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Abstract

The problem considered in this paper is the computation of all solutions of a

given polynomial system in a bounded domain. Proving Rouché’s Theorem by

homotopy continuation concepts yields a new class of homotopy methods, the so-

called regional homotopy methods. These methods rely on isolating a part of the

system to be solved, which dominates the rest of the system on the border of the

domain. As the dominant part has a sparser structure, it is easier to solve. It

will be used as start system in the regional homotopy. The paper further describes

practical homotopy construction methods by presenting estimators to obtain bounds

for polynomials over a bounded domain. Applications illustrate the usefulness of

the approach.

1 Introduction

In many practical applications a polynomial system F (x) = 0, with F = (f1, f2, . . . , fn)
T

and x = (x1, x2, . . . , xn), has to be solved. It occurs very often in practice that only solu-
tions in a bounded domain are desired. This paper is an attempt to attack this problem by
homotopy continuation methods. This introduction is further organized as follows. First
some related work and background material on the problem will be mentioned. Second,
basics about polynomial systems and recent research developments are explained. The
third part introduces our approach.

From the theory of complex functions [7] it is well known that for a closed curve C

in the complex plane and an analytical function f(x), the number of roots of f(x) in the
interior of C can be computed as

1

2πi

∮

C

f ′(x)

f(x)
dx,

provided f(x) 6= 0, ∀x ∈ C. The generalization to the multivariate case can be found
in [2, page 102]. A review on quadrature methods for the determination of zeros of
transcendental functions appeared in [9]. In [17], a homotopy continuation method has
been presented for locating all zeros of an analytic function within a bounded domain.
The problem of computing all real solutions of a system of nonlinear equations in some
box has been considered in [11, 12]. For this purpose generalized bisection methods
were developed, using interval arithmetic techniques. See [12, 13] for a comparison with
continuation methods.

Homotopy continuation methods consist in two parts. First, the system to be solved is
embedded in a family of systems H(x, t), the so-called homotopy. Methods to construct

1



this embedding are known as homotopy methods. A homotopy frequently used for solving
polynomial systems is the artificial parameter homotopy

H(x, t) = γ(1− t)G(x) + tF (x), γ ∈ C0 = C\{0}, t : 0→ 1.

The continuation parameter t connects the target system F (x) = 0 to the start system
G(x) = 0, whose solutions are known. Second, continuation methods are applied to trace
the solution paths starting at the known solutions of G(x) = 0 which end at the desired
solutions of F (x) = 0. See [1] for an introduction to these methods. In [27], the solution
of polynomial systems by continuation methods is treated. See [44] for a tutorial. Also
software has been developed, see [27] and [33, 45].

Earlier homotopies, like in [27, 44], relied on the total degree of the system, that is the
product of all degrees of the individual polynomials in the system. For almost all practical
applications, this leads to a lot of diverging paths, representing wasted computations.
During the last decade, considerable research efforts have been spent in constructing
homotopies which exploit the special structure of the polynomial system, in order to
reduce the number of continuation paths to be computed. The use of a multi-homogeneous
Bézout number has been proposed in [28]. Coefficient-parameter polynomial continuation
has been introduced in [30, 31] and put into practice in [32, 34, 42, 43]. In [19, 20] the
random product homotopy has been presented. In [21], the cheater’s homotopy has been
developed. Nonlinear homotopies are defined in [22]. Solving real polynomial systems
by real homotopies have been developed in [23], while applications can be found in [18,
24]. Homotopies based on generalized Bézout number have been constructed in [39, 40].
Symmetric homotopies are proposed in [37].

Very recently, it has been (re)discovered that, when exploiting Newton polytopes to
model the structure of the system, accurate upper bounds for the number of solutions can
be computed. In [4], it has been proven that the mixed volume of the Newton polytopes
of the system coincides with the number of isolated solutions of a system with the same
structure but with randomly chosen coefficients. The mixed volume of a polynomial
system is also called the BKK bound, named after the three principal investigators, see
also [16] and [14]. Recently, algorithms based on this bound have been implemented in
[8, 41] to solve sparse polynomial systems. Estimates for the number of real roots are
presented in [15] and [35], where the proofs are algorithmic. One of the conclusions of this
research is that the complexity of solving a polynomial system depends on the number of
terms of each individual equation. The sparser the system, the easier it will be solved.
This is of great importance for the following.

The key idea of this paper is the application of the theorem of Rouché, which will be
described in the next section. It is sufficient to isolate a dominant part of the system on
the border of the domain, to solve it and use it as start system in the homotopy. The
idea of considering only a part of a system in order to estimate the number of solutions
in a certain domain, was already presented in the theory of fewnomials, see the work of
Khovanskǐı [15]. In [15, page 82], the notion of estimating spectrum is introduced, where
a spectrum of a polynomial stands for its set of exponents. Estimating means that only
part of the spectrum is considered.

The third section presents the practical realization of this idea, by the description of
techniques for the construction of a regional homotopy for solving polynomial systems in
a bounded domain. The domains considered are product domains where each component
domain consists of a band in the complex plane. When slices are taken out of the band, real
domains are obtained, which enable to compute only the real solutions of a polynomial
system. The construction techniques use arithmetics in complex space which can be
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considered as analogues to interval methods. Applications are considered in the fourth
section. The last section contains our conclusion.

2 The Theorem of Rouché

The theorem of Rouché can be found in many classical books on complex analysis, see e.g.
[46, page 322], [7, page 206] and [3, page 30]. Note that analytic functions are considered,
which is more general than working with polynomials. See [29] for the application of con-
tinuation to analytic systems. Before we can proof Rouché’s Theorem by using concepts
of homotopy continuation, we first need to recall some definitions.

Definition 2.1 Let x∗ be a solution of a system of analytic functions F (x) = 0. Then
x∗ is said to be an isolated solution, if there exists a neighborhood of x∗ containing no
other solution of F than x∗.

Definition 2.2 A solution x∗ is a nonsingular or regular solution of a system of analytic
functions F if the Jacobian matrix of F at x∗ has full rank. Otherwise x∗ is called a
singular or nonregular solution of F .

A nonsingular solution is always isolated, but the opposite is not true.

Definition 2.3 Consider an isolated and singular solution x∗ of a system F (x) = 0 of
analytic functions. Then x∗ has a multiplicity equal to m, if for a random perturbation
of the system F (e.g. by adding random constants), m nonsingular solutions lie in the
neighborhood of x∗.

The multivariate Theorem of Rouché can be stated as follows:

Theorem 2.1 If

1. D is a multi-dimensional bounded domain in Cn, ∂D its border;

2. F = (f1, f2, . . . , fn)
T and G = (g1, g2, . . . , gn)

T are systems of analytical functions

in x in the closure of D;

3. ∀x ∈ ∂D : ||G(x)|| < ||F (x)||, for some norm ||.|| on Cn;

then F +G and F have the same number of isolated solutions in D, counted with multi-

plicity.

Its proof follows immediately from

Theorem 2.2 Let F , G and D be defined as in Theorem 2.1. Assume all isolated solu-

tions of F in D are regular. Consider the homotopy

H(x, t) = F (x) + tG(x), t ∈ C, |t| ≤ 1.

For each isolated solution x∗: (F + G)(x∗) = 0, x∗ ∈ D, with multiplicity equal to m,

m paths originating at isolated solutions of F (x) = 0 in D and converging to x∗ exist.

Furthermore, these paths are smooth, nonintersecting and strictly increasing in t, i.e. no

path turns back to a solution of F as t is incremented towards 1.
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In case F has isolated singular solutions in D, perturb F into F ′, of which the isolated
solutions in D are all regular. As the perturbations are small, ||F ′(x)|| > ||G(x)||, ∀x ∈
∂D. Theorem 2.2 can then be applied for F ′ instead of F . Afterwards, the paths starting
at isolated solutions of F ′(x) = 0 in D can naturally be extended to the isolated solutions
of F (x) = 0 in D.

Proof of Theorem 2.2. There are two parts in the proof. First the singularities of the
solution paths will be investigated. The second part proves the boundedness of the paths.

The solution paths start at t = 0 at regular solutions and remain regular until some
singularity is encountered. Singular solution paths are solutions of the system H(x, t) = 0,
augmented with the determinant of the Jacobian matrix:

S(x, t) =

{

H(x, t) = 0

det(Hx(x, t)) = 0
.

The solution set to S(x, t) = 0 defines an analytic variety V in (n + 1)-dimensional
complex space. By elimination theory for analytic varieties, see [46, Lemma 4F, page
48], its projection on the last component W = πn+1(V ) is an analytic variety, provided
S(x, t) 6= 0, ∀x ∈ ∂D, ∀t ∈ C, |t| ≤ 1. This condition is satisfied, as will become clear in
the second part of the proof.

W is a one-dimensional complex variety, i.e. the solution set of an analytic function. It
consists of all points t for which the solution of H(x, t) = 0 is singular. As F has only
regular solutions, W 6= C, as 0 6∈ W . By [10, Theorem 43, page 93], W is a set of isolated
points. W is bounded, so #W < ∞. Hence, when encountering a singularity during
continuation, it is always isolated and can be circumvented by a procedure similar as the
one proposed in [6], i.e. by moving in complex space around the singularity. So, the
solution paths remain regular for |t| < 1. When F + G has an isolated singularity with
multiplicity m, m regular solutions of a perturbed system lie in its neighborhood. Thus,
m paths converge to it. As this proves the regularity of the solution paths, the first part
is finished.

In this second part of the proof, it will be proved that solution paths starting at solutions
of F (x) = 0 which lie in the domain D, remain in D, as the continuation parameter t
changes from 0 to 1. Furthermore, no new solutions enter the domain during continuation.

Consider a solution leaving or entering the domain, during continuation. This solution
crosses the border of the domain, which can be expressed by

∃t0 ∈ C, |t0| ≤ 1, ∃x0 ∈ ∂D : H(x0, t0) = F (x0) + t0G(x0) = 0.

Consequently,

F (x0) = −t0 G(x0) ⇒ ||F (x0)|| = |t0|.||G(x0)|| and |t0| ≤ 1,

whence ||F (x0)|| ≤ ||G(x0)||, which contradicts the third assumption of Theorem 2.1.

Each isolated solution of F (x) = 0 in D is connected to an isolated solution of (F +
G)(x) = 0 in D. Assume the reverse does not hold. Then, a path originating at an
isolated solution of (F +G)(x) in D, defined by the homotopy H(x, t) = 0, for t : 1→ 0,
should leave D, which is impossible. ¤

The third assumption of Theorem 2.1 prevents a solution from leaving or entering the
domain D. Hence, to compute all solutions to the system (F +G)(x) = 0 in the domain
D, the homotopy H(x, t) = F (x) + tG(x) can be used. Note that Theorem 2.2 delivers
also a homotopy for computing solutions outside a bounded domain, provided F and G

are also analytic outside the domain.
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3 Regional Homotopy Construction

This section is concerned with the practical realization of Rouché’s theorem for computing
all solutions to a Laurent polynomial system F (x) = 0 in a bounded domain.

A regional homotopy continuation method can in general be described as:

1. Search for a dominant part F∂D of F , so that the following holds:

∀x ∈ ∂D : ||F∂D(x)|| > ||(F − F∂D)(x)||.

This is the most crucial part of the method. Its effectiveness mainly relies on the
estimators for finding lower and upper bounds for polynomials over some bounded
domain. In the following subsections some product domains will be considered.

2. Solve F∂D(x) = 0.

As F∂D is only a part of F , its structure will be more sparse which makes it easier
to solve.

3. Follow the continuation paths defined by the homotopy

H(x, t) = F∂D(x) + t(F − F∂D)(x), t ∈ C, for t : 0→ 1.

Classical continuation methods can be applied. Theorem 2.2 assures that only those
solution curves starting at the solutions of F∂D(x) = 0 in the domain ∂D need to
be followed. It is important to note that the solutions of F∂D in D should be well
conditioned in order to start the continuation without numerical difficulties.

To establish the condition of the homotopy, one should tear the system apart in a
random way, by leaving for some terms a small portion of them to the rest of the
system. For a constant term c, this can be realized as follows: c = c∂D + (c− c∂D).
One has some freedom in choosing the constant c∂D that will belong to the dominant
part of the system.

As the method will be applied for systems of Laurent polynomial systems, some notation
is needed. A multivariate (Laurent) polynomial can be described as

f(x) =

N
∑

k=0

ck x
qk , ck ∈ C, qk ∈ Zn, where xqk = x

qk1
1 x

qk2
2 · · ·xqkn

n ,

using a multi-index notation. As also negative exponents are allowed, more general poly-
nomials are considered, the so-called Laurent polynomials.

The following subsections propose a simple computational model which supports the
automatic construction of a regional homotopy. Product domains will be considered:
D = D1 ×D2 × · · · ×Dn with ∂Dk as border for the kth domain Dk.
Then ∂D = { x = (x1, x2, . . . , xn) | ∃k : xk ∈ ∂Dk }.
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3.1 Estimators based on Radius

The first domain considered is a band centered around the origin of the complex plane.

-
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Figure 1: x ∈ D : Rm < |x| < RM .

Figure 1 pictures the domain for one compo-
nent. For x ∈ D: Rmj < |xj| < RMj, xj being
the jth component of x, for j = 1, 2, . . . , n.
The following propositions are trivial to prove:

Proposition 3.1 Let f(x) = g(x) + cxq,

with ∀x ∈ D: |g(x)| < A and |cxq| >

B = |c|
n
∏

j=1

R
qj

mj.

Then ∀x ∈ D :

|f(x)|

{

> B − A if A < B,

≥ 0 otherwise.

Proposition 3.2

|f(x)| <

N
∑

k=0

|ck|

n
∏

j=1

R
qkj

Mj, ∀x ∈ D.

Algorithm 1 applies Propositions 3.1 and 3.2, to estimate a lower bound for |f(x)|.

1. Search for a term cxq in f for which B = |c|

n
∏

j=1

R
qj

mj is maximal.

2. Let f(x) = g(x) + cxq, as in Proposition 3.1.
First apply Proposition 3.2 to compute A, an upper bound for g.

Then Proposition 3.1 provides a lower bound for f .

Algorithm 1: computing a lower bound for |f(x)|.

The algorithm for searching for a dominant part fD of a polynomial f over a domain D
consists of considering all possible sums of k terms, starting at the term with the highest
lower bound, for k = 1, 2, . . . , m, where m equals the number of terms in f . When fD = f ,
f has no solutions in D, as |fD(x)| > 0, ∀x ∈ D. This case can be referred to as a negative
result, i.e. as an automatic proof that no solutions exist in D.

Computing a dominant part f∂D on the border is presented in Algorithm 2.

for k = 1, 2, . . . , n do

1. Substitute xk once by Rmk and once by RMk, values obtained when xk ∈ ∂Dk.
The resulting polynomials g(k) have n− 1 unknowns

and are to be considered over (n− 1)-dimensional domains D(k).

2. Compute g(k)
D(k) and collect the corresponding terms to construct f

(k)
∂D.

When all 2n dominant parts f
(k)
∂D are the same, f∂D = f

(k)
∂D,

otherwise no dominant part can be found in this way.

Algorithm 2: computing a dominant part f∂D on the border ∂D.
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Example 3.1 Consider the following system:

F (x) =

{

4 10−5x5
1x

2
2 + 2 10−3x1x

4
2 + 2x2

1x2 − 2x2 + 0.75 = 0
3 10−4x1x

4
2 − 7 10−6x3

1 + 2x1x
2
2 − 2x1 + 0.75 = 0

.

According to Bézout’s theorem, there are 35 isolated solutions in two-dimensional complex
space, while the total degree equals 35. The BKK bound equals 25, which means that for
a general choice of the coefficients, this system would have 25 isolated solutions. Assume
only the solutions for which |xk| < 1, k = 1, 2 are wanted. Then the dominant part on
the border of the domain is

F∂D(x) =

{

2x2
1x2 − 2x2 + 0.75 = 0

2x1x
2
2 − 2x1 + 0.75 = 0

.

This system is more sparse than F and has better scaled coefficients, which makes it easier
to solve. It has exactly 5 real solutions, where only 2 of them lie inside the domain. Note
that the 2-homogeneous Bézout number equals 5.

The norm ||F || = |f1| + |f2| will be used in the demonstration that F∂D is dominant on
the border of the domain. The 5 real solutions of F∂D are also zeros of the multivariate
function ||F∂D(x)||. This function, returning a real value, is monotone increasing as the
distance of its argument x to the zeros is growing. All zeros are real, so the larger the
imaginary parts of the components of x become, the larger ||F∂D|| will be. As we search
for a lower bound for ||F∂D(x)||, x ∈ ∂D, it is sufficient to consider the points on ∂D

which lie closest to the real zeros. Then it turns out that only bounds for x1 = ±1 or
x2 = ±1 need to be computed, which results in ||F∂D(x)|| > 0.75. The rest of the system
F − F∂D is bounded by ||(F − F∂D)(x)|| < 3 × 10−3, ∀x ∈ D.

Hence, F∂D is a reliable start system. It has exactly 5 solutions where only 2 solutions lie
in the domain. These 2 solutions will be used as start solutions in the regional homotopy
to compute the wanted solutions of F . ¥

Note that a regional homotopy can be very appropriate to solve ill-conditioned polyno-
mial systems. As in the example above, some terms can have coefficients that are very
small compared to the other coefficients. Omitting these terms makes the system well-
conditioned and hence easier to solve and renders often the desired solutions, avoiding
the computation of the spurious solutions.
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3.2 Estimators based on Radius and Argument

The second domain consists of taking a slice of the band. In this way not only conditions
on the radius can be imposed, but also on the argument of a solution.
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Figure 2: x = Reiθ :
Rm < R < RM

θm < θ < θM

Figure 2 pictures the domain for one compo-
nent, using polar coordinates. In order to take
advantage of the restrictions on the argument,
0 < θM − θm < π.

More precise lower and upper bounds can now
be given:

Proposition 3.3 ∀a, b ∈ D :

Rm|e
iθM + eiθm | < |a+ b| < 2RM .

Proposition 3.4 ∀a, b ∈ D :

0 ≤ |a− b| < |RMeiθM +Rme
iθm |.

These propositions introduce the line of
thought for estimating bounds in the domain.
Again, the proofs are visible.

First lower and upper bounds will be given for pairs of multivariate terms. The idea is
to consider the terms as ordinary numbers in the complex plane as follows. Consider
a term cxq, with bounds on the kth unknown xk = Rke

iθk : Rmk < |xk| < RMk and
θmk < θk < θMk, for k = 1, 2, . . . , n. When c = |c|eiγ, then for radius R and argument θ
of the term cxq, one has the following bounds:

|c|

n
∏

j=1

R
qj

mj < R < |c|

n
∏

j=1

R
qj

Mj and γ +

n
∑

j=1

qjθmj < θ < γ +

n
∑

j=1

qjθMj. (1)

The bounds (1) define a domain in the complex plane for a complex number a = Reiθ,
which can replace the term cxq. Computing lower and upper bounds for a multivariate
polynomial is then transformed into estimating bounds for a sum of complex numbers.
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Figure 3: Two different domains.

Figure 3 pictures two different domains Dk =
{Reiθ|Rmk < R < RMk, θmk < θ < θMk}, k =
1, 2. Lower and upper bounds are provided by

Proposition 3.5 ∀a ∈ D1, ∀b ∈ D2 : |a+ b|



























































> |

2
∑

k=1

Rmke
iθk | if |θmk − θM3−k| < π,

with θmk < θk < θMk,

for k = 1, 2, so that
|θ2 − θ1| is maximal,

> Rmk − RM3−k if |θmk − θM3−k| ≥ π

and Rmk > RM3−k,

for k = 1 or 2,
≥ 0 otherwise.
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Proposition 3.6 ∀a ∈ D1, ∀b ∈ D2:

|a+ b| < |

2
∑

k=1

RMke
iθk |, with θmk < θk < θMk, k = 1, 2, so that |θ2 − θ1| is minimal.

The price for more precise bounds is the solution of an optimization problem. Propositions
3.5 and 3.6 can be generalized as follows:

Proposition 3.7 ∀ak ∈ Dk :

|
N
∑

k=1

ak|































































>

√

√

√

√

N
∑

k=1

R2
mk +

N
∑

k=1

∑

k 6=l

2RmkRml cos(θk − θl)

if |θmk − θMl| < π, ∀k, l = 1, 2, . . . , N,

with θmk < θk < θMk, ∀k = 1, 2, . . . , N, so that

the right hand side becomes minimal;
> R− RMk if |θmk − θMl| ≥ π, for k, l ∈ {1, 2, . . . , N},

with |
∑

j 6=k

aj| > R > RMk;

≥ 0 otherwise.

Proposition 3.8 ∀ak ∈ Dk : |

N
∑

k=1

ak| <

√

√

√

√

N
∑

k=1

R2
Mk +

N
∑

k=1

∑

k 6=l

2RMkRMl cos(θk − θl)

with θmk < θk < θMk, k = 1, 2, . . . , N, so that the right hand side becomes maximal.

The formulas in Propositions 3.7 and 3.8 do not look very encouraging for implementa-
tion. Therefore, a particular case will now be investigated. When all coefficients are real
numbers and when only real solutions in a certain domain are desired, then it is sufficient
to consider real domains, where the slices are centered around the real axis.
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Figure 4: a positive real domain.

Figure 4 shows a positive real domain in one
dimension, i.e. θm = −θM and |Rm cos θM | ≈
Rm. By reflection around the complex axis a
negative real domain is obtained.

Proposition 3.9 Let D be a real domain and

ε = Rm − |Rm cos θM |, then ∀a, b ∈ D:

2(Rm − ε) < |a+ b| < 2RM .

Proposition 3.10 Let D1 and D2 be two dif-

ferent real domains, both negative or posi-

tive. Let ε = max(Rm1 − |Rm1 cos θM1|, Rm2 −
|Rm2 cos θM2|), then ∀a ∈ D1, ∀b ∈ D2:

Rm1 +Rm2 − 2ε < |a+ b| < RM1 +RM2.

The generalization to sums of N terms is
straightforward.
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Bounds for a polynomial f with real coefficients and unknowns belonging to the multi-
dimensional real domain D can be estimated as proposed in Algorithm 3.

1. Apply transformations (1) to obtain new bounds which define

one-dimensional real domains for the individual terms in the sum S.

2. Write S as S = SP + SN , where SP groups the terms belonging

to positive domains and SN contains those in negative domains.

3. By application of the generalized version of Proposition 3.10,

lower and upper bounds can be computed, which results in
AN < |SN | < BN and AP < |SP | < BP .

4. Then ∀x ∈ D:

|f(x)| < max(|BP − AN |, |BN − AP |) and |f(x)|







> |AP −BN | if AP > BN ,

> |AN − BP | if AN > BP ,

≥ 0 otherwise.

Algorithm 3: computing bounds for |f(x)| over D.

Algorithm 4 proposes a way for computing a dominant part of f over a real domain D.

1. Apply transformations (1) and group the terms in the sum S as S = SP + SN ,
as in Algorithm 3, to obtain lower bounds AP and AN and upper bounds BP

and BN for SP and SN respectively.

2. If AP > BN or AN > BP ,
then a dominant part fD consist of the terms which lie

after transformation in the positive or the negative domains,
otherwise terms should be moved from the one part into the other one.

3. In case fD has been found, one can try to enumerate all possible subsets of its
terms in order to find a dominant part with the smallest number of terms.

Algorithm 4: computing a dominant part fD over a real domain D.

Algorithm 2, proposed at the end of section 3.1, can be applied for computing a dominant
part f∂D. But then only where the geometry of the border coincides with that of the first
type of domain, as pictured in Figure 1. Here the second type of domain, drawn in Figure
2 for one dimension, is considered. A point on the border of the domain of the second
type, denoted by x = Reiθ, belongs either to a circular part, when its modulus R remains
constant (R ∈ {Rm, RM}), or lies on a diagonal part of ∂D, when its argument θ is fixed
(θ ∈ {θm, θM}). In order to deal with these diagonal parts of the border, one has to work
with real homotopies, as is explained next.
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3.3 Real homotopies over real domains

The great advantage of real domains is the possibility of obtaining more precise estimates
for the polynomials over a certain domain. The problem with real domains is the fact
that estimating over the border ∂D can be a real burden, when it comes to considering
the diagonal parts close to the real axis. Applying real homotopies provides an effective
solution.

The behavior of the solution paths of real homotopies for solving real polynomial systems
has been studied by Li and Wang, see [23], and applied in [18, 24]. The main result
of their paper shows that, generically, the solution set of a real homotopy contains no
singular point other than a finite number of quadratic turning points. We refer to [23] for
technical and theoretical details. Here only the practical importance of the result of Li
and Wang will be discussed.

In a real homotopy, each complex solution path has a conjugate solution path. At a
quadratic turning point, the two conjugate complex solution paths meet. When passing
through such a point, the two complex paths turn into two real paths. The reverse process
is sketched in Figure 5, in the complex plane, for one unknown.

-
Re(x)

6

Im(x)

B C

t = t0

-
Re(x)

6

Im(x)

BC

t = t1

-
Re(x)

6

Im(x)

4

∇

t = t2

Figure 5: behavior at a quadratic turning point.

As t : t0 → t1, the two real solutions B and C approach each other along the real axis.
They meet at the quadratic turning point, when t = t1, and turn into the complex plane,
where they move further as a conjugate pair, as t : t1 → t2.

In many practical applications, the components of real solutions are scattered in different
real domains.
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Figure 6: a real homotopy.

Figure 6 shows the behavior of the paths for a
real homotopy when the two real solutions lie
initially in two different (one positive and one
negative) real domains.

There is only one way for the solutions to meet
and to turn into the complex plane. Namely, by
violating the circular inner borders of the do-
main. Which is impossible, as the start system
is dominant on the border.

In general, if the dominant part of the system
has for each component at most one solution in
a real domain, then all solutions will remain in
their domain during continuation, provided of
course that a real homotopy is used. Hence,
when dealing with real domains, real homo-
topies are required.

When two real solutions lie initially in the same domain, the two solutions can meet each
other inside the real domain and turn over to the complex plane after crossing the diagonal
lines close to the real axis. This case can be avoided, by applying a linear transformation
on the system, which places the origin between the solutions, as in Figure 6.
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3.4 Customizing the norm ||.||

Recall that the third condition of the multivariate Rouché’s theorem has to be valid for a
norm ||.||. This subsection is concerned about customizing the norm to the given problem
by the solution of a linear program.

Consider the following class of norms:

||F || =

n
∑

l=1

al |fl|, with al ≥ 0 and

n
∏

l=1

al 6= 0. (2)

Let the following bounds be given: Rmk < |xk| < RMk, for k = 1, 2, . . . , n, which define
a domain D. Given a part F∂D of the system F , one can formulate conditions on the
constants al in (2) so that F∂D is dominant on the border of the domain D, w.r.t. the
norm defined by those constants.

In order that F∂D is dominant on the border, the following conditions should be satisfied:

∀x ∈ ∂D : ||F∂D(x)|| > ||F (x)||. (3)

With the results of the previous subsection in mind, one has only to consider the circu-
lar parts of the domain. The conditions (3) are then equivalent to the following set of
inequalities:

∀x ∈ ∂D :
n
∑

l=1

al |f∂Dl(x1, . . . , xk = R, . . . , xn)| >

n
∑

l=1

al |(fl − f∂Dl)(x1, . . . , xk = R, . . . , xn)| (4)

with R ∈ {Rmk, RMk}, k = 1, 2, . . . , n, l = 1, 2, . . . , n.

Apply Algorithm 3 to compute estimates Alkj and Blkj for lower bounds for |f∂Dl| and
for upper bounds for |fl − f∂Dl| respectively. Let j = 1 when xk = Rm and j = 2 when
xk = RM . The inequalities (4) can then be rewritten as

n
∑

l=1

al Alkj >

n
∑

l=1

al Blkj, with k = 1, 2, . . . , n and j = 1, 2. (5)

Equivalently,

n
∑

l=1

al (Blkj − Alkj) < 0, with k = 1, 2, . . . , n and j = 1, 2. (6)

In order to keep the coefficients al bounded, add
∑n

l=1 al ≤ C, C > 0 to the constraints
(6). Choose a small positive constant ε. Then the following standard linear program is
left to solve:

max
n
∑

l=1

al

subject to























n
∑

l=1

al (Blkj − Alkj) ≤ ε, k = 1, 2, . . . , n, j = 1, 2

n
∑

l=1

al ≤ C and al ≥ 0, l = 1, 2, . . . , n

(7)

If a feasible solution is found, F∂D dominates the rest of F on the circular parts of the
border.
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4 Applications

Two classes of applications can efficiently be attacked by regional homotopy methods:
ill-conditioned systems and systems with a special structure. The first class seems to
be typical for chemical equilibrium problems, where the existence of some terms with
extreme coefficients introduce spurious solutions making the system hard to solve. The
second class consists of special structured systems, such as eigenvalue problems and matrix
polynomials. The start system can here be either a linear system or a decoupled system of
univariate polynomials. For both classes, the choice of the dominant part is obvious, but
of course applications exist where the combinatorial dominant part computing algorithms
presented in the previous section can lead to discoveries.

The problems considered here have been taken out of the literature. So, no original
problems will be solved. The importance of this section lies in the unifying approach of
the methods presented. Regional homotopy methods seem to be applicable to different
problem areas where polynomial systems occur.

Before proceeding, let us take a look at the armament used in attacking the problems.
First of all, a software package [38] providing a homotopy continuation environment and
equipped with homotopy methods exploiting Newton polytopes, developed in [41], are at
our disposal. The implementations of the algorithms for estimating bounds have been
added to the software environment, as also some elementary LP routines.

1. Consider the following system:

F1(x) =

{

1.069 10−4x4
1 + 2 104x3

1x2 + x3
1 − 1.8 10−10x1 − 1.283 10−24 = 0

2 1016x1x
2
2 + 1014x2

2 − 1 = 0

This is a chemical equilibrium problem, known as Butler’s problem. See [27, Chap.
9] for a general introduction to the derivation of polynomial systems out of chemical
problems. In [25, 26], a description of the solution list can be found. There are
7 real solutions and 2 complex solutions. 4 real solutions have a physical meaning
and appear in a symmetrical pattern. They are bounded by 10−6 < |x1| < 10−4 and
10−9 < |x2| < 10−6. The other 3 real solutions lie out of range: 2 too small, 1 too
large.

The total degree equals 12, the BKK bound is 9. As this number is small, the system
could be solved easily. However, the extreme coefficients cause great numerical
difficulties to most path trackers. Therefore scaling the homotopy is a necessity.
As the location of the roots is important, only equation scaling will be used, not
variable scaling, see [27, Chap. 5]. The first equation will be divided by 104, the
second one by 1016.

On the negative real domain, with bounds on radii 10−7 < |xk| < 1, k = 1, 2, the
following system is dominant on the border:

F ′
1∂D(x) =

{

2x3
1x2 + 10−4x3

1 = 0
2x1x

2
2 + 10−2x2

2 = 0
, or equivalently

{

x3
1 (2x2 + 10−4) = 0

x2
2 (2x1 + 10−2) = 0

.

This system has 7 real solutions: (0, 0) with multiplicity 6 and (−0.5 10−3,−0.5 10−5).
The last solution is the spurious solution that is too large. Note that the pair of
complex solutions is already left out. But F ′

1∂D contains too few terms, as it is now
impossible to distinguish the physical solutions from the two other solutions and
moreover, the singular solution (0, 0) cannot be used as a start solution.
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The dominant part of F1 should contain more terms. We can add more terms to
F ′

1∂D, preserving the product structure, so that it remains trivial to solve it. On
the positive real domain bounded by 10−6 < |x1| < 10−4 and 10−9 < |x2| < 10−6,
consider the following:

F1∂D(x) =

{

x1 (x1 − 10−5) (x1 + 10−5) (2x2 + 10−4) = 0
(x2 − 10−7) (x2 + 10−7) (2x1 + 10−2) = 0

.

Then

(F1 − F1∂D)(x) =

{

2 10−10x1x2 − 0.80 10−14x1 − 1.283 10−28 = 0
2 10−14x1 = 0

.

F1∂D has again 7 real solutions, but now the 4 physical solutions are clearly sepa-
rated from the other ones. To prove that F1∂D dominates F1 − F1∂D on the border
of the domain, it is important to preserve the product structure of F1∂D while es-
timating. The implemented algorithms gave too low lower bounds, especially for
the first equation, on the borders for x1. The start solutions are that good, that no
continuation is needed, a couple of simple Newton-Raphson iterations are sufficient
to calculate the desired solutions.

2. Another chemical equilibrium problem has been stated in [26]:

F2(x) =







































x1x2 + x1 − 3x5 = 0
2x1x2 + x1 + 2R10x

2
2 + x2x

2
3 +R7x2x3

+R9x2x4 +R8x2 −Rx5 = 0
2x2x

2
3 +R7x2x3 + 2R5x

2
3 +R6x3 − 8x5 = 0

R9x2x4 + 2x2
4 + 4Rx5 = 0

x1x2 + x1 +R10x
2
2 + x2x

2
3 +R7x2x3 +R9x2x4

+R8x2 +R5x
2
3 +R6x3 + x2

4 − 1 = 0

.

The total degree equals 108, but there are only 4 real and 12 complex solutions.
The BKK bound equals 16. The constants R and Rj, j = 5, 6, . . . , 10 are listed in
Table 1.

R 10
R5 1.9300 10−1

R6 4.1062 10−4

R7 5.4518 10−4

R8 4.4975 10−7

R9 3.4074 10−5

R10 9.6150 10−7

Table 1: the coefficients for F2.

Only the 4 real solutions have a physical meaning. Define a real domain D with the
following bounds on the radii: 10−3 < |xk| < 102, ∀k = 1, 2, . . . , 5.

Considering the system, given the coefficients in Table 1, one notes that the con-
stants Rj, j = 6, . . . , 10, introduce coefficients in the system which are of a lower
magnitude than the other ones. It is natural to eliminate those terms whose coef-
ficients are in modulus smaller than 10−3. The result is the system F2∂D which is
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dominant on the border of the domain.

F2∂D(x) =























x1x2 + x1 − 3x5 = 0
2x1x2 + x1 + x2x

2
3 −Rx5 = 0

2x2x
2
3 + 2R5x

2
3 − 8x5 = 0

2x2
4 + 4Rx5 = 0

x1x2 + x1 + x2x
2
3 +R5x

2
3 + x2

4 − 1 = 0

The system F2∂D has fewer terms and a BKK bound equal to 8. There are 4 real
solutions, which serve a start solutions for computing the desired solutions to F .

3. Systems occurring in the analysis of nonlinear circuits and neural networks [36] have
a typical structure like

F (x) = AG(x) +Bx+ c = 0, with A,B ∈ Rn×n, c ∈ Rn

and gk(x) = gk(xk), where the polynomials gk are univariate, for k = 1, 2, . . . , n.
One of the most simple examples [36, page 74] is the following

F3(x) =

{

0.081x3
1 − 2.04x2

1 + 13.6x1 + x1 + x2 − 69 = 0
0.081x3

2 − 2.04x2
2 + 13.6x2 + x1 + x2 − 75 = 0

It has 1 real solution and 8 complex ones. A regional homotopy continuation method
can provide a start solution, already very close to the real solution. It is natural to
take the decoupled system of univariate polynomials as dominant part, leaving all
terms xl, l 6= k to the kth equation of the rest of the system. Solving 2 third degree
equations yields a start solution. For F3, the considered real domain imposed the
following restrictions on the radius of the unknowns: |xk| < 50, k = 1, 2. Over this
domain, the linear program turned out to have a feasible solution, hereby proving
that the decoupled system is dominant on the border. By the choice of appropriate
bounds, the first significant number of each solution component was already correct,
which makes the continuation process fast and reliable. It has one real solution and
8 complex ones.

When the classical homotopy is used, based on the total degree, no diverging paths
will occur, but for general n, the complexity of computing 3n paths is a cost too
large for obtaining one real solution. As the univariate equations are symmetrical,
one has only to solve one instead of n third degree equations.

4. Homotopy continuation methods for solving (generalized) eigenvalue problem were
first presented in [5], the polynomial system can be described as

F (x, λ) =























(

k
∑

l=0

Alλ
l

)

x = 0

n
∑

l=1

x2
l − 1 = 0

.

For general matrices Al, there are kn eigenpairs. They can be computed by using
the homotopy developed in [5]. For the classical eigenvalue problem Ax = λx, it
only seldomly occurs that all eigenpairs are wanted. In [18] the concept of Order
Preserving Property was introduced, stating that the real homotopies presented
there preserve the order between different eigenvalues, as solution paths each other
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never cross during continuation. This line of thought has in [24] been generalized
and applied to nonsymmetric matrices. In [23], the approach of real homotopies has
been worked out in general for real polynomial systems.

Consider the following simple eigenvalue problem:

λx = Ax with A =





10 −1 0.5
−1 20 −4
2 −1.5 38



 .

Suppose only the largest eigenvalue is desired. As the elements on the diagonal of A
are larger then the other entries, it is natural to take D = diag(10, 20, 38) as matrix
for the initial eigenvalue problem.

The largest eigenvalue of D equals 38 and can be associated with the third unit
vector (0, 0, 1). Take as norm ||F || = |f3|. Then on the border of the real domain,
defined by

0 < |λ| < 30, 0 < |xk| < 1.001, k = 1, 2 and 0.999 < |x3| < 1.001,

the system λx−Dx = 0 is dominant over the rest of the original eigenvalue problem.

Assume the first or second eigenvalue becomes the largest during continuation. Then
for some t = t0, |t0| ≤ 1, there is a solution path with λ = 30, because a real
homotopy will be used. But on ∂D, H(x, t) 6= 0. Hence, it is sufficient to compute
only the path starting at the largest eigenvalue of λx−Dx = 0.

5 Conclusion

It is possible to construct homotopies for computing only the solutions in a bounded do-
main. This paper gives conditions on the homotopy and proposes homotopy construction
methods. When it comes to computing the real solutions of real polynomial systems, the
regional homotopy has to be a real homotopy. In this case, regional homotopies can on
the one hand be considered as a general application of real homotopies. On the other
hand, the conditions of Rouché’s Theorem provide a useful tool for the construction of a
reliable real homotopy.
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