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Computing Dynamic Output Feedback Laws

Jan Verschelde and Yusong Wang

Abstract— The pole placement problem asks to find laws to feed the
output of a plant governed by a linear system of differential equations
back to the input of the plant so that the resulting closed-loop system has
a desired set of eigenvalues. Converting this problem into a question of
enumerative geometry, efficient numerical homotopy algorithms to solve
this problem for general Multi-Input-Multi-Output (MIMO) systems have
been proposed recently. Despite the wider application range of dynamic
feedback laws, the realization of the output of the numerical homotopies
as a machine to control the plant in the time domain has not been
addressed before. In this paper we present symbolic-numeric algorithms
to turn the solution to the question of enumerative geometry into a useful
control feedback machine. We report on numerical experiments with our
publicly available software PHCpack and illustrate its application on
various control problems from the literature.
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I. INTRODUCTION

Given a linear system of differential equations and a list of
eigenvalues, the pole placement problem asks to find laws to feed
the output back to the input so that the resulting closed-loop system
has the same eigenvalues as the given list. While executing a static
feedback law corresponds to a simple matrix-vector multiplication, a
dynamic compensator has several internal states.

The theoretical solution of this problem was found in the Schubert
calculus, see [3], [4] for the static, and [25], [26], [27] for dynamic
compensators. Because of its importance to practical applications,
the development of algorithms for this problem was stated as an
open problem [29] (see also [5]). See [18] for the relation with
inverse eigenvalue and matrix extension problems. The first homotopy
algorithms defining a numerical Schubert calculus were proposed
in [14]. The Pieri homotopy algorithms of [14] were improved and
generalized to dynamic feedback in [15]. In [20], the numerical
performance of these homotopies for static feedback was improved.

In [36] we applied static output feedback to use pole placement
to keep a satellite in orbit. In this sequel to [36], we consider the
application of dynamic feedback laws to this and other applications.
As expected, with the more general dynamic feedback laws we
can cover a wider range of applications, and turn overdetermined
problems into fully determined or underdetermined problems. We
define this conversion in the next section.

The motivation for this paper is the realization of dynamic compen-
sators, computed in the frequency domain. By realization we mean
the description of the controllers in the time domain. Our data is
approximate, i.e.: known only with limited accuracy and subject
to roundoff. While realization algorithms are standard (e.g., [1]
and [16]), reports on numerical implementations of algorithms which
manipulate polynomial matrices are scarce. We found only one
numerical study [12] on a commercial implementation, which leaves
a numerical Smith normal form as an open question. Nevertheless,
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the Smith normal form is important for a minimal realization of the
transfer function of Multi-Input-Multi-Output (MIMO) systems.

In section three we describe how to compute the greatest common
divisor (GCD) of two polynomials with approximate coefficients, as
this is important in a numerical Smith normal form. As we experi-
enced, the naive application of the Euclidean algorithm can fail. That
many algorithms to solve problems with exact data are numerically
unstable is a growing concern in computer algebra, and has led to
hybrid symbolic-numeric computation [6]. The approximate GCD
was studied in [2], [8], [13], [17], [24], [38] and [39].

We consider the input polynomials not symbolically as polynomi-
als with approximate coefficients, but geometrically as polynomials
defined by approximate complex roots. The idea to computing the
GCD by matching common approximate roots (within a certain
tolerance) can be found in [24]. Compared to alternative methods for
approximate GCDs, this approach works well for input polynomials
with multiple zeros. We apply the method of Weierstrass (also called
the method of Durand-Kerner, see [23]) to find roots of polynomials.
To solve the extended GCD problem, we apply Newton interpolation.

In section four we describe an extension to the publicly available
software package PHCpack [35] before illustrating its application.

Il. PROBLEM STATEMENT

The algorithmic framework is defined by the transitions between
the time and the frequency domain. In the time domain, the control
of a plant with a dynamic feedback law is shown in Figure 1.
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Fig. 1. Control of an m-input and p-output plant by a gth order dynamic
compensator in the time domain.

The machine we want to control is given by three matrices
(A, B, C), and defines a system of first-order differential equations
in the time domain. The input of the Pieri homotopies is sampled
in the frequency domain. So to apply these homotopies, we need
to translate the input from the time to the frequency domain and to
realize the output as a tuple of matrices. Table | defines the three
stages in the data flow, visualized in Figure 2

(1)  With plain Tinear algebra we compute the input for the Pieri
homotopies, sampling points from the plant we wish to control.
(2)  Pieri homotopies compute solution maps of degree g,
which are transformed into m-by-p polynomial matrices.
(3)  Given the transfer function of the compensator, we realize
the compensator by a tuple of four matrices (F, G, H, K).

TABLE |
TRANSITIONSIN APPLYING THE PIERI HOMOTOPIES.

Our problem is thus to process the output of the Pieri homotopy
algorithms and to apply realization algorithms to the numerical
output. In [15], the following equivalence relation was derived:

I, 0 A+BKC BH 1\ _
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Equation (1) is the characteristic equation of the closed-loop system.
Via elementary row and column operations, this equation can be
rewritten into (2), which separates the given data (A, B, C) from the
unknown (F, G, H, K). Equation (2) shows the geometric problem:
we are looking for curves which produce p-planes in C™*? which
meet given m-planes sampled at prescribed values for s. In Figure 2
we show the transition between the time and the frequency domain.

x = Ax + Bu z=Fz+ Gy
y=0Cx u=Hz+ Ky
l(l) T(3)
C(sI, — A)™'B ) I,
I, - H(sl,— F)"'G+K

Fig. 2. Transitions between time and frequency domain, as defined in Table I.

When controlling a machine with n internal states with a controller
using q internal states, we can place n + ¢ poles. But the dimension
of the geometric problem is mp + g(m + p). For generic input data,
the degree of the solution set to this problem depends solely on m,
p, and ¢ and is denoted by d(m, p, q), see [27]. Depending on values
for n, m, p, and ¢, we distinguish three cases:

1) n 4+ g < mp + q(m + p) underdetermined: For a generic ma-
chine, there is a set of feedback laws. The set has dimension
mp+q(m+p) —n—q, and has degree d(m, p, q), i.e: for a generic
choice of the parameters, we have d(m, p, q) complex feedback laws.

2) n+q = mp + q(m + p) dimension zero: For a generic ma-
chine, there are exactly d(m,p,q) complex feedback laws. Every
feedback law places all n + g poles at the desired locations. It may
be that no feedback law has all its coefficients real, see [9], [10].

3) n+q > mp + q(m + p) overdetermined: For a generic ma-
chine, there are no feedback laws which place all n + g poles at
the desired locations.

The numbers m, p, n are fixed, given on input. We can choose ¢
to arrive always in a favorable condition and get feedback laws, as
q(m + p) grows faster than ¢. For example, a static feedback law
may not exists when n > mp, but we can find a large enough ¢ and
compute dynamic feedback laws.

Presently, we resolve the undetermined case by choosing addi-
tional input planes to the geometric problem. Recent advances with
homotopies (see e.g. [30], [31], [32], [33]) allow to treat positive
dimensional solution sets.

I1l. SymBoLIC-NUMERIC CALCULATIONS
To execute stage (2) in Figure 2, we need to calculate the Smith
normal form to compute the inverse of a matrix with polynomial
entries. More precisely, the output of the homotopies is an (m + p)-
by-p matrix of polynomials in s:

Rl ®

where U(s) is a p-by-p matrix and V' (s) is an m-by-p matrix of
polynomials in s, satisfies

U(s) C(sl,—A)™'B ]

e | {42 . =0, @

for the given poles. We can right multiply (4) by

U= ') 0
709 2] ©)
The result of this multiplication is
I, C(sl,—A)™'B T

det [ V(S)U_I(S) I, =0. (6)

Since the multiplier matrix (5) is of full rank, its determinant is
nonzero and the original intersection condition remains. This mul-
tiplication does not affect the input conditions, which are at the right
part of (2). By comparing (2) with (6), we can apply the realization
algorithms to extract (F, G, H, K) from the matrix V(s)U~*(s).
In the next subsection we show how the calculation of a Smith
normal form requires the calculation of greatest common divisor.

A. Numerical Smith Normal Form

For any n-by-m matrix A(s) whose entries are polynomials in s,
there exist a unimodular matrices P(s) and Q(s) so that

P(s)A(s)Q(s) = D(s), @

where D(s) is an n-by-m matrix which has only nonzero polynomi-
als in s on its diagonal. Furthermore, denoting the ith element on the
diagonal of D(s) by D;, we have that D; divides D;11. The matrix
D(s) is called the Smith normal form of A(s). Since unimodular
matrices are invertible, we can rewrite A(s) as

A(s) = P7(s)D()Q™ ' (s), ®)
which reveals the following expression for the inverse of A(s):
A7 (s) = Q(s)D " (s)P(s), ©)

which of course only exists if D(s) has full rank. We get the inverse
D™ 1(s) by inverting every entry on the diagonal of D(s).

The Smith normal form can be computed by solving the extended
GCD problem. In particular, we wish to find k(s) and I(s) satisfying

d(s) = GCD(a(s),b(s)) = k(s)a(s) + L(s)b(s). (10)
The calculation of the GCD is used to reduce columns
k(s) 1(s) a(s) | _ [ d(s)
[ ol ] e =1 ] )

or to reduce rows

k(s) _%]
a(s) b(s =|{d(s) 0. 12
[ a(s) ()][l(s) 3§:§ [ds) 0] @@

The matrices used in the reductions are unimodular.
Collecting the column reductions in P(s) and the row reductions
in Q(s), we reduce A(s) to a diagonal form D(s).

B. Numerical Greatest Common Divisor

On input are two polynomials a(s) and b(s) in s with approximate
complex coefficients. Let d(s) = GCD(a(s), b(s)), deg(d(s)) =r.

When applying the algorithm taught in elementary school to
compute the GCD of two natural numbers, we repeatedly divide.
This repetitive division is numerically unstable for polynomials as
the subtraction of polynomials with coefficients of equal magnitude
may lead to a dramatic loss of accuracy. Our approach hinges on
two operations: root finding and interpolation, for which numerically
stable algorithms are well known.

For a given tolerance ¢ > 0, we define the numerical GCD of
a(s) and b(s) as the monic polynomial whose roots are common
to a(s) and b(s) within the given tolerance e. More precisely, if
a(a;) = 0, for ¢ = 1,2,...,deg(a(s)) and b(B;) = 0, for ¢+ =
1,2,...,deg(b(s)), we can rearrange the indices of the roots so that
the » common roots appear first. Then we can write:

r deg(a(s)) deg(a(s))
a(s)=[J(s—) [] G—ai)=di(s) [] (s—a) (13)
i=1 i=r+1 i=r+1
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and
deg(b(s)) deg(b(s))
b(s) = H s=8:) [[ (s=-8B)=da(s) [ (s—8) (19
i=r+1 i=r+1
where |a; — Bi| <€ fori=1,2,...,r, and |a; — B;| > ¢, for all

1 and j with index higher than r. The polynomials d:(s) and d2(s)
are numerical approximations for d(s) = GCD(a(s), b(s)).

Recall we want to find £(s) and I(s) defined in (10). We determine
k(s) by interpolation at those roots of b(s) not shared by a(s)

replacing in (10) s by 3;, fori =r +1,...,deg(b(s)):
d(B:) = k(Bi)a(Bi) or k(B:) = Zgg:;, fori >r. (15)

Note that as ¢ > r: a(8;) # 0. The interpolation conditions in (15)
determine k(s) uniquely as a polynomial of degree deg(b(s))—r—1.
We determine I(s) by interpolation at those roots of a(s) not shared

by b(s) replacing in (10) s by «;, for i =r+1,...,deg(a(s)):
d(e) = l(ai)b(ai) or I(as) = iEg; fori>r.  (16)

Note that as ¢ > r: b(a;) # 0. The interpolation conditions in (16)
determine I(s) uniquely as a polynomial of degree deg(a(s)) —r—1.

C. Numerical Experiments

The algorithms described above have been implemented in C.
We did practical comparisons between our new algorithm and the
elementary approach, for random and specific input data.

When the tolerance of 102 is used to decide whether two numbers
are equal, the elementary school algorithm runs much faster than
the new one, but the new algorithm is numerically stable when the
degrees of the input polynomials are less than 30 and the degree of the
GCD is less than 15. Running 1000 tests on polynomials of degree 30
with a common divisor of degree 15 with random coefficients, we
see that the elementary school algorithm reports only in 88% of the
cases a correct answer, whereas our new algorithm never fails.

It is easy to find polynomials for which the elementary method
fails completely. This happens when the higher degree coefficients
of the two input polynomials are very near to each other, say within
a distance of 1075 from each other. In such case, our new approach
shows the same numerical stability as in the random case.

Concerning the speed, the time needed of the realization is negli-
gible compared to calculating the feedback laws with homotopies.

IV. SOFTWARE

The dynamic feedback laws were calculated with the aid of
PHCpack [35]. We developed an interface around the Ada code
of PHCpack to allow the homotopies in PHCpack to be called by
routines written in C. Also the realization is done with C code,
publicly available since release 2.2 of PHCpack. MATLAB is used
to to verify and to analyze the conditioning of the eigenvalues.

The organization of the software is outlined in Figure 3, the arrows
indicate the order of function calls in the computation and realization
of the dynamic feedback laws.

V. APPLICATIONS

Input and output data comes with the software and is also at
http://www.math.uic.edu/~jan/feedback data.htm.
To verify the results, we calculate the condition number (see [11,
page 323]) for the eigenvalue \; by
1
|y’
where vectors x; and y; denote the unit right and left eigenvectors
of the closed-loop system.

1=1,2,...,n+q, a7

( ts_feedback (C) )

}
pieri_solver (Ada)
}

( pieri_sols (C) )

C realization (C) )
b
C test_results (C) J

(verify (MATLAB) )

Fig. 3. The software consists of a sequence of calls, from C to Ada, and
from Ada to C functions, followed by realization and verification.

A. Satellite Trajectory Control

We want output feedback laws to keep a satellite in orbit (see [7],
[16]). In [36], we found two real static output feedback laws. To test
our method, we compute dynamic feedback laws.

For this satellite example, we have n = 4, m = p = 2, which is
dimension zero for the static case. When ¢ = 1, the system become
underdetermined since n + ¢ = 5 < mp + g(m + p) = 8 and
there are three degrees of freedom. We choose the eigenvalues as
( jﬁ —2-i _5 —7,-3.0,—0.1068, —0.7834, —0.9582). The last
three of elgenvalues are randomly selected. We f|nd two real feedback
laws and six complex feedback laws.

Substituting the result into the closed-loop system, the relative dif-
ference between the computed and the given eigenvalues is bounded
by 10™!' and the order of condition numbers is at most 103,
calculated with (17). The total CPU time is 2.32 seconds on a 2.4GHz
workstation running Linux.

B. Numerical Examples

We report on two numerical examples in [28] [37].

Numeric Example A: The example in [28] illustrates the following
situation: when a system is overdetermined for static output feedback
(n > mp, ¢ = 0), for which no feedback laws can be found at the
desired poles, we can choose a ¢ to convert it into a case (n + q <
mp + g(m + p)), for which we can find feedback laws.

Here, m = p = 2, n = 6, therefore n > mp which is
overdetermined for static case. We will choose a ¢ to make the
system underdetermined. For ¢ = 1, n+¢q =7 < mp + g(m +
p) = 8, there is one degree of freedom. We can easily get some
dynamic compensators of degree ¢ = 1 to control the system. For a
choice (—0.1,-1.5,—-0.9, —0.7, —6.0, —3.5, —8.0) of 7 eigenvalues
and one additional pole —0.1053 generated at random, the relative
difference between the computed and the given eigenvalues of the
closed-loop system is bounded by 10~°. We find 8 solutions, of which
4 are real (sometimes 6 are real, depending on the additional input
plane which are randomly generated). The order of the condition
number computed with (17) is no more than 10® for all of the
given eigenvalues. The total CPU time is around 3 seconds on the
workstation mentioned above.

Numeric Example B: The second example can be found in [37,
Example 3.7], with n =8 and m = p = 3.

This system is underdetermined for static output feedback
(n < mp,q = 0). When the given poles are (—0.8090 +
0.5878i,—0.9511 — 0.30907, —0.3090 — 0.9511¢,—0.3090 +
0.95114, —0.9511 + 0.3090%, —0.8090 — 0.5878i, —0.5878 +
0.80907, —0.5878 — 0.80907, —0.1883), in which the first 8 are
picked on the unit circle and the last one is a random number, we
find 42 feedback laws and 4 of them are real. The relative difference
between the computed and the given eigenvalues is 10~°. The order
of the condition number (17) is bounded by 10°. The total CPU
time is around 50 seconds to find all 42 feedback laws. It takes 1.18
seconds if only one feedback law is needed.
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C. Aircraft Control

It may be that for a given selection of poles, all static feedback
laws have coefficients with nonzero imaginary parts. In this case, real
dynamic feedback laws may still be found, using the given poles. The
jet model from MathWorks [21] illustrates this.

For this example, n = 4, m = p = 2, s0 n = mp when ¢ =
0, which is the dimension zero case. When the chosen poles are
(—0.234, —1+3.2¢, —1—3.2¢, —3.0), we find two complex feedback
laws. The total CPU time is 140 milliseconds, and the realization
is trivial. Computing the eigenvalues of the closed-loop system, the
difference between the computed and the given eigenvalues is just
10~ and the condition number is around 10.

Suppose we need real feedback laws. For g = 1, n+qg =5 <
mp + q(m + p) = 8, so we have three degrees of freedom. We
find 8 solutions, including 2 or 4, or 6 real solutions, depending on
different additional eigenvalues. Taking the first four poles the same
as before, adding (—7.0, —0.944, —0.995, —0.904), the relative dif-
ference between the computed and the given eigenvalues is bounded
by 1071%. The total CPU time is 2.68 seconds. For this choice of
poles, we found four real feedback laws. For most of the 8 solutions,
the condition numbers of the closed-loop system are less than 102,
and few of the solutions have the condition number 10%.

V1. CONCLUSIONS

In this paper we showed the practical feasibility of computing
dynamic feedback laws using numerical homotopy algorithms, and
we applied our software to examples from the control literature. Our
publicly available implementation of the numerical greatest common
divisor and numerical Smith normal form is of independent interest.
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APPENDIX A
REALIZATION OF MULTI-INPUT MULTI-OUTPUT SYSTEMS

We gave the derivation of the transfer function of the dynamic
compensator as the output of the homotopies. We will give a
modified algorithm based on [1, pages 389-416] to obtain minimal or
irreducible realizations, which realize a system with the least number
of dynamic elements. These modifications were made to fit the output
format of the software used to compute the feedback laws. The
necessity of the modifications will be discussed at the end of this
section. We will show how to obtain realizations {F., G., Hc, K.}
of the transfer function T'(s) in controller form first. Then, we will
use the property of the output of homotopies to show the realizations
are irreducible, so they are also observable.

From (6), the transfer function can be written as

T(s) = V(s)U '(s). (18)

In accordance with convention, we would replace V(s) by N(s)
which stands for numerator, replace U(s) by D(s) which stands for
denominator.

According to Theorem 3.3 in [1, page 391], realizations exist if
and only if T'(s) is a matrix of rational functions and satisfies

ILm T(s) < o0, (19)
i.e., if and only if T'(s) is a proper rational matrix. Given the transfer
function matrix T'(s) = N(s)D~!(s) as a (m x p) proper rational
matrix. Let d; = the highest degree of jth column in the D(s) (d; >

0,7=1,2,...,p). Define
A(s) = diag(s™, ..., s%), (20)
and
S(s) = block diag i=1...,p (21)
sdj'—1

If d; = 0, just skip that column and continue to fill the next column of
the S(s) matrix. Note that S(s) is an g(= >_7_, d;) x p polynomial
matrix. Write

D(S) = DhA(s) + DIS(S) (22)

Dy, is the highest column degree coefficient matrix of D(s). For

2
example, if D(s) = [ 33 2: 12 ] , then the highest column
degree coefficient matrix Dy = 3 ? , and D;S(s) given

in (22) accounts for the remaining lower column degree terms D(s),
with D; being a matrix of coefficients.
In general, |Dy| # 0, and define p x p and p x g matrices

Gy =Dy, F,=—D;'Dy, (23)
respectively. Then F., G. can be determined from
F, = FC + ach, G. = apoy (24)
where F, = block diag[F1, F». .., Fp] with
0
L d;xd;
Fj = L, | €RY, (25)
0 .. 0
0
G.=blockdiag | | © | er%,j=1,....p (26)
0

When d; = 0, we just skip the corresponding F; and continue to
fill the F, matrix with the F; 1 matrix; we also need to add a zero
column at the jth column of the G, matrix.

Then we can determine H, and K. such that

N(s) = H.S(s) + K.D(s), (27)
and note that
K. = lim T(s). (28)

Therefore, H. can be determined from (27).
An gth-order realization of T'(s) in controller form is now given
by the equations

zc = Feze + Gey, u= H.z. + K_.y. (29)

According to the format of the output of the software, ¢ =
Z?:1 d; is equal to the minimal order of the dynamic compensator.
Therefore, this algorithm gives us a minimal realization of the transfer
function matrix T'(s) and the result is also observable.

The main difference between the modified algorithm and the
original algorithm given in [1] is that the original algorithm limits
d; > 1, while our modified algorithm works for d; > 0, where d; is
the highest column degree of jth column in the D(s). Some d; must
be equal to zero when the number of output is larger than the order of
the dynamic compensator. In this case the modified algorithm become
necessary. The correctness of the modified algorithm is verified with
experiments.

APPENDIX B
DETAILED DESCRIPTION OF OUR SOFTWARE

The dynamic feedback laws were calculated with the aid of PHC-
pack [35]. While the second public release of PHCpack implemented
the dynamic pole placement problem in its geometric form, additional
software had to be written, concerning:

0. a limit on the number of feedback laws;
1. an interface between Ada and C; and
2. a collection of C routines for the realization.

The limit on the number of feedback laws was imposed as a matter
of convenience, to control the practical complexity. We elaborate the
other two items in the following subsections.

A. A C interface to PHCpack

PHCpack is written in Ada, while the programs to process the
feedback laws are in the lower level language C.

We can build a portable interface to the Ada routines in PHC-
pack with C functions because the language Ada has the pragma
Import construction to call routines from other languages such as
C and it supports conversions for C integers, doubles, and arrays
of these C types. Furthermore, the gnu-ada compiler provides a
mechanism to call Ada routines from a C main program and to call
C functions from Ada. As the gnu-ada compiler is integrated in the
gcc compilation system, our interface is portable. In particular, we
ran our implementation successfully on SUN workstations running
Solaris and on PCs running Linux and Windows.

To exchange data efficiently, programs in Ada or C should define
exchange protocols of structured data types into basic data types
for which automatic conversions are supported. More precisely, we
represent structured data types into arrays of doubles and arrays
of integers. The language C is restricted in returning dynamically
allocated variables. Therefore, data allocated in a C function is passed
by the C function calling an Ada function for further processing of
the data.
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A typical sequence of calls goes as follows. First a C function
gathers problem data and prepares the input to an Ada routine of
PHCpack. The Ada routine, called from C, uses path tracking to
solve the problem, and then calls a C function to process the results
obtained with PHCpack. So the C programmer who uses PHCpack
should thus provide two C functions: one to prepare the input and one
to process the output. This “hand-in-glove” interface is appropriate
for a C programmer collaborating with an Ada programmer (which
is the case of the authors), who only have to agree on the prototypes
of the routines.

B. The Organization of the Software

In Figure 3, the arrows indicate the order of function calls in the
computation and realization of the dynamic feedback laws. In this
section we give a short description for each of the procedures, some
written in C, others in Ada.

ts_feedback(C): ts_feedback reads all the input information from a
file, including the number of the internal states n, the input dimension
m, the output dimension p, the number of the internal states for
the dynamic compensator ¢ and the number of output feedback.
Also the user should give the A, B, C matrices (or let the matrices
be generated randomly) of the given plant and n + ¢ eigenvalues.
ts_feedback.c computes C(sI,, — A)~'B at the interpolation points
as the input planes. With C to Ada interface, we pass the arrays of
the input planes and the interpolation points to the pieri_solver (an
Ada procedure in PHCpack).

pieri_solver(Ada): The pieri_solver calculates the corresponding
dynamic output feedbacks and passes them to the C program
pieri_sols.c.

pieri_sols(C): With Ada to C interface, the arrays in Ada form are
converted to the form in C. Then pieri_sols.c calls realization.c and
tests the results.

realization(C): We use modified realization algorithm based on [1]
to get the realization of the dynamic output feedback, organized as
follows:

(@) Get the transfer function T'(s) = N(s)D(s)~! from the output
of the Ada program. The inverse of a polynomial matrix is a
rational polynomial matrix and it is mainly done by Poly_Smith.

(b) The realization function implements the modified realization
algorithm to get a minimal realization of the dynamic compen-
sator.

(c) Evaluate the transfer function 7'(s) at some random point and
compare it with the result after realization (H(sI,—F) 'G+
K) at the same point. If the values are the same, the realization
is correct.

test_results(C): We can evaluate equation (2) at the given poles and
calculate the determinant with the previous result. If the determinant
is zero, the pole is the eigenvalue of the closed-loop system. As
mentioned above, equation (2) is algebraically equal to equation (1),
which is the characteristic equation of the closed-loop system.

verify(MATLAB): Finally, a MATLAB script verifies the results
by comparing the computed poles with the given poles and finding
the condition number for each given pole.

C. Availahility of the Software

The C routines for the numerical realization al-
gorithms  written by Yusong Wang are available at
http://www.math.uic.edu/"jan in the distribution of
release 2.2 of the source code of PHCpack (see [35], the first version
of this package is archived by Netlib). In particular, the collection
of routines can be found in the directory “Feedback” of the source
code. Also the input data files and output for the applications
discussed in the next section are available in this directory.

APPENDIX C
(A,B,C) APPLICATION DATA

In this appendix, we give the actual values for the matrices A, B,
and C which define the linear system x = Ax + Bu, and y = Cx,
where x,u, and y are vectors of internal states, input, and output
respectively.

A. Satellite Trajectory Control

We treated this problem in [36]. This model is described in [7],
[16]. C is some random matrix, which can be interpreted as a random
projection of the four state variables onto the two output variables.

0 1 0 0
A | 03578 0 0 0.8525
- 0 0 0 1 ’
| 0 —0559%6 0 0
A 0 (30)
13411 0
B= 0 0
| 0 1.0867

B. Numerical Examples

In this section we report on two numerical examples in the
literature [28] [37].

Numeric Example A: (from [28])

00 00 0 0

10 000 -1

01 000 0
A=100 000 o]

00 010 0
00 -1 01 o0
(31)

T 1 -3

0 0

0 1 001000
B=1 o 1" {0000 0 1

0 -1

0 0

Numeric Example B: (from [37])
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0
1

0

0
A=14
0

0

L 0
[0

1

~1

1

B=1 9
2

-1
!
[0
c=1|0
L0

C. Aircraft Control

-1

-1

-1
-2

S o oo RO OO

-1

—_ NN O O

o
o OO

o OO

0 000 1
0 1.0 0 -2

0 500 0

0 -7 0 0 -2

1 400 2}|°

0 200 3

0 -1 1 0 -2

0 1.0 1 -1 |

.

1 (32)
3

1.

47

5

1

1_

—2 0 0 0
100 0
000 1

The jet model during cruise flight at MACH=0.8 and H=40,000ft.
is taken from Mathworks [21].

[ —0.0558

0.5980

—3.0500
0

0.0073

—0.4750

0.1530
0

—0.9968
—0.1150
0.3880
0.0850

0
0.0077
0.1430

0

0.0802 0.0415
—0.0318 0 |
04650 0 |’
1.0000 0
(33)
0100
’ C_[o 0 0 1]



