
Interfacing with the Numerical Homotopy

Algorithms in PHCpack?

Anton Leykin1 and Jan Verschelde2

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, 851 South Morgan (M/C 249)

Chicago, IL 60607-7045, USA.
1leykin@math.uic.edu, http://www.math.uic.edu/~leykin

2jan@math.uic.edu, http://www.math.uic.edu/~jan

Abstract. PHCpack implements numerical algorithms for solving poly-
nomial systems using homotopy continuation methods. In this paper we
describe two types of interfaces to PHCpack. The first interface PHCmaple
originally follows OpenXM, in the sense that the program (in our case
Maple) that uses PHCpack needs only the executable version phc built
by the package PHCpack. Following the recent development of PHCpack,
PHCmaple has been extended with functions that deal with singular
polynomial systems, in particular, the deflation procedures that guaran-
tee the ability to refine approximations to an isolated solution even if it is
multiple. The second interface to PHCpack was developed in conjunction
with MPI (Message Passing Interface), needed to run the path trackers
on parallel machines. This interface gives access to the functionality of
PHCpack as a conventional software library.

1 Introduction

In various fields of science and engineering one must solve polynomial systems,
see for example [14], or the case studies in [22, Chapter 9], or [24]. Computer
algebra packages like Maple have a convenient worksheet interface which allows
to document very precisely the derivation of the polynomial systems using the
language of the application area. We designed PHCmaple [5] (based on a small
Maple procedure in [20], applying our experience with OpenXM [11]) to give a
Maple user access to the functionality of a numerical polynomial system solver
phc (polynomial homotopy continuation), a program built by PHCpack [25].

Besides a carefully documented problem formulation, the user will need to
analyze and interpret the results returned by the solver. The visualization ca-
pabilities of a computer algebra system, combined with high level facilities to
manipulate and export data in various formats, extend the usefulness of the
solver. So the interaction with computer algebra is not only seen as a natural,
but as a vital part of the solving process.

? This material is based upon work supported by the National Science Foundation
under Grant No. 0134611 and Grant No. 0410036. Date: 22 June 2006.

2 Anton Leykin and Jan Verschelde

The interaction between computer algebra systems and numerical solvers is
one practical side of symbolic-numeric computation, concerned with the imple-
mentation of hybrid methods [3]. Examples of hybrid methods are the algorithms
developed in the fields of numerical polynomial algebra [23] and numerical al-
gebraic geometry [21] [22]. The algorithms at the heart of numerical algebraic
geometry are homotopy continuation methods (see e.g. [1], [10], or [14]), which
can be seen as the combination of two methods. Homotopy methods embed the
system to be solved in a suitable family of systems, connecting the given prob-
lem with a system which is trivial or at least easier to solve. Once this family
(called the homotopy) is created, numerical path following methods (also known
as continuation methods) track solution paths starting at solutions of the easier
problem leading to the solutions of the given problem. As the number crunch-
ing is usually all done in hardware floating point arithmetic, the performance of
the numerical solver depends critically on the ability of the symbolic homotopy
method to capture the structure of the given problem.

Originally designed [25] to offer a wide variety of homotopy algorithms, PHC-
pack has grown into a platform for numerical algebraic geometry, most notably
extended with features [20] to deal with positive dimensional solution sets of
polynomial systems, implementing a so-called numerical irreducible decomposi-
tion [19]. While the pack in its name suggests PHCpack to be in the glorious
tradition of highly successful software like LAPACK [2], its main target is the
standalone executable program phc which currently is available on a wide range
of platforms: PCs running Linux and Windows, computers running MacOS X,
SUN workstations running Solaris and IBM machines running AIX. The recent
“parallel PHCpack” project is described in [7].

The Maple interface PHCmaple was used in [13]. In [16], Maple and PHCpack
were combined to develop a prototype implementation of new algorithms in
numerical jet geometry. In addition to problem formulation and result analysis,
this algorithm prototyping is our third motivation for interfaces like PHCmaple.

In this paper we present an overview of PHCmaple, we refer to [5] for details
on its original design and to [9] for the added interface to the new deflation al-
gorithms [8] to recondition multiple isolated roots of polynomial systems. While
PHCmaple is a user oriented interface, in this paper we document an alterna-
tive interface, developed for programming purposes, in particular for use with
MPI [17], for tracking solution paths on parallel machines.

The programmer interface to PHCpack is characterized by two important
features inspired by the PHCmaple user interface. Like PHCmaple relies only
on the executable phc, the programmer interface is concentrated in one single
routine. Moreover, as the user of PHCmaple enjoys the existing data manipula-
tion facilities of Maple, the internal data structures of PHCpack for representing
polynomials and solutions to systems, are available to the user of the program-
mer interface so the programmer calling on PHCpack should not define similar
data structures. In this sense, the programmer interface to PHCpack resembles
very much a conventional software library.

Interfacing with PHCpack 3

2 The Evolution of the Interfaces to PHCpack

In this section we briefly describe the chronological evolution of the interfaces
to the capabilities in PHCpack.

1. OpenXM calls the blackbox solver. The first interface is still available
via OpenXM (Open message eXchange protocol for Mathematics [11], see
also [12] and [15]) and only needs an executable file of the program. Just as
one calls the blackbox solver of PHCpack as phc -b input output, a simple
system call achieves the same effect.

2. A simple Maple procedure calls the blackbox solver. On [20, page 114],
a simple Maple 7 procedure (less than 20 lines long) applies the experience
of the first interface, calling phc -b.

3. A functional C interface to the Ada routines in PHCpack. To process
the output of the Pieri homotopies in PHCpack to compute feedback laws
to control a linear system, a dedicated C interface was written, used in [26]
and described in an online appendix (available at the second author’s web
site). The main C program calls the Ada routines in PHCpack which then
call another C function to process the output.

4. PHCmaple gives access to the tools of phc. The main executable pro-
gram of PHCpack can be used as a blackbox or as a toolbox, calling the
program with the appropriate options and selecting the desired actions from
the menu. Via input redirections, it also just takes the executable version to
gain access to the tools offered by PHCpack. In [5], we presented PHCmaple,
a Maple interface to PHCpack.

5. Using PHCpack as a state machine. The dedicated C interface was not
adequate for the parallel implementation of the path tracking routines in
PHCpack. Therefore, a new interface was developed for use in [27], [4] [6]
and [28], which describe the progress by parallel PHCpack [7].
The Ada function use c2phc

function use_c2phc (job : integer;

a : C_intarrs.Pointer;

b : C_intarrs.Pointer;

c : C_dblarrs.Pointer) return integer;

is available to the C programmer as

extern void adainit(void);

extern int _ada_use_c2phc (int job, int *a, int *b, double *c);

extern void adafinal(void);

The first parameter job specifies the action requested from phc. The meaning
of the other parameters a, b, and c depends on the job. We will describe
this interface in greater detail below.

The chronological evolution pictures two distinct trends in interfacing with
PHCpack: (1) using the executable originated with OpenXM [11]; and (2) calling
the compiled code, motivated by the use of MPI [17].

4 Anton Leykin and Jan Verschelde

3 Overview of PHCmaple

PHCmaple is available for download at www.math.uic.edu/~leykin/PHCmaple/
and works with Maple version 8 or higher. At the moment the software is devel-
oped and tested only on the Windows distribution of Maple.

The goal of PHCmaple is to provide computer algebra users with a convenient
interface to the

– blackbox solver of phc;
– homotopy path tracking facilities;
– deflation procedure;
– routines that create and manipulate witness sets for positive-dimensional
components;

– factorization/decomposition capabilities of phc.

Using the following procedures one can deal with isolated solutions of square
systems (with a finite number of solutions): to run the black-box solver execute
solve, which returns approximations to all complex isolated roots of a square
system; refines the solutions to any specified precision with refine, which also
provides a way to set certain parameters in order to fine-tune the solver; track
a subset of the solutions set of the start system to the corresponding solutions of
the target system and visualize the results with drawPaths; for singular isolated
solutions one might consider applying deflationStep, the implementation of
the first-order deflation procedure [8], which given a polynomial system and an
approximation to one of its multiple isolated solutions produces a new system
of equations that has the same solution, but with lower multiplicity. See [9] for
more details about the implementation of the deflation algorithm and examples
for its use by PHCmaple.

The positive-dimensional solution sets of general polynomial systems can be
represented by means of witness sets, computing which reduces the problem to
the isolated solution case.

The following functions of PHCmaple serve this purpose: construct an em-
bedded system with embed in assumption that the dimension of its solution set
is known; cascade runs the so-called cascade of homotopies for an embedded
system, it computes the list of witness sets for the components of the solu-
tion set in every dimension; after producing the witness sets filter the points
in lower-dimensional witness sets belonging to higher-dimensional components;
to produce a numeric irreducible decomposition of a pure-dimensional solution
component decompose its witness set; absolute factorization capability for mul-
tivariate polynomial is given by factor.

The new, recently added eqnbyeqn routine launches the equation-by-equation
solver [18], which produces the witness sets similarly to cascade, though using
a different method. These witness sets are returned already filtered.

Interfacing with PHCpack 5

4 Using PHCpack in C programs

The function use c2phc serves as a gateway to the full functionality of PHCpack,
concentrated in one single routine. When designing this interface, we viewed
PHCpack as a state machine. Like we input coins into a vending machine, make a
selection pushing a button to then collect our selected beverage, the programmer
calls use c2phcwith the appropriate job number to read in a polynomial system,
select the type of homotopy and various other options to then finally activate
the path trackers which will compute the solutions and write to the output.

The use c2phc was written to get access to the path tracking routines (writ-
ten in Ada) by a main program in C, which calls the communication primitives
of MPI. It was used in a series of papers, starting with [27] (parallel Pieri ho-
motopies), continuing with [6] and [4] (parallel factorization), and most recently
used in [28] (parallel polyhedral homotopies). As use c2phc called on various
homotopy algorithms in PHCpack, the number of different job numbers grew
and the direct use of the gateway by the main parallel program became too
tedious. So we developed an additional layer between the main parallel program
and the use c2phc function.

This additional layer forms the programmer interface to PHCpack. It con-
sists of a collection of header files (suffix .h) offering the programmer meaningful
names for the various jobs performed by use c2phc, hiding the precise job num-
ber in the definition of the function listed in the header files. Details about this
evolving interface can be found in the source code distribution of PHCpack.

5 Future Developments

In this paper we described a user and a programmer interface to PHCpack.

While currently PHCmaple still operates by making system calls to the stan-
dalone program phc, a more efficient interface will apply the use c2phc in a
dynamic link library.

Besides adding more functionality to use c2phc, a very useful extension of
its argument list will be the addition of two functions to allow the user to define
so-called straight line programs to evaluate and differentiate the polynomial
systems generated by the homotopy.

The interfaces we described will serve as a model to use PHCpack in other
computer algebra systems like Axiom or Macaulay 2 for example, as well as in
scientific computing systems like Octave or Scilab. As C seems to be the least
common denominator language for computer programming, the programmer in-
terface could lead to bindings to other languages or used to build other dedicated
interfaces.

6 Anton Leykin and Jan Verschelde

References

1. E.L. Allgower and K. Georg. Introduction to Numerical Continuation Methods,
volume 45 of Classics in Applied Mathematics. SIAM, 2003.

2. E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammerling, A. McKenny, and D. Sorensen.
LAPACK User’s Guide. SIAM, 3rd edition, 1999. Available online via
http://www.netlig.org/lapack.

3. R.M. Corless, E. Kaltofen, and S.M. Watt. Hybrid methods. In J. Grabmeier,
E. Kaltofen, and V. Weispfenning, editors, Computer Algebra Handbook, pages
112–125. Springer–Verlag, 2002.

4. A. Leykin and J. Verschelde. Decomposing solution sets of polynomial systems:
a new parallel monodromy breakup algorithm. Accepted for publication in The
International Journal of Computational Science and Engineering.

5. A. Leykin and J. Verschelde. PHCmaple: A Maple interface to the numerical
homotopy algorithms in PHCpack. In Quoc-Nam Tran, editor, Proceedings of the
Tenth International Conference on Applications of Computer Algebra (ACA’2004),
pages 139–147, 2004.

6. A. Leykin and J. Verschelde. Factoring solution sets of polynomial systems in
parallel. In Tor Skeie and Chu-Sing Yang, editors, Proceedings of the 2005 In-
ternational Conference on Parallel Processing Workshops. 14-17 June 2005. Oslo,
Norway. High Performance Scientific and Engineering Computing, pages 173–180.
IEEE Computer Society, 2005.

7. A. Leykin, J. Verschelde, and Zhuang Y. Parallel homotopy algorithms to solve
polynomial systems. Proceedings of ICMS’06, this volume.

8. A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated
singularities of polynomial systems. To appear in Theoretical Computer Science.

9. A. Leykin, J. Verschelde, and A. Zhao. Evaluation of Jacobian matrices for New-
ton’s method with deflation to approximate isolated singular solutions of poly-
nomial systems. In D. Wang and L. Zhi, editors, SNC 2005 Proceedings. Inter-
national Workshop on Symbolic-Numeric Computation. Xi’an, China, July 19-21,
2005, pages 19–28, 2005.

10. T.Y. Li. Numerical solution of polynomial systems by homotopy continuation
methods. In F. Cucker, editor, Handbook of Numerical Analysis. Volume XI. Spe-
cial Volume: Foundations of Computational Mathematics, pages 209–304. North-
Holland, 2003.

11. M. Maekawa, M. Noro, K. Ohara, Y. Okutani, N. Takayama, and Tamura Y.
Openxm – an open system to integrate mathematical softwares. Available at
http://www.OpenXM.org/.

12. M. Maekawa, M. Noro, K. Ohara, N. Takayama, and Y. Tamura.
The design and implementation of OpenXM-RFC 100 and 101. In
K. Shirayanagi and K. Yokoyama, editors, Computer mathematics. Pro-
ceedings of the Fifth Asian Symposium (ASCM 2001) Matsuyama,
Japan 26 - 28 September 2001, volume 9 of Lecture Notes Series
on Computing, pages 102–111. World Scientific, 2001. Available at
http://www.math.kobe-u.ac.jp/OpenXM/ascm2001/ascm2001/ascm2001.html.

13. M.M. Maza, G.J. Reid, R. Scott, and W. Wu. On approximate triangular decompo-
sition I. Dimension zero. In D. Wang and L. Zhi, editors, SNC 2005 Proceedings.
International Workshop on Symbolic-Numeric Computation. Xi’an, China, July
19-21, 2005, pages 19–28, 2005.

Interfacing with PHCpack 7

14. A. Morgan. Solving polynomial systems using continuation for engineering and
scientific problems. Prentice-Hall, 1987.

15. M. Noro. A computer algebra system: Risa/Asir. In M. Joswig and N. Takayama,
editors, Algebra, Geometry, and Software Systems, pages 147–162. Springer–Verlag,
2003.

16. G. Reid, J. Verschelde, A. Wittkopf, and W. Wu. Symbolic-numeric completion
of differential systems by homotopy continuation. In M. Kauers, editor, Proceed-
ings of the 2005 International Symposium on Symbolic and Algebraic Computation
(ISSAC’05), July 24-27 2005, Beijing, China, pages 269–276. ACM, 2005.

17. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The Com-
plete Reference Volume 1, The MPI Core. Massachusetts Institute of Technology,
2nd edition, 1998. Available via http://www-unix.mcs.anl.gov/mpi/.

18. A.J. Sommese, J. Verschelde, and C.W. Wampler. Solving polynomial systems
equation by equation. Submitted for publication.

19. A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the
solution sets of polynomial systems into irreducible components. SIAM J. Numer.
Anal., 38(6):2022–2046, 2001.

20. A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical irreducible decompo-
sition using PHCpack. In M. Joswig and N. Takayama, editors, Algebra, Geometry,
and Software Systems, pages 109–130. Springer–Verlag, 2003.

21. A.J. Sommese, J. Verschelde, and C.W. Wampler. Introduction to numerical al-
gebraic geometry. In Solving Polynomial Equations. Foundations, Algorithms and
Applications, volume 14 of Algorithms and Computation in Mathematics, pages
301–337. Springer–Verlag, 2005.

22. A.J. Sommese and C.W. Wampler. The Numerical solution of systems of polyno-
mials arising in engineering and science. World Scientific Press, Singapore, 2005.

23. H.J. Stetter. Numerical Polynomial Algebra. SIAM, 2004.
24. B. Sturmfels. Solving Systems of Polynomial Equations. Number 97 in CBMS

Regional Conference Series in Mathematics. AMS, 2002.
25. J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial

systems by homotopy continuation. ACM Trans. Math. Softw., 25(2):251–276,
1999. Software available at http://www.math.uic.edu/~jan.

26. J. Verschelde and Y. Wang. Computing dynamic output feedback laws. IEEE
Transactions on Automatic Control, 49(8):1393–1397, 2004.

27. J. Verschelde and Y. Wang. Computing feedback laws for linear systems with
a parallel Pieri homotopy. In Y. Yang, editor, Proceedings of the 2004 Interna-
tional Conference on Parallel Processing Workshops, 15-18 August 2004, Montreal,
Quebec, Canada. High Performance Scientific and Engineering Computing, pages
222–229. IEEE Computer Society, 2004.

28. J. Verschelde and Y. Zhuang. Parallel implementation of the polyhedral homotopy
method. Accepted for publication in the proceedings of The 8th Workshop on
High Performance Scientific and Engineering Computing (HPSEC-06), Columbus,
Ohio, USA, August 18, 2006.

