing(Zi)) is smooth.

Proof. We first apply [5, Lemma B.9.1]. For the vector bundle E in [5, Lemma
B.9.1] take X ×Cr; take p = 1 with C1 = X ×{0}; for Γ take V⊕r, i.e., take Vr. The
conclusion from [5, Lemma B.9.1] is the existence of a Zariski open dense set Γo of Γ
such that for f := (f1, . . . , fs) ∈ Γo, it follows that if V (f) ∩ Zi is nonempty then

dim(V (f) ∩ Zi) ≤ dimZi − r.

The opposite inequality is a property of zero sets of functions, e.g., [11, Corollary
3.14].

Since the intersection of a finite number of Zariski open and dense sets is Zariski
open and dense, it suffices to show that there is a Zariski open dense set Ui ⊂ V⊕r
such that for f ∈ Ui, V (f) ∩ (Zi \ Sing(Zi)) is smooth. For this we use [3, Theorem
1.7.1.1]. Restricting to (Zi \ Sing(Zi)), we conclude from [3, Theorem 1.7.1.1] that
there is a Zariski open dense set O1 ⊂ V such that for f1 ∈ O1 we have that V (f1) ∩
(Zi \ Sing(Zi)) is smooth and if nonempty of dimension dimZi − 1. Applying [3,
Theorem 1.7.1.1] to the restriction of V to V (f1) ∩ (Zi \ Sing(Zi)), we conclude that
there is a Zariski open dense set O2 ⊂ V such that for f2 ∈ O2 we have that V (f1, f2)∩
(Zi \ Sing(Zi)) is smooth and if nonempty of dimension dimZi − 2. Proceeding this
way for j going to r, Ui := O1×· · · ×Or ⊂ V⊕r is the desired Zariski open dense set.

Lemma B.2. Let f and X be as in Theorem 5.1. Assume further that Z is
an algebraic subset of X of dimension < N . Assume that f does not vanish on any
component of X or of Z. There is a Zariski open and dense set U ⊂ Y = CN×(1+m+N)

such that

1. the solutions Fi of the system Ei(f)(x, z, Y ) for Y ∈ U with z 6= 0 are isolated
nonsingular solutions and lie in the set (X \ Z)× Ci;

2. U ∩ Yi is Zariski open and dense for each i < N ; and
3. the solutions of Ei(f)(x, z, Y ) for Y ∈ U with z 6= 0 are the same as those
with zi 6= 0.

Proof. Since the following result follows almost verbatim from the reasoning in
the first half of the proof of [12, Lemma 2], we give only a brief sketch of the proof.
As discussed in §5, we regard Ei as a system on X × Ci.

Consider the vector space V1 of functions on X × Ci generated by

f1, . . . , fN , z1, . . . , zi.

The common zeroes of the functions in V1 are the points

V (V1) :=
{
(x, 0) ∈ X × Ci|f(x) = 0

}
.

¿From this we conclude, using Theorem B.1, that for a choice of a system S in a
nonempty Zariski open set of the vector space V ⊕N1 , it follows that the common zeroes

18



ZS of S on X×Ci \V (V1) is pure i-dimensional with singular set of dimension ≤ i−1.
Similarly ZS meets Z×Ci \V (V1) in a set of dimension at most dimZ+ i−N ≤ i−1.

Now let V2 be the vector space of functions on X × Ci generated by

1, x1, . . . , xm, z1, . . . , zi.

Since 1 ∈ V2, there are no common zeroes of the functions in V2. Using Theorem B.1
again, we conclude that for a generic choice of a system S ′ in a nonempty Zariski open
set the vector space V ⊕i2 , it follows that the common zeroes of S ′ on ZS with z 6= 0
is a finite set of isolated smooth points not contained in Z × Ci. The above system

[
S
S ′

]
= 0,(B.1)

of N + i equations is of the form

B




f1(x)
...

fN (x)


+ C




z1
...
zi


 = 0

D +E




x1
...
xm


+ F




z1
...
zi


 = 0,

(B.2)

where B is an N ×N complex matrix, C is an N × i complex matrix, D is an i× 1
complex matrix, E is i×m complex matrix, and F is an i× i complex matrix. The
above Bertini type results show that the set of

(B,C,D,E, F ) ∈ CN×(N+i)+i×(1+m+i)

giving rise to systems of the form (B.2) with only isolated nonsingular solutions on
X×Ci \X×{0} is dense in CN×(N+i)+i×(1+m+i) with respect to the usual Euclidean
topology. The set of such (B,C,D,E, F ) such that the maximal number of isolated
solutions of the associated system (B.2) on X × Ci \X × {0} occurs is a dense con-
structible set, and thus by Chevalley’s Theorem, e.g., [11, Proposition 2.31], contains
a dense Zariski open set O. Moreover we know that the systems of the form (B.2) with
only isolated solutions onX×Ci\X×{0} form a constructible set C of (B,C,D,E, F ).
By the density of the systems (B.1) in the usual Euclidean topology, we conclude that
C is a dense Zariski constructible set and thus contains a dense Zariski open set O′.
The systems arising with parameters from the set U ′i = O ∩ O′ have the properties
required for the first assertion of the lemma. The matrices (B,C,D,E, F ) giving rise
to systems with the desired properties are invariant under the action

G1 ×G2 × (B,C,D,E, F )→ (G−11 B,G−11 C,G−12 D,G−12 E,G−12 F ),

where G1 is an invertible N ×N complex matrix and G2 is an invertible i× i complex
matrix. Thus we can assume that U ′i is invariant under this action. Since the matrices
(B,C,D,E, F ) with B and F invertible form a Zariski open dense set invariant under
the same action, we can assume that the Zariski open set U ′i is chosen so that all
(B,C,D,E, F ) in the set have B and F invertible. Since (IN , B

−1C,F−1D,F−1E, Ii)
is in U ′i , we see that the set

Ui := U ′i ∩ {(B,C,D,E, F )|B and F invertible }
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is the desired set for conclusion 1) of the lemma.

We have natural projections πi : Y → Yi obtained by setting the last N − i rows
of an element of Y to 0. The set U := ∩Ni=1π

−1(Ui) is Zariski open and dense. Noting
that since the maps πi are surjective, the images are Zariski dense constructible sets,
we have, upon redefining Ui := U ∩ Yi, the first two assertions of the lemma.

For the last assertion we can assume without loss of generality that i ≥ 2. The
desired assertion will follow if we show that the condition that the set of Y ∈ U

for which there are solutions of Ei(f)(x, z, Y ) with zi = 0, but z 6= 0, is not Zariski
dense. Assume it was Zariski dense. Then, for a general Y ∈ U and a general
(ai, a1,1, . . . , ai,N ) ∈ CN+1, the system

[
Ei−1(f)(x, z, Y )

ai + ai,1x1 + · · ·+ ai,mxm

]
= 0

has a solution with (z1, . . . , zi−1) 6= 0. This is absurd, since we have already shown
that for a general Y ∈ U , there are only a finite number of solutions of Ei−1(f)(x, z, Y )
with (z1, . . . , zi−1) 6= 0.

Remark B.3. The condition in Lemma B.2 that the Fi lie in (X − Z) × Ci is
important because we will typically not have defining polynomials for X , but only
know that X is an irreducible component of V (g) for a system of polynomials g.
Taking Z equal to the union of the intersections of X with other components of V (g)
guarantees with probability-one that g will be a set of defining equations for X on a
Zariski open set large enough so that all the homotopy continuations that are given
in this article will be well defined.

We need some information about the isolated solutions of Ei(f)(x, z, Y ) with
z = 0. This is the generalization of the last assertion of [12, Lemma 2].

Lemma B.4. There is a Zariski open and dense set U ⊂ Y = CN×(1+m+N) such
that the solutions of the system Ei(f)(x, z, Y ) for Y ∈ U with z = 0 consist of

1. positive dimensional components all contained in components of V (f) of di-
mension greater than i; plus

2. for each dimension i irreducible component W of f−1(0), isolated solutions
consisting of deg(Wred) generic points of Wred, the reduction of W , each
occurring the same number of times.

Proof. When z = 0, the system Ei(f)(x, z, Y ) reduces to

[
f(x)

A0 +A1 · x

]
.(B.3)

The assertion is contained in the discussion in [17].

The remaining result from [12] that needs modification is the “Local Extension
Lemma” [12, Lemma 6]. We use Lemma A.1 in its place.
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