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Abstract

To decompose solution sets of polynomial systems into irreducible components, homo-
topy continuation methods generate the action of a natural monodromy group which
partially classifies generic points onto their respective irreducible components. As il-
lustrated by the performance on several test examples, this new method achieves a
great increase in speed and accuracy, as well as improved numerical conditioning of the
multivariate interpolation problem.
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1 Introduction

To describe positive dimensional solution sets of polynomial systems, we work with generic

points [22] of irreducible components. These points are produced by slicing the solution set
with general linear subspaces of the ambient Euclidean space. In particular, slicing the union
Zi of the i-dimensional components of the solution set in Cn with a general linear space of
dimension n− i will result in a set Wi of smooth points of the components. The cardinality
of this set equals the degree of Zi. A decomposition of a positive dimensional solution set
into irreducible components is realized by a partition of the whole set Wi of generic points
into subsets of points that lie on the same irreducible component.

In [20] and [21], this decomposition was achieved by incrementally building up interpo-
lating polynomials. In this paper we propose to apply the actions of a natural monodromy
group to find a partition of all generic points that is compatible with the partition into ir-
reducible components, i.e., a subset generated by this new decomposition consists of points
on an irreducible component, but not necessarily all of them. This reduces, in many cases
significantly, the work needed to compute the filtering polynomials. Given a grouping G of
generic points from the breakup of Wi induced by the monodromy action, we construct a
polynomial p, that would be a filtering polynomial, if the grouping did coincide with the
points of Wi lying on an irreducible component of the solution set. Evaluation of p on addi-
tional test points obtained by homotopy paths starting in G checks whether the grouping G
is the grouping associated to an irreducible component. If so, then p is a filtering polynomial
for the irreducible component. If not, then p can be used as a starting point for constructing
a filtering polynomial of the irreducible component containing G.

An important added advantage is that a set G of generic points on which the monodromy
action is transitive, is well suited for use of generalized divided differences [15] to write down a
well-conditioned multivariate polynomial p that interpolates the points. This will be covered
in a sequel.

The method applies to all components, but because we only have an efficient implemen-
tation of path tracking for paths on components having multiplicity one, in this paper, we
apply the new technique only to such components.

This paper is organized in four parts. In section 2 we present the fundamentals on mon-
odromy actions, and we outline the algorithm to decompose solution sets with the monodromy
group. In section 3 we discuss the extra processing needed if the breakup achieved, using
monodromy, does not equal the breakup corresponding to the decomposition of Zi into its
irreducible components. Section 4 addresses the condition of the decomposition problem on
the special problem of factoring multivariate polynomials. In section 5, we apply our new
approach to systems from the literature.
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2 Monodromy Group Actions

2.1 Fundamentals on Monodromy Actions

Let Z denote the reduction of the algebraic set defined by a system of polynomials f on CN ,
that is, Z is the underlying set of points of the solution set of f = 0. Z is an algebraic
set. Let us consider Zi, the union of the i-dimensional irreducible components of Z. Let Si
denote the algebraic subset of Zi consisting of all points of Zi that lie on at least two distinct
components of Z. We consider the space U of all affine linear subspaces CN−i ⊂ CN . Most
L ∈ U meet Zi in a set of degZi distinct points contained in Zi \ Si. The distinctness of the
points implies, in particular, that the points are smooth points of the set Zi. Let D denote
the set of points of U for which this is not true. Choose an L ∈ U \ D. Taking a piecewise
smooth map of the unit circle γ : S1 → U \ D with γ(0) = γ(1) = L, we can trace the
homotopy paths of the points L ∩ Zi as we traverse around the unit circle. The mapping
from the starting points at γ(0) to the corresponding endpoints at γ(1) is a bijection of the
set L ∩ Zi. Since the elements of L ∩ Zi stay on the same irreducible component under the
continuation along γ, it follows that if a point a of L∩Zi is taken to a point b of L∩Zi, then
a, b are on the same irreducible component. The key observation of this paper is that it is
easy — and numerically stable — to generate many loops γ, and the associated bijections can
be used to decompose L∩Zi into “monodromy groupings.” These groupings are compatible
with the grouping according to irreducible components, which is the objective of our previous
papers [22, 20, 21].

It is an elementary fact that the converse is also true; that is, two points of L ∩ Zi are
on the same irreducible component of Zi only if they are connected by a monodromy action.
Hence, a complete irreducible decomposition is determined by a sufficient set of monodromy
loops. We do not know of any efficient algorithm that is guaranteed to find such a set of
loops, but we can test whether a given monodromy grouping is sufficient in this sense. If
not, one can generate another round of loops, or one can proceed to an approach like that in
[20, 21], which may be expensive, but which is guaranteed to terminate.

2.2 An Illustrative Example

For example, let us take as system one equation f(x, y) = xy − 1 and slice it with L =
x + y − t = 0, where t is some parameter. Then, for all t 6= ±2, the system

{

xy − 1 = 0
x + y − t = 0

(1)

has two solutions (x1(t), y1(t)) and (x2(t), y2(t)):

(

x1(t) =
t

2
+

1

2

√
t2 − 4, y1(t) =

t

2
− 1

2

√
t2 − 4

)

(2)

and
(

x2(t) =
t

2
− 1

2

√
t2 − 4, y2(t) =
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+

1

2

√
t2 − 4

)
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For t = ±2 the two solutions coincide.

To illustrate a monodromy action, we choose a parameterized closed loop t = 2(1 + eiθ),
which starts and ends at t = 4 as θ takes real values going from 0 to 2π. This loop does not
contain either of the double roots, and so it qualifies as a monodromy loop. Substitution of
the parameterization for t into Eq.(2) gives, after some simplification,

x1(t) = (1 + eiθ) + eiθ/2
√

2 + eiθ. (4)

For continuity, the square root in this expression is taken to lie always in the right half of the
complex plane, while eiθ/2 goes from 1 to −1 as θ goes from 0 to 2π. The other expressions
in Eqs.(2,3) follow a similar pattern, and as a consequence we see that after one trip around
the loop, the first solution (x1(θ), y1(θ)) has moved to the second solution (x2(θ), y2(θ)), and
vice versa. This shows that the two solutions lie on the same connected component.

2.3 The Decomposition Algorithm

Suppose that f is a polynomial system that has an i-dimensional solution set Zi = ∪j∈Ii
Zij ⊂

CN , where the Zij are the irreducible components of dimension i. We follow the convention
of letting L stand for both a system of i linear equations of rank i on CN and for the (N − i)-
dimensional linear subspace of solutions of L on CN . Let us pick two such subspaces, L0

and L1, at random, and suppose that we have the set of solution points W := Zi ∩ L0.
(These are the “witness points” for dimension i as described in [20].) With probability one,
deg(Zi) = #(Zi∩L0) = #(Zi∩L1). For general subspaces Lj and Lk, we define the homotopy

Hjkλ(x(t), t) = λ(1− t)

(

f

Lk

)

+ t

(

f

Lj

)

= 0, λ ∈ C, t ∈ [0, 1]. (5)

For generic λ, the solution set to Hjkλ(x(t), t) = 0 on Zi consists of exactly deg(Zi) paths x(t)
starting at points of Zi ∩Lj and ending at points of Zi ∩Lk as t goes from 1 to 0. This gives
a bijection from Zi ∩Lj to Zi ∩Lk. A bijection mapping of W onto itself can be constructed
by concatenating two or more such homotopy mappings, such as H01λ1

(x(t), t) = 0 and
H10λ2

(x(t), t) = 0. (If λ1 6= λ2, the forward and return paths are not identical, and the
bijection is not necessarily the identity mapping.) In general, we can concatenate any number
of such homotopies, returning at the end to the same Zi∩Lj from which we start, to generate
additional bijections.

There are many ways one could choose to set up bijections using homotopies. We choose
to proceed as follows. We start with Wi := Zi ∩ L0 given. For simplicity, we refer to
Wi as W . At stage k, we pick a new Lk and λ0k at random and compute the homotopy
paths for H0kλ0k

(x(t), t) = 0, getting the ordered list of solutions Xk := Zi ∩ Lk and the
mapping kh0 : W → Xk. (Here and below, the left and right subscripts of kh0 indicate,
respectively, the output and input spaces.) Then, choosing new random constants λkj, we
compute k homotopy paths Hkjλkj

(x(t), t) = 0, for j = 0, . . . , k − 1, thereby obtaining
mappings jhk : Xk → Xj. Altogether, we have k new bijections being maps from W to itself,
namely, T0,k,0 := 0hk ◦ kh0 and T0,k,j,0 := 0hj ◦ jhk ◦ kh0, for j = 1, . . . , k− 1. The Lk for k 6= 0
do not have to be distinct, but we find that the algorithm is more robust if we choose each
one independently.
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We accumulate the monodromy groupings from the individual bijections as follows. Begin
with a partition in which each point inW assigned to its own subset. For a bijection generated
as above, check if any point is mapped to a point from a different subset. If so, a new partition
is formed by joining the two subsets into one. The partition is updated by each subsequent
bijection in a similar manner.

A basic version of an implementation of this idea is given below in Algorithm Mon-

odromyGrouping. The subroutine HomotopyMap uses the homotopy (5) to determine
mappings khj as described above and procedure Partition forms a new partition from a
previous one according to any connections between subsets implied by the associated bijec-
tions. It may be that a newly computed bijection does not find any new connections so
that the partitioning is unchanged. We call this a “stable” iteration. If the partitioning
achieves a complete irreducible decomposition, then all further iterations must be stable,
but a stable iteration does not imply that the irreducible decomposition is in hand: it may
just be that the random constants chosen in the homotopies are not fortuitous. Therefore,
a termination condition S, an integer, is specified, such that MonodromyGrouping ter-
minates when S consecutive stable iterations are computed. The larger S is, the longer the
algorithm will persist in the face of fruitless iterations. The algorithm must terminate in at
most (#(W )− 1)S iterations, since at least one connection must be found every S iterations
and after (#(W ) − 1) connections are made, the algorithm terminates with all points in a
single group. In practice, the algorithm generally terminates much sooner.

Algorithm 2.1 [P ] = MonodromyGrouping(f, L0,W, S)

Input: Polynomial system f on CN ;
Affine linear space L0 ⊂ CN of dimension N − i;
Generic points W of f on L0; Termination condition S.

Output: P is partition of W .

s := 0; [counter for stable iterations]
P := { {w} | w ∈ W }; [initial partition is finest one]
k := 0; [counter for forward paths]

loop
k := k + 1; [increment counter]
Lk := RandomLinear(N − i); [random (N − i)-space]

kh0 := HomotopyMap(f,W, L0, Lk); [paths from L0 to Lk]
j := 0; [counter for return paths]
while j < k do

jhk := HomotopyMap(f,W, Lk, Lj); [return paths]
if j = 0 [form bijection T from maps]
then T := 0hk ◦ kh0; [path 0 to k and back]
else T := 0hj ◦ jhk ◦ kh0; [path 0 to k and back via j]
end if;
P ′ := Partition(P, T ); [merge subsets connected by paths]
if #P ′ = #P [compare with previous partition]
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then s := s+ 1; [another stable iteration]
else s := 0; [reset stable iteration counter]

end if;
P := P ′; [update partition]
exit when ((s = S) or (#P = 1)); [termination condition]
j := j + 1; [increment counter]

end while;
end loop.

An additional output of MonodromyGrouping could be the list of samples on the
new random slices Lk used in the homotopy (5). This list can be used intermediately to
determine the linear span of the solution components. In case all components are linear, no
further computation of filtering polynomials is necessary.

To classify the generic points on solution sets of several different dimensions, we apply
MonodromyGrouping at each dimension. Before starting at each dimension, we filter out
points on higher dimensional components using the homotopy membership test proposed
in [21].

3 Further Processing and Validation

A basic operation in our approach to computing an irreducible decomposition is the determi-
nation of a filtering polynomial that vanishes on an irreducible component and whose degree
is equal to the degree of the component. In [20, 21], this was accomplished by sampling
a component via homotopy paths extending from a single solution point and successively
testing for higher and higher degrees for the filtering polynomial. The monodromy grouping
described in the previous section gives us two advantages in finding a filtering polynomial.
First, the number of points in a monodromy group is a lower bound on the degree of the ir-
reducible component. Second, we may sample the component via homotopy paths extending
from all of the points in the group. We will show in a sequel that by organizing these sample
points into a grid, we can use divided differences to more efficiently compute the interpolating
polynomial.

Assume that MonodromyGrouping gives a partition P of W into disjoint subsets
G1, . . . , Gm. We can construct a polynomial pj for each Gj, which would be a filtering
polynomial, if Gj ⊂ W is the set of degZij generic points of an irreducible component Zij of
Zi. By further sampling, we can check which, if any, of the pj are not filtering polynomials.
Since further processing is needed only for these groupings, we can assume by renaming that
we have

1. a set W of generic points of some set of i-dimensional irreducible components of f−1(0);

2. a partition P of W into disjoint subsets G1, . . . , Gm; and

3. polynomials qj of degree #(Gj) vanishing on Gj and a subset of samples from the
irreducible component Zij that contains Gj and satisfies degZij > #(Gj).
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Observe that if m = 2, we are done since the only possibility is that the irreducible
component Zi1 containing G1 must also contain G2, and has degree #(G1) + #(G2). So we
can assume m ≥ 3.

Order the groupings by size

#(G1) ≥ #(G2) ≥ . . . ≥ #(Gm).

Find the filtering polynomial p1 for the irreducible component Z1j containing G1. This can
be done by the technique of [20]. (In a sequel we will show how to take advantage of having
already produced q1.) Using the filtering polynomial p1, we can check which Gj lie on Zi1.
This lets us remove at least two of the Gj from consideration. We now repeat this procedure
each time decreasing m by at least two.

4 Numerical Conditioning: A Sensitivity Experiment

In this section, we have created some special systems to test the numerical behavior of our
algorithms. We examine how the monodromy grouping algorithm behaves on polynomials in
the neighborhood of a polynomial that factors.

Suppose we have a polynomial whose coefficients are very near to one that factors into
several components. This could correspond to two opposing scenarios: in one, the given
polynomial could be exact, and we hope to find that it does not factor, while in the other,
the polynomial is a numerical approximation to the nearby factorizable polynomial, and
we hope to find the approximate factorization. We wish to examine the behavior of the
monodromy grouping algorithm under such conditions.

To conduct our experiment, we generate three dense quartics in two variables with random
coefficients on the complex unit circle and multiplied them together to form a factorizable
polynomial of degree 12. This polynomial is then perturbed, adding a random complex
number of modulus ε to each coefficient. With mathematical exactness, none of the poly-
nomials factors for any positive ε. For ε = 10−i, i = 0, 1, . . . , 14, a collection of 15 test
polynomials is obtained. The test suite consisted of six such collections. The algorithm
MonodromyGrouping was applied to all polynomials in the test suite, with termination
condition S = 10. All calculations here were done with standard machine arithmetic (16
decimal places with double precision floating-point numbers). The results are summarized in
Table 1.

For the case of perturbations with ε = 1, we see from the top row of Table 1, that in all
six cases MonodromyGrouping found that all twelve roots belong to a single component;
that is, the polynomial does not factor. In contrast, for ε = 10−14, the polynomial was always
predicted to break up into three factors. As ε gets smaller, the test polynomial resembles more
and more a product, monodromy actions are harder to find and the algorithm terminates
without connecting the points into a single component.

This behavior of the algorithm is expected: for sufficiently small perturbations the test
polynomial is numerically indistinguishable from the nearby factorizable polynomial. For
different perturbations on different coefficients it is hard to quantify this effect precisely —
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ε c n c n c n c n c n c n

1.0E+00 1 4 1 3 1 3 1 3 1 3 1 5
1.0E–01 1 6 1 3 1 3 1 7 1 4 1 4
1.0E–02 1 7 1 3 1 3 1 9 1 14 1 5
1.0E–03 1 11 1 16 2 14 1 5 1 14 1 7
1.0E–04 2 19 2 13 1 11 3 12 2 13 3 15
1.0E–05 3 12 2 13 3 13 3 15 3 14 2 19
1.0E–06 3 15 2 21 3 13 3 12 3 14 3 13
1.0E–07 3 17 2 24 3 14 3 13 3 14 3 15
1.0E–08 3 16 3 14 2 13 3 15 3 15 3 13
1.0E–09 3 17 3 17 3 15 3 12 3 13 2 16
1.0E–10 3 14 3 13 3 16 3 14 3 15 3 16
1.0E–11 3 14 3 17 3 12 3 12 3 12 3 19
1.0E–12 3 13 3 16 3 13 3 14 2 25 3 14
1.0E–13 3 14 3 13 3 14 3 13 3 12 3 13
1.0E–14 3 13 3 18 3 14 3 14 3 12 3 12

Table 1: Six experiments on a perturbed product of three quartics, for various values ε of the
magnitude of the error. The column header “c” lists the number of components, while “n”
is the number of iterations needed to acquire this factorization.

we cannot really point out a clear threshold for ε. When the perturbations are numerical
artifacts, such as roundoff, it is useful to discover a nearby factored form.

5 Applications

The algorithms in this paper have been implemented as a separate module of PHCpack [23].
All computations where done on a dual processor Pentium III 800 Mhz Linux machine.

5.1 The Cyclic n-roots Problem

The cyclic n-roots problems is one of the most notorious benchmark systems for polynomial
system solvers, brought to the computer algebra community in [5]. The systems come from
an application involving Fourier transforms, see [1], [2], and [3]. R. Fröberg conjectured
(reported in [17]) that, if n has a quadratic divisor, then there are infinitely many solutions

and that, in case the number of solutions is finite, this number is
(2n− 2)!

(n− 1)!2
. U. Haagerup

showed in [11] that for n prime, the number of solutions is always finite and confirmed the
conjectured number of solutions.

In this section we confirm earlier results obtained in [4] (for n = 8) and in [10] (for
n = 9). Our former methods of [20] and [21] were limited to the reduced version (credited
to J. Canny [8]) of this problem. See [9] for polyhedral root counts. For n = 10 and n = 11,
all solutions are isolated and thus “easier” to solve numerically (see the companion web site
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to [23] with test examples for the solution to these problems). Note that G. Björck found
all distinct isolated 184,756 cyclic 11-roots (reported as unpublished result in [11]). Here we
report on how homotopy methods bridged the gap for this problem between n = 7 and n = 10.
Faster computers are needed for n = 12.

5.1.1 The Cyclic 8-roots Problem

Starting from the given list of generic points, the decomposition of the one dimensional
component of the cyclic 8-roots system [4] of degree 144 was achieved in 6m 24s 930ms user
CPU time. This took 21 iterations of the algorithm. The drop in cardinalities of the partition
went as follows:

144→ 102→ 70→ 63→ 33→ 30→ 29→ 18
→ 18→ 18→ 18→ 16→ · · · (6)

where the last ten iterations were stable. So the monodromy breakup predicted 16 compo-
nents: eight quadrics and eight curves of degree 16. This breakup was subsequently confirmed
with Newton interpolation. The numerical results of the certification by interpolating filtering
polynomials are presented in Table 2. The quadrics were computed with standard arithmetic,
while 32 decimal places were used for the 16-th degree polynomials. It took 41m 54s 780ms
user CPU time to complete the certification process.

The test points are samples used to determine the linear span of the component. In case
of the quadrics, we got four test points and with the 16 degree polynomials six test points
were used. Since only the magnitude of the residual is important, we list –16 instead of
3.254E–16.

5.1.2 The Cyclic 9-roots Problem

The cyclic 9-roots problem has a two dimensional solution component of degree 18. We found
this to break up into six components each of degree three. The cardinalities in the partition
reduce as follows:

18→ 18→ 14→ 11→ 6→ · · · (7)

where the last ten iterations were stable.

Achieving this breakup takes only 2m 32s 400ms. The approach of [20, 21] finishes in
about the same time. Table 3 displays the numerical results of the symbolic certification,
once with standard floating-point machine arithmetic and once with multi-precision floating
numbers of 32 decimal places long. This validation required 59s 250ms and 14m 56s 570ms for
the respective machine and multi-precision numbers. The results in the first half of Table 3
are somehow “lucky”: in many computed instances machine arithmetic did not lead to small
residuals. At the expense of a slowdown with a factor 15 we always get reliable results with
32 decimal places.

Polyhedral homotopies are required to exploit the sparse structure of the cyclic n-roots
problem. For n = 9, the program available with the paper [16] has been used to compute the
mixed volume of the polynomial system, sliced and embedded according to the techniques
of [19]. With the program of [16], it took 13m 4s 540ms to compute the mixed volume of
the embedded system. Tracing all 20,376 paths to solve a random coefficient start system
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d eps distance grid res test res

2 6.877E–16 3.680E+00 1.665E–16 –14,–14,–14,–14
2 1.113E–15 3.961E+00 4.663E–15 –14,–14,–14,–15
2 4.909E–16 6.719E+00 4.330E–15 –16,–16,–15,–14
2 5.532E–16 3.639E+00 5.801E–15 –14,–13,–14,–14
2 2.211E–15 5.456E+00 1.665E–15 –15,–15,–15,–15
2 1.717E–15 7.517E+00 5.551E–15 –15,–14,–14,–13
2 4.116E–16 4.129E+00 1.941E–16 –13,–14,–13,–14
2 7.944E–16 7.286E+00 2.442E–15 –15,–15,–15,–15
16 1.387E–27 1.718E+00 9.700E–21 –16,–24,–24,–24,–31,–16
16 2.584E–28 1.026E+00 2.200E–21 –17,–23,–15,–22,–23,–17
16 1.547E–28 1.026E+00 1.130E–21 –18,–18,–24,–21,–19,–15
16 1.199E–25 1.732E+00 5.000E–20 –28,–28,–23,–25,–28,–23
16 6.074E–27 1.734E+00 1.600E–20 –27,–26,–25,–29,–26,–24
16 1.201E–27 1.695E+00 2.700E–20 –29,–30,–17,–30,–23,–23
16 2.290E–28 1.053E+00 5.100E–21 –12,–20,–20,–21,–17,–16
16 3.399E–27 1.053E+00 1.100E–21 –25,–17,–19,–11,–15,–16

Table 2: Numerical results of the certification of cyclic 8-roots. The columns contain the
degree d, the maximal error (eps) on the samples in the grid, the minimal distance between
the samples, the largest value of the interpolating filter evaluated at all samples (grid res)
and at the test points (test res) used to compute the linear span of the component.

required with PHC 4h 4m 29s 730ms, and solving the embedded system to reach the 18 generic
witness points took an additional 4h 54m 53s 550ms. Thus, we see that the computation of
the decomposition by monodromy, even when using multiple precision in the validation, is
small compared to the overhead of computing the witness points.

5.2 Adjacent Minors of a General 2× (n + 1)-Matrix

In [6], it was shown that the number of components of the ideal of all adjacent 2 × 2-
minors of a general 2 × (n + 1)-matrix is radical, of degree 2n and that it breaks up into
Fn components, Fn being the nth Fibonacci number. We found this system an interesting
benchmark. See [12] for methods dedicated to binomial ideals. Table 4 illustrates the perfor-
mance of MonodromyGrouping on this class of systems. Compared to our earlier methods
in [20, 21], three more cases could be solved.

Results on the symbolic certification for the case n = 10 are presented here. There
are 20 components of degree less than or equal to five which were treated with standard
machine arithmetic, see Table 5. Note that in Table 5, there is no interpolating polynomial
constructed for d = 1, since in that case the linear span completely describes the component.
To interpolate the other 69 higher degree components 64 decimal places were used, see Table 6
and Table 7. This certification took 23h 56m 28s 850ms, and is thus a lot more expensive
than the prediction of the breakup 3h 6m 48s 750ms.
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d eps distance grid res test res

3 1.618E–11 2.310E+00 2.383E–11 –12,–10,–11,–11,–11
3 2.484E–11 2.335E+00 9.526E–11 –10,–11,–10,–11,–11
3 4.631E–11 1.837E+00 7.218E–11 –12,–12,–12,–11,–11
3 4.561E–11 1.818E+00 2.360E–09 –10,–9,–9,–9,–9
3 6.438E–11 2.597E+00 3.986E–10 –11,–12,–11,–12,–11
3 2.193E–11 1.515E+00 4.687E–11 –11,–8,–9,–9,–8

3 1.470E–26 2.103E+00 2.712E–26 –26,–26,–26,–26,–26
3 1.063E–26 2.812E+00 1.642E–24 –24,–25,–24,–25,–24
3 9.400E–27 1.972E+00 7.565E–27 –28,–29,–27,–27,–27
3 4.283E–27 2.363E+00 5.765E–26 –26,–26,–25,–25,–26
3 1.238E–26 2.158E+00 7.215E–25 –26,–26,–26,–26,–25
3 1.493E–26 2.243E+00 5.202E–26 –25,–27,–27,–25,–26

Table 3: Numerical results of the certification of cyclic 9-roots, first done with standard
floating-point arithmetic and in the second half of the table redone with 32 decimal places.
The columns contain the degree d, the maximal error (eps) on the samples in the grid, the
minimal distance between the samples, the largest value of the interpolating filter evaluated
at all samples (grid res) and at five test points (test res).

5.3 A Moving Stewart-Gough Platform

Stewart-Gough platforms are mechanical devices consisting of a rigid base and a rigid end-
plate, joined via six legs using ball joint connections. In motion simulators and other robotic
applications, the lengths of the legs are actuated under computer control to move the end-
plate with respect to the base. Generally, once the leg lengths are fixed, the entire structure
becomes rigid, but the same set of leg lengths may be compatible with multiple endplate
locations. The problem of determining all possible endplate locations given the leg lengths
has a long history. For generic choices of the mechanical parameters, the problem has forty
isolated solutions, a fact first established by continuation [18] and later proven analytically
[24, 13]. One of the more recent results [7] involved the demonstration (obtained by methods
of numerical homotopy continuation) that platforms exist that have forty real solutions.

For special choices of the parameters, a Stewart-Gough platform may have solution curves
or other higher dimensional solution components, instead of only isolated solutions. We have
tested a special case called “Griffis-Duffy type” by [14]. This mechanism has, besides 12
lines (which correspond to degenerate assemblies), a single solution curve of degree 28. Our
monodromy method confirmed this result by finding connections between all of the generic
points on that solution curve. Computing the 40 generic points with PHC took 1m 12s 480ms
cpu time. The drop in cardinalities in the partitions generated by MonodromyGrouping

went as follows
40→ 28→ 27→ 22→ 17→ 16→ 15→ 13→ · · · (8)

where the last 10 iterations were stable. It took only 33s 430ms to achieve this result. At
first glance, the result of degree 28 for the curve may appear to be in conflict with Husty
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n d c it User CPU time

3 8 3 15 3s 260ms
4 16 5 16 15s 670ms
5 32 8 17 43s 340ms
6 64 13 20 2m 19s 140ms
7 128 21 27 8m 47s 940ms
8 256 34 22 20m 20s 420ms
9 512 55 20 45m 44s 50ms

10 1024 89 35 3h 6m 48s 750ms
11 2048 144 24 6h 6m 27s 890ms

Table 4: Results of the monodromy breakup algorithm on the systems of all adjacent minors
of a general 2×(n+1)-matrix. The sum of the degrees d = 2n, c is the number of components,
“it” the number of iterations, and lastly the User CPU time.

and Karger, who claim that the curve is of degree 20. The conflict is resolved by noting
that the curve is degree 28 in the full space of rotation and translation (represented in
Study coordinates), but its degree falls to 20 when the curve is projected onto its rotational
component only.

Since the lines correspond to degenerate assemblies (validating a line requires only three
samples anyway), no further validation with interpolation is needed for this problem. This is
fortunate, because validation for high degree components can be expensive due to the number
of monomials that appear and the numerical sensitivity of high degree equations, forcing the
use of multi-precision arithmetic. If one were to compute an interpolating polynomial for
the case at hand (even though this is not necessary), one would find that a general polyno-
mial of degree 28 in two variables has 435 monomials. Different methods to construct the
interpolating polynomial require between 435 (direct approach with linear system) and 812
(Newton interpolation) samples. While these numbers are modest for homotopies on modern
machines, the use of software driven multi-precision arithmetic imposed by the relatively high
degree will constitute a serious speed bump.

This is illustrated in Table 8, which displays the results of the validation for the curve of
degree 28, executed with 64 decimal places as working precision. The Newton form of the
interpolating polynomial constructed with generalized divided differences required 812 sam-
ples. Creating the grid of 812 samples took 39m 53s 960ms, which is of the same magnitude
as 37m 47s 920ms, which is the time it took to evaluate all 812 samples in that high degree
interpolating polynomial. While other operations (finding linear span of the component,
construction Newton form, and evaluating at extra test samples) were relatively small, the
total time to get the results in Table 8 was 1h 19m 13s 110ms.

6 Conclusions

Using the monodromy we presented an algorithm to predict the breakup of a positive di-
mensional component into irreducible ones. This predicted breakup is then subsequently
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d eps distance grid res test res

4 1.343E–14 9.002E–01 7.730E–14 –13,–16,–14,–12,–15
3 3.068E–14 7.500E–01 6.772E–13 –12,–10,–9,–10,-12
4 4.646E–14 7.567E–01 5.144E–13 –11,–9,–12,–13,–12
3 1.856E–12 5.789E–01 1.778E–13 –14,–15,–11,–12,–14
4 1.496E–14 6.836E–01 8.475E–11 –11,–10,–9,–6,–7
4 5.168E–14 1.378E+00 1.776E–13 –10,–9,–14,–13,–11
4 2.457E–14 5.508E–01 8.704E–14 –15,–12,–12,–15,–14
4 6.305E–15 3.400E–01 3.708E–14 –14,–15,–10,–12,–10
5 8.814E–14 5.100E–01 1.819E–10 –12,–13,–12,–13,–13,–13,–12
4 7.439E–15 1.122E+00 7.849E–14 –13,–14,–15,–15,–15
3 1.940E–15 6.817E–01 1.035E–13 –11,–12,–12,–13,–12
5 5.953E–12 1.145E+00 2.612E–11 –3,–9,–10,–6,–2,–11,–9
3 1.103E–13 1.028E+00 6.972E–14 –11,–11,–12,–14,–12
1 – – – –
3 1.446E–14 1.327E+00 1.730E–12 –11,–10,–9,–11,–10
4 4.056E–14 1.357E+00 1.674E–13 –14,–10,–14,–12,–11
4 1.095E–14 5.225E–01 3.908E–14 –11,–12,–9,–12,–11
5 3.672E–14 1.780E+00 5.586E–13 –5,–8,–3,–8,–13,–9,–11
5 6.821E–12 9.090E–01 2.274E–11 –9,–13,–8,–9,–13,–6,–10
4 1.828E–14 7.402E–01 8.527E–14 –12,–14,–14,–13,–14

Table 5: Numerical results of the certification of the system of adjacent minors, for n = 10,
for components of degree d ≤ 5. The columns furthermore contain the maximal error (eps)
on the samples in the grid, the minimal distance between the samples, the largest value of
the interpolating filter evaluated at all samples (grid res) and at the test points (test res)
used to compute the linear span of the component.

validated by computing interpolating polynomials.

Compared to our previous approaches described in [20, 21], we point out several advan-
tages. First of all, in almost all cases, standard floating-point machine arithmetic suffices
to execute the algorithm MonodromyGrouping. This has put more difficult applications
within our reach. Related to this issue is the experience that the running times for this
breakup remain of the same order of magnitude regardless of the geometry of the breakup.
For example, whether a curve of degree forty breaks up in two, or in twenty pieces does
not cause major fluctuations in the needed running time. By contrast, the symbolic vali-
dation of two curves of degree 20 is much more expensive than the interpolation of twenty
quadrics. Thirdly, with the predicted breakup we can set up a structured grid of samples
and apply generalized divided differences [15] to construct the polynomial equations that cut
out the components with Newton interpolation. We observed an improved conditioning of
the interpolation problem and will elaborate on this in a sequel.
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d eps distance grid res test res

12 8.361E–57 1.007E–01 1.085E–42 –45,–44,–44,–41,–44,–43,–44,–43,–39
20 9.967E–57 2.416E–01 4.340E–45 –56,–58,–41,–49,–45,–48,–45,–37,–53
8 9.344E–57 4.516E–01 5.000E–64 –61,–57,–63,–63,–61,–53,–63
12 4.368E–55 1.071E+00 6.300E–54 –51,–52,–50,–50,–49,–52,–51,–50,–49
8 9.911E–57 4.453E–01 7.600E–64 –59,–55,–53,–54,–57,–60,–61
8 6.377E–57 3.961E–01 4.346E–54 –57,–55,–54,–55,–57,–60,–55
15 8.365E–57 5.533E–01 9.200E–55 –45,–41,–26,–55,–60,–57,–54,–54,–56
15 9.385E–57 5.574E–01 4.016E–54 –47,–50,–46,–42,–51,–45,–46,–49,–46
24 9.712E–57 1.490E–01 4.700E–44 –57,–38,–6,–31,–20,–22,–51,–48,–42
21 4.148E–59 2.994E–01 3.900E-47 –22,–37,–45,–46,–39,–43,–45,–49,–33,–51,–41
16 9.370E–57 6.769E–01 3.901E–49 –53,–51,–56,–36,–36,–53,–36
8 6.826E–57 5.912E–01 1.110E–56 –50,–50,–50,–51,–52,–52,–52
16 1.089E–58 2.743E–01 5.270E–46 –42,–54,–37,–50,–56,–52,–53,–49,–38,–58,–42
20 9.991E–57 2.057E–01 1.920E–47 –45,–42,–59,–55,–43,–58,–46,–46,–49
12 9.229E–59 7.635E–01 1.623E–44 –37,–38,–37,–38,–37,–39,–37
16 8.607E–57 2.514E–01 4.800E–51 –62,–54,–49,–65,–44,–67,–65,–46,–57
16 3.796E–59 1.796E–01 2.620E–49 –58,–53,–54,–53,–49,–29,–53,–45,–39,,–22,–57
24 4.618E–57 4.110E–01 6.660E–36 –30,–31,–29,–36,–34,–26,–32,–27,–28
24 2.141E–59 2.436E–01 2.894E–42 –51,–57,–56,–51,–58,–60,–43,–52,–58,–55,–58
8 9.755E–57 7.382E–01 7.000E–58 –59,–54,–58,–57,–56,–55,–55
9 9.659E–57 5.337E–01 1.020E–58 –59,–54,–49,–57,–57,–52,–53
16 5.846E–59 7.444E–01 2.500E–48 –22,–45,–38,–28,–40,–35,–50,–38,–44
25 9.358E–57 1.996E–01 1.160E–47 –47,–9,–9,–25,–56,–39,–26,–54,–56,–56,–26
8 9.990E–57 4.346E–01 1.600E–57 –59,–61,–56,–61,–57,–54,–62
12 9.564E–57 2.609E–01 4.654E–48 –47,–51,–50,–50,–49,–48,–50
11 1.059E–57 7.889E–01 7.100E–49 –50,–49,–39,–54,–47,–53,–52,–48,–51,–54,–46,–54,–40
24 9.732E–57 3.537E–01 3.800E–46 –54,–19,–52,–42,–54,–38,–22,–20,–50
9 9.872E–57 2.681E–01 1.500E–57 –58,–60,–55,–59,–52,–58,–60
12 9.526E–57 3.511E–01 1.690E–57 –60,–56,–59,–55,–60,–49,–60
12 9.421E–57 6.753E–01 1.938E–53 –60,–56,–54,–49,–47,–60,–61,–55,–59
12 9.432E–57 3.142E–01 2.200E–57 –48,–45,–32,–60,–53,–47,–61
8 9.179E–57 6.102E–01 1.300E–61 –62,–57,–57,–60,–50,–60,–59
15 2.898E–59 4.977E–01 3.100E–51 –48,–44,–47,–43,–50,–49,–43,–45,–49
24 9.766E–57 2.674E–01 5.000E–41 –47,–39,–23,–36,–44,–47,–51,–39,–29
15 8.335E–57 2.226E–01 9.200E–52 –56,–54,–58,–59,–54,–53,–49,–55,–50

Table 6: Numerical results of the certification of the system of adjacent minors, for n = 10,
for components of degree d ≤ 5, part A. The columns furthermore contain the maximal error
(eps) on the samples in the grid, the minimal distance between the samples, the largest value
of the interpolating filter evaluated at all samples (grid res) and at the test points (test res)
used to compute the linear span of the component.
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d eps distance grid res test res

12 9.840E–57 5.607E–01 1.111E–56 –55,–39,–41,–42,–49,–53,–41
24 2.029E–56 4.163E–01 6.310E–17 –24,–29,–21,–23,–20,–27,–27,–30,–18
12 9.009E–57 4.460E–01 7.500E–54 –40,–51,–49,–50,–55,–53,–44
27 9.903E–57 2.949E–01 1.690E–33 –30,–24,–30,–19,–47,–34,–41,–34,–40
9 3.759E–59 9.179E–01 7.600E–60 –54,–51,–58,–50,–54,–59,–55,–50,–49,–50,–48
8 9.172E–60 3.264E–01 3.955E–58 –53,–48,–52,–52,–55,–53,–50
16 9.685E–57 3.339E–01 1.200E–52 –56,–57,–55,–54,–44,–46,–51,–53,–53
7 1.553E–58 1.340E+00 1.990E–54 –56,–53,–58,–57,–53,–57,–58,–55,–56
12 9.030E–57 9.606E–01 1.000E–54 –52,–42,–54,–60,–45,–56,–59,–52,–53
15 9.849E–57 1.732E–01 3.973E–55 –40,–59,–52,–59,–59,–55,–54,–43,–33
9 1.678E–58 7.574E–01 2.700E–59 –53,–47,–53,–55,–53,–56,–52,–50,–51,–44,–53
12 9.657E–57 2.657E–01 6.000E–57 –38,–58,–55,–53,–62,–49,–50
12 9.948E–57 6.428E–01 1.717E–53 –49,–58,–50,–51,–46,–51,–54
9 9.934E–57 4.570E–01 3.500E–58 –56,–56,–56,–57,–57,–57,–53
12 9.886E–57 1.096E+00 1.803E–53 –53,–42,–52,–31,–56,–27,–54
8 9.920E–57 4.307E–01 2.700E–61 –61,–54,–59,–60,–59,–59,–58
21 4.976E–57 2.592E–01 1.486E–49 –45,–46,–43,–43,–45,–46,–41,–49,–42,–49,–49
9 8.021E–57 8.084E–01 2.200E–57 –42,–56,–52,–57,–52,–57,–55
12 1.824E–57 7.706E–01 9.940E–50 –44,–49,–47,–43,–44,–46,–48,–53,–47
7 2.164E–57 6.063E–01 3.500E–59 –54,–51,–50,–47,–54,–57,–58,–52,–50
7 5.919E–59 3.709E–01 1.180E–57 –55,–55,–53,–51,–49,–55,–55,–51,–55
24 4.255E–58 1.023E–01 6.830E–26 –32,–36,–25,–29,–32,–31,–36,–28,–32,–39,–27
9 1.114E–58 5.179E–01 1.087E–47 –43,–40,–43,–41,–43,–42,–43
12 8.536E–59 4.588E–01 5.020E–47 –50,–42,–37,–47,–41,–39,–43,–45,–42
12 7.665E–57 5.159E–01 3.828E–57 –56,–49,–58,–54,–48,–50,–53
8 8.207E–57 1.138E–01 4.100E–59 –62,–58,–58,–62,–63,–62,–55
12 9.968E–57 3.490E–01 2.000E–50 –54,–50,–46,–46,–50,–47,–44
9 2.355E–57 8.551E–02 2.000E–56 –49,–53,–51,–56,–50,–52,–54
24 9.932E–57 1.234E–01 3.166E–13 –48,–46,–47,–47,–40,–41,–41,–48,–41
12 9.167E–57 4.959E–01 1.139E–50 –48,–50,–44,–48,–46,–33,–44
8 1.498E–58 7.819E–01 6.425E–53 –57,–55,–56,–54,–57,–55,–55
8 9.153E–57 8.786E–01 1.190E–56 –53,–55,–54,–59,–48,–54,–55
15 4.202E–58 4.008E–01 1.971E–37 –23,–21,–23,–23,–20,–21,–23,–23,–22
20 9.680E–57 3.669E–01 1.000E–43 –55,–30,–39,–38,–40,–40,–47,–43,–34

Table 7: Numerical results of the certification of the system of adjacent minors, for n = 10,
for components of degree d ≤ 5, part B. The columns furthermore contain the maximal error
(eps) on the samples in the grid, the minimal distance between the samples, the largest value
of the interpolating filter evaluated at all samples (grid res) and at the test points (test res)
used to compute the linear span of the component.

18



d eps distance grid res test res

28 1.316E-59 2.395E-01 3.800E-37 –49,–44,–48,–56,–40,–41,–20,–40,–57

Table 8: Numerical results of the certification of the system of a moving Stewart-Gough
platform, done with 64 decimal places. The columns contain the maximal error (eps) on
the samples in the grid, the minimal distance between the samples, the largest value of the
interpolating filter evaluated at all samples (grid res) and at the test points (test res) used
to compute the linear span of the component.
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