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Abstract. For isolated singular solutions of polynomial systems, we can re-
store the quadratic convergence of Newton’s method by deflation. The number
of deflation stages is bounded by the multiplicity of the root. A preliminary
implementation performs well in case only a few deflation stages are needed,
but suffers from expression swell as the number of deflation stages grows. In
this paper we describe how a directed acyclic graph of derivative operators
guides an efficient evaluation of the Jacobian matrices produced by our defla-
tion algorithm. We illustrate how the symbolic-numeric deflation algorithm
can be used within PHCmaple interfacing Maple with PHCpack.
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1. Introduction

Newton’s method slows down when approaching a singular root and convergence
may even be lost if the working precision is not high enough. Moreover, using
multiprecision arithmetic makes sense only if the input data is sufficiently precise.
To restore the quadratic convergence of Newton’s method, T. Ojika, S. Watanabe,
and T. Mitsui ([11], see also [10]) developed a numerical deflation algorithm. A
symbolic algorithm to restore the quadratic convergence of Newton’s method was
developed by Lecerf [6].

This material is based upon work supported by the National Science Foundation under Grant
No. 0134611 and Grant No. 0410036.
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We studied the methods proposed in [11] and [10] and – for the sake of
numerical stability – implemented and experimented with two modifications to
their deflation algorithm:

1. Instead of replacing equations of the original system by conditions from
derivatives of the system, we propose to add equations, introducing random
constants for uniform treatment.

2. Instead of using Gaussian Elimination, we propose to apply Singular Value
Decomposition (SVD) to determine the numerical rank1 of the Jacobian ma-
trix. The threshold on the numerical rank is our only critical numerical pa-
rameter to decide whether to deflate or not to deflate.

In particular, if the numerical rank of the Jacobian matrix at the current approxi-
mation equals R, we introduce R+1 additional variables which serve as multipliers
to selections of random combinations of columns of the Jacobian matrix (first pre-
sented in [18]). In [8] we showed that no more than m− 1 successive deflations are
needed to restore the quadratic convergence of Newton’s method converging to an
isolated root of multiplicity m. Once the precise location of the isolated singularity
is known, numerical techniques allow the calculation of the multiplicity structure,
using the methods in [1], [2], or [12] (see also [13, 16]).

The paper [2] analyzes our deflation algorithm from a different perspective,
showing that our algorithm produces differentials in the dual space as a by-product.
For the important special case when the Jacobian matrix has corank one, a modi-
fication of the deflation algorithm is presented in [2], which mitigates the expential
growth of the size of the matrices.

Our modifications to the methods of [11] and [10] were first [18] developed
in Maple, exploiting its facilities for polynomial manipulations and convenient
multi-precision arithmetic, and then implemented in PHCpack [17]. While the
performance of the method is promising on selected applications (such as the
fourfold isolated roots of the cyclic 9-roots problem, see [8]), the method suffers
from expression swell after a couple of deflations. In this paper, we describe a way
to “unfold” the extra multiplier variables, exploiting the special structure of the
matrices which arise in the deflation process. In the unfolding process, we naturally
arrive at trees (or more precisely, directed acyclic graphs), also employed in [4, 5].

Our Jacobian matrices have a particular sparse block structure which should
be also be exploited when computing the numerical rank and solving the linear
system. For this, we recommend the recent rank-revealing algorithms in [9].

Our algorithm is a symbolic-numeric algorithm; perhaps, the term “numeric-
symbolic” is more appropriate, as we produce by numerical means new equations
which regularize or recondition the problem. In particular, our algorithm gives –
in addition to more accurate values for the coordinates of the solution – a new
system of polynomial equations for which the isolated singular solution is a regular
root. Like [14], this paper documents the recent improvements to PHCpack [17].

1The determination of the numerical rank is a well studied problem in numerical linear algebra,
for recent progress we refer to [3] and [9].
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We encounter singular solutions when we solve polynomial systems using
homotopy continuation methods, see e.g. [15]. This encounter can only happen –
with probability one – at the end of the solution paths defined by the homotopy. So
homotopy continuation methods deliver approximate solutions to the singularities
which are then reconditioned by the deflation algorithm. One future project is the
use of deflation to decide locally whether a solution at the end of a path is isolated
or lies on a positive dimensional solution set. For this problem, deflation is needed
because the solution set might be multiple.

2. Problem Statement

In this section we fix the notation. Consider f(x) = 0, a system of N polynomial
equations in n unknowns, with isolated multiple root x

∗. As we restrict ourselves
to isolated roots, we have N ≥ n. At x = x

∗, the Jacobian matrix A(x) of f has
rank R < n. At stage k in the deflation, we have the system

fk(x,λ1, . . . ,λk−1,λk) =







fk−1(x,λ1, . . . ,λk−1) = 0
Ak−1(x,λ1, . . . ,λk−1)Bkλk = 0

hkλk = 1
(1)

with f0 = f , A0 = A, and where λk is a vector of Rk + 1 multiplier variables,
Rk = rank(Ak−1(x

∗)), scaled using a random vector hk ∈ CRk+1. The matrix Bk

is a random matrix with as many rows as the number of variables in the system
fk−1 and with Rk + 1 columns. The Jacobian matrix of fk is Ak. We have the
following relations

#rows in Ak : Nk = 2Nk−1 + 1, N0 = N, (2)

#columns in Ak : nk = nk−1 +Rk + 1, n0 = n. (3)

The second line in (1) requires the multiplication of Nk−1-by-nk−1 polynomial
matrix Ak−1 with the random nk−1-by-Rk + 1 matrix Bk, with the vector of
Rk + 1 multiplier variables λk.

If the evaluation of Ak−1Bkλk is done symbolically, i.e.: if we first com-
pute the polynomial matrix Ak−1(x,λ1, . . . ,λk−1)Bk before we give values to
(x,λ1, . . . ,λk−1), the expression swell will cause the evaluation to be very ex-
pensive. In this paper we describe how to first evaluate the Jacobian matrices
before the matrix multiplications are done. As this technical description forms a
blueprint for an efficient implementation, it also sheds light on the complexity of
the deflation.

3. Unwinding the Multipliers

We observe in (1) that the multiplier variables in λ1,λ2, . . . ,λk all occur linearly.
The Jacobian matrix of fk in (1) has a nice block structure which already separates
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the linearly occurring λk from the other variables:

Ak(x,λ1, . . . ,λk−1,λk) =







Ak−1 0
[

∂Ak−1

∂x

∂Ak−1

∂λ1

· · ·
∂Ak−1

∂λk−1

]

Bkλk Ak−1Bk

0 hk






, (4)

where the partial derivatives of an N -by-n matrix A with respect to a vector of
variables x = (x1, x2, . . . , xn) give rise to a vector of matrices:

∂A

∂x
=

[

∂A

∂x1

∂A

∂x2

· · ·
∂A

∂xn

]

,
∂A

∂xk

=

[

∂aij

∂xk

]

for A = [aij ] ,
i=1,2,...,N ,

j=1,2,...,n,

k=1,2,...,n.

(5)

The definition of ∂A
∂x
naturally satisfies the relation ∂

∂x
(Ax) = A.

Notice that in (4) the evaluation of
[

∂Ak−1

∂x

∂Ak−1

∂λ1

· · ·
∂Ak−1

∂λk−1

]

Bkλk (6)

yields the matrix
[

∂Ak−1

∂x
Bkλk

∂Ak−1

∂λ1

Bkλk · · ·
∂Ak−1

∂λk−1

Bkλk

]

(7)

which has the same number of columns as Ak−1.
As we started this section observing the separation of λk in the block struc-

ture of Ak, we can carry this further through to all multiplier variables. By “un-
winding” the multipliers, we mean the removal of the ∂

∂λ
-type derivatives. In the

end, we will only be left with derivatives of the variables x which are the only
variables which may occur nonlinearly in the given system f .

In the k-th deflation stage, we will then need ∂A
∂x
, ∂2A

∂x2 , . . . ,
∂kA
∂xk . If we exe-

cute (5) blindly, with disregard of the symmetry, we end up with nk matrices,
e.g.: for n = 3 and k = 10, we compute 59,049 3-by-3 polynomial matrices, which

is quite discouraging. However, as ∂2A
∂x1∂x2

= ∂2A
∂x2∂x1

, we enumerate all different

monomials in n variables of degree k which is considerably less than nk, e.g.: for
n = 3 and k = 10 again, we now only have 66 distinct polynomial matrices to
compute. To store ∂A

∂x
, a tree with n children (some branches may be empty) is a

natural data structure, see [4, 5].

4. A Directed Acyclic Graph of Jacobian Matrices

In this section, we explain by means of examples, how we build our data structures.
For example, consider k = 2:

A2(x,λ1,λ2) =







A1 0
[

∂A1

∂x

∂A1

∂λ1

]

B2λ2 A1B2

0 h2






. (8)
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The evaluation of A2 requires

A1(x,λ1) =





A 0
[

∂A
∂x

]

B1λ1 AB1

0 h1



 (9)

and the derivatives

∂A1

∂x
=







∂A
∂x

0
[

∂2A
∂x2

]

B1λ1

[

∂A
∂x

]

B1

0 0







∂A1

∂λ1

=





0 0
[

∂A
∂x

]

∗B1 0

0 0



 . (10)

For ∂A
∂x
as in (5), the product

[

∂A
∂x

]

B1 is
[

∂A
∂x1

B1
∂A
∂x2

B1 · · ·
∂A
∂xn

B1

]

. On the other

hand,
[

∂A
∂x

]

∗B1 uses the operator ∗ which treats its second argument as a vector
of columns, i.e. if B1 = (b1, b2, ..., bm) where bi (1 ≤ i ≤ m = R1 + 1) are the
columns, then

[

∂A

∂x

]

∗B1 =

[

∂A

∂x
b1

∂A

∂x
b2 · · ·

∂A

∂x
bm

]

. (11)

One may evaluate
[

∂A
∂x

]

∗B1 by computing the product
[

∂A
∂x

]

B1 followed by alter-
natingly permuting the columns of the result. By virtue of this operator ∗, we may
write

∂

∂λ1

([

∂A

∂x

]

B1λ1

)

=

[

∂A

∂x

]

∗
∂

∂λ1

(B1λ1) =

[

∂A

∂x

]

∗B1. (12)

All matrices share the same typical structure: the critical information is in
the first two entries of the first column. To evaluate A2, the matrices we need to
store are the Jacobian matrix A of the given system and its derivatives ∂A

∂x
and

∂2A
∂x2 . The role of the multipliers λ1 and λ2 in the evaluation is strictly linear, they
occur only in matrix-vector products.

For k = 3, the evaluation of

A3(x,λ1,λ2,λ3) =







A2 0
[

∂A2

∂x

∂A2

∂λ1

∂A2

∂λ2

]

B3λ3 A2B3

0 h3






(13)

requires the evaluation of A2(x,λ1,λ2) – which we considered above – and its
partial derivatives ∂A2

∂x
, ∂A2

∂λ1

, ∂A2

∂λ2

respectively listed below:

∂A2

∂x
=







∂A1

∂x
0

[

∂2A1

∂x2
∂2A1

∂x∂λ1

]

B2λ2

[

∂A1

∂x

]

B2

0 0






, (14)

∂A2

∂λ1

=









∂A1

∂λ1

0
[

∂2A1

∂λ1∂x

∂2A1

∂λ2

1

]

B2λ2

[

∂A1

∂λ1

]

B2

0 0









, (15)
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and

∂A2

∂λ2

=







0 0
[

∂A1

∂x

∂A1

∂λ1

]

∗B2 0

0 0






. (16)

As the multipliers occur linearly, we have that ∂2A1

∂λ2

1

= 0. Observing ∂2A1

∂λ1∂x
=

∂2A1

∂x∂λ1

, we have two more matrices to compute:

∂2A1

∂x2
=







∂2A
∂x2 0

[

∂3A
∂x3

]

B1λ1

[

∂2A
∂x2

]

B1

0 0






and

∂2A1

∂x∂λ1

=







0 0
[

∂2A
∂x2

]

∗B1 0

0 0






. (17)

Thus the evaluation of A3(x,λ1,λ2,λ3) requires
[

A ∂A
∂x

∂2A
∂x2

∂3A
∂x3

]

. The partial

derivatives with respect to the multiplier variables in λ1, λ2, and λ3 do not need
to be computed explicitly.

Just as a tree is a natural data structure to store the derivatives of A, a tree
is used to represent the deflation matrices. For memory efficiency, the same node
should only be stored once and a remember table is used in the recursive creation
of the tree, which is actually a directed acyclic graph, see Figure 1.
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Figure 1. Directed acyclic graph illustrating the dependency re-
lations in the evaluation of A3.



Evaluation of Jacobian Matrices for Newton’s Method with Deflation 7

The graph in Figure 1 has 14 nodes. If we perform the deflation three times
on a 10-by-10 system (10 equations in 10 variables), each time with the corank 1
(worst case scenario: maximal number of multipliers), then A3 would be a 87-by-80
matrix and the graph of evaluated matrices would occupy about 347Kb (8 bytes
for one complex number of two doubles). In case the rank would always be zero
(best case: only one multiplier in each case), then A3 would be a 87-by-13 matrix
and the graph of evaluated matrices would occupy about 257Kb.

k 1 2 3 4 5 6 7 8 9 10
#nodes 3 7 14 26 46 79 133 221 364 596

Table 1. Growth of the number of distinct derivative operators,
as nodes in a directed acyclic graph, for increasing deflations k.
The case k = 3 is displayed in Figure 1.

The size of the graph grows modestly, see Table 1. For example, for k = 10,
we have 596 nodes. On the other hand, we must be careful to remove evaluated
matrices when no longer needed. For k = 10 on a 10-by-10 system we would need
at least 206Mb in the best case and 8Gb if the corank is always one.

We conclude this section with an anecdotal reference to actual timings, done
on a 2.4 Ghz linux workstation, with the system cyclic 9-roots, illustrating that
even for a modest number of deflations, it pays off to use a directed acyclic graph.
Only to show the benefits of an efficient evaluation, we deflate twice, assuming
the corank is one each time, and end up with a 39-by-36 Jacobian matrix. It
takes only 30 milliseconds to evaluate this matrix using the pre-calculated directed
acyclic graph, which takes less than a second to set up. Computing the symbolic
representation of this Jacobian matrix in a straightforward manner and evaluating
it takes 25 minutes and 40 seconds!

5. The Deflation Algorithm in PHCmaple

Our Maple package PHCmaple [7] provides a convenient interface to the func-
tions of PHCpack. The interface exploits the benefits of linking computer algebra
with numerical software. PHCmaple is a first step in a larger project aimed at
integration of a numerical solver in a computer algebra system.

Below we give an example of using the PHCmaple function deflationStep

to deflate the system of equations Ojika1 (copied from [10] and member of our
benchmark collection in [8]):

{

x2 + y − 3 = 0
x+ 0.125y2 − 1.5 = 0.

(18)

The system has two isolated solutions: (x, y) = (−3,−6) which is regular and
(x, y) = (1, 2) which is multiple. The function deflationStep takes a system and
a list of solutions approximations as parameters, constructs the deflated systems
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for all multiple roots in the list, and returns the list of lists of solutions. The latter
are being grouped according to the rank of the Jacobian at the points, since for
the points with the same rank a common deflated system may be constructed.

> T := makeSystem([x,y],[],[x^2+y-3, x+0.125*y^2-1.5]):

> sols := solve(T):

> printSolutions(T,sols);

(1) [x = 1.0000+.44913e-5*I, y = 2.0000-.89826e-5*I]

(2) [x = -3.0, y = -6.0]

(3) [x = 1.0000+.60400e-5*I, y = 2.0000-.12080e-4*I]

(4) [x = 1.0000-.38258e-5*I, y = 2.0000+.76515e-5*I]

To each group of points corresponds a table:

> l := map(i->table(i),deflationStep(sols,T)):

Solution (2) is simple (the rank of its Jacobian is full), the cluster of (1),(3),(4)
approximates a multiple solution (rank = 1 < 2)

> map(g->[rank=g["rank"],num_points=nops(g["points"])],l);

[[rank = 2, num points = 1], [rank = 1, num points = 3]]

The multipliers used in the deflation step are

> multipliers := l[2]["multipliers"];

multipliers := [λ1, λ2]

The deflated system is linear in the multipliers (the matrix below is a part of (1)
for k=1)

> DT := l[2]["deflated system"]:

> eqns :=

> map(p->p=0,DT:-polys[nops(T:-polys)+1..nops(DT:-polys)]):

> matrix(2,1,[A[0]*B[1],h[1]])=evalf[3](linalg[genmatrix](eqns,

> multipliers, b));�
A0 B1

h1 � = �� −1.51 x − 1.31 I x + 0.786 − 0.618 I 0.911 x + 1.78 I x − 0.0562 + 0.998 I
0.197 y − 0.154 I y − 0.755 − 0.656 I −0.0140 y + 0.250 I y + 0.455 + 0.890 I

−0.681 + 0.732 I −0.115 − 0.993 I

��
> DTmu := subsVariables

(DT,[seq(lambda[i]=mu[i],i=1..l[2]["rank"]+1)]):

> DTmu:-vars;

[x, y, µ1, µ2]

> g := table(deflationStep(l[2]["points"],DTmu)[1]):

> printSolutions(g["deflated system"],g["points"]);

(1) [x = 1.0-.87360e-15*I, y = 2.0+.18332e-14*I,

mu[1] = -1.2402-.53612e-1*I, mu[2] = -.87951+.15347e-1*I,

lambda[1] = -.85183-.21804*I, lambda[2] = -.91795+.57730*I,

lambda[3] = .64096-.77868*I, lambda[4] = -.21656-.75758*I]
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Get the multiplicity of the multiple solution:

> mult_solution := g["points"][1]: mult_solution:-mult;

3

Compare conditioning to that of the original approximation.

> mult_solution:-rco , sols[1]:-rco;

0.02542, 0.9301 10−11

Above we have seen that the powerful symbolic-numeric capabilities of Maple
are useful for presenting the original and deflated systems in a compact, non-
expanded form. In the future we plan to represent the sequence of consecutive
deflations simply by the sequences of matrices and vectors Ak, Bk, hk. Combined
with the approach presented here, this would lead to a more efficient evaluation,
as well as provide a better control over the deflation process to the user.
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