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Abstract. Many polynomial systems have solution sets comprising multiple irreducible com-
ponents, possibly of different dimensions. A fundamental problem of numerical algebraic geometry
is to decompose such a solution set, using floating-point numerical processes, into its components.
Prior work has shown how to generate sets of generic points guaranteed to include points from every
component. Furthermore, we have shown how monodromy can be used to efficiently predict the par-
tition of these points by membership in the components. However, confirmation of this prediction
required an expensive procedure of sampling each component to find an interpolating polynomial
that vanishes on it. This paper proves theoretically and demonstrates in practice that linear traces
suffice for this verification step, which gives great improvement in both computational speed and
numerical stability. Moreover, in the case that one may still wish to compute an interpolating poly-
nomial, we show how to do so more efficiently by building a structured grid of samples, using divided
differences, and applying symmetric functions. Several test problems illustrate the effectiveness of
the new methods.
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1. Introduction. Polynomial systems arising in scientific and engineering appli-
cations often have positive dimensional solution sets; moreover, the solution set may
have components of different dimensions. For instance, in mechanical engineering, we
may be given a set of rigid parts and a prescription for how they are to be connected
by joints. These specifications can be formulated as a system of polynomial equations
whose solution set describes the locations in space of all the parts. It may happen
that some assemblies of the mechanism are rigid, whereas other assemblies of the same
parts and joints allow an internal motion having one or more degrees of freedom. The
notion of “degrees of freedom of motion” as used by a kinematician is thus equivalent
to the “dimension of a solution set” for the polynomial system. Problems with similar
characteristics arise in other disciplines.

For such polynomial systems, our task is to identify all irreducible components
of the solution set, characterizing each component by its dimension and degree and
providing witness points on the set. This problem is central in a developing new field:
“Numerical Algebraic Geometry,” a research program initiated in [33]. The goal is to
design numerically stable algorithms to efficiently solve polynomial systems arising in
science and engineering. In the next two paragraphs we explain the relation of the
current paper to previous work.

In [26], we presented a new method of embedding a polynomial system into a
larger polynomial system, such that the numerical solution of a sequence of homo-

∗The authors acknowledge the support of the Volkswagen-Stiftung (RiP-program at Oberwolfach).
†Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, USA

Email: sommese@nd.edu URL: http://www.nd.edu/˜sommese. This material is based upon work
supported by the National Science Foundation under Grant No. 0105653; and the Duncan Chair of
the University of Notre Dame.

‡Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
851 South Morgan (M/C 249), Chicago, IL 60607-7045, USA Email: jan@math.uic.edu or
jan.verschelde@na-net.ornl.gov URL: http://www.math.uic.edu/˜jan. This material is based upon
work supported by the National Science Foundation under Grant No. 0105739 and Grant No. 0134611.

§General Motors Research & Development, Mail Code 480-106-359, 30500 Mound Road, Warren,
MI 48090-9055, U.S.A. Email: Charles.W.Wampler@gm.com.

1



2 ANDREW J. SOMMESE, JAN VERSCHELDE, AND CHARLES W. WAMPLER

topies computes generic points on all solution components of the original polynomial
system. These witness points form the basic data to decompose the solution sets into
irreducible components, as we showed in [27]. Starting at any solution point, one may
use numerical continuation to sample the component that contains it and construct
an interpolation polynomial vanishing on the component. This polynomial can then
be used as a filter to find all other witness points in the same component. In this way,
all of the points can be sorted into components, eventually producing a list of all the
components and certain properties of them, such as degree and dimension. However,
the construction of the interpolating polynomial is both expensive and numerically
difficult for high degree components in many variables. In [28], we reduced the num-
ber of variables by detecting the linear span of a component and reduced the degree
of the interpolant by using central projections, but even so, numerically challenging
cases remain.

An alternative approach to determining which witness points lie on the same
component is to use monodromy to find paths connecting them [29]. In computational
experiments, this approach has been found to be numerically stable on high degree
components and highly successful in predicting the correct decomposition. However,
it is heuristic in that connections are discovered via randomly generated monodromy
loops, with no a priori way to know when all connections have been found. Thus,
the prediction must still be validated by other means. In [29], this was accomplished
by computing an interpolating polynomial, as before, so the problem of high degree
polynomials was not eliminated.

The most significant contribution of this paper is to prove theoretically and
demonstrate computationally that linear traces are sufficient for validating a proposed
decomposition. Due to the superior numerical stability of linear systems, we are able
to run our decomposition method entirely with standard machine arithmetic. For
polynomial systems with coefficients given as double floating-point numbers, whose
evaluation map is numerically well conditioned, and whose irreducible components
have multiplicity one, our algorithm does not need multi-precision arithmetic to de-
compose the solution sets, even in the occurrence of high degree components. For
components with multiplicity higher than one, multi-precision arithmetic is required
to track the singular paths [31].

In the case that one still wishes to compute polynomials that vanish on a compo-
nent, the higher order traces can be used to good effect. First, the witness points on
a component can be marched forward together to provide a structured grid of sample
points. Then, with a “bootstrapping” technique, we can construct the Newton form
of the interpolating polynomial. The use of traces enables the direct application of
Newton interpolation, eliminating the need for extra bootstrapping samples. A final
improvement in efficiency is gained by using Newton identities to reduce the number
of samples to the number of monomials in the interpolant, which is the minimum
possible. However, this last shortcut is inadvisable for high degree components as our
tests show that it is numerically less stable than using a full grid of samples.

Several test problems illustrate the effectiveness of the methods. Particularly
notable are the results on a problem from mechanical engineering: a special Stewart-
Gough platform mechanism that has internal motion. For one case in which the
motion is one irreducible component of degree 28, the computing time for validating
the decomposition predicted by monodromy is reduced from 1.3 hours using our former
methods to less than 5 seconds with the linear trace. This is now comparable to the
time required for a related example in which the degree 28 component breaks up
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into several low degree irreducibles. Hence the running time of the algorithm is no
longer sensitive to such changes in the geometry of the solution set. Moreover, it
is interesting to note that the automated numerical method discovered a solution
component that was missed by experts using a manual approach aided by computer
symbolic processing.

In brief, the paper proceeds as follows. In the next section, we collect some results
on traces, which are then applied to monodromy in section three. In sections four and
five, we outline the interpolation algorithms and apply them in the last section on the
cyclic 8-roots and 9-roots problems and on the mechanism problem just mentioned.

We would like to thank the referees for their helpful remarks.

2. Traces of Functions. The results in this section are quite old, e.g., Theo-
rem 2.1 is for the most part, just a statement of the constructions that go along with
one of the main approaches to the Weierstrass Preparation Theorem [8, 9]. Since
we do not know a reference for the full result, we include a proof. The statement in
Corollary (2.2) is equivalent to the zero-sum relations that have been used in a similar
context, e.g., [3, 6, 20, 21, 22, 23, 24].

It is natural to consider functions f(x1, . . . , xd) of points (x1, . . . , xd) ∈ Cd which
are invariant under the symmetric group Sd of permutations of the variables. To be
precise, given any permutation, σ(i) = ji for i = 1, . . . , d, of the integers from 1 to
d, we have a linear transformation of Cd, which by abuse of notation we also label σ,
which takes (x1, . . . , xd) to (xj1 , . . . , xjd

). A function on Cd is said to be symmetric
if

f ◦ σ = f(xj1 , . . . , xjd
) = f(x1, . . . , xd) (2.1)

for all σ ∈ Sd. It is a basic fact of invariant theory that the ring of symmetric poly-
nomials on Cd, denoted C[x1, . . . , xd]

Sd , is abstractly isomorphic to the ring of poly-
nomials on Cd, i.e., there exists a ring isomorphism C[z1, . . . , zd] ∼= C[x1, . . . , xd]

Sd .
There are many useful choices of assignments of symmetric functions to the zi making
this isomorphism explicit. The two that we use are

1. the assignment leading to the elementary symmetric functions

zi 7→ ti :=
1

(d− i)!i!

∑

σ∈Sd

xσ(1) · · ·xσ(i) =
∑

1≤j1<...<ji≤d

xj1 . . . xji
(2.2)

for i from 1 to d; and
2. the assignment leading to the power sums

zi 7→ pi :=
1

(d− 1)!

∑

σ∈Sd

xiσ(1) =

d∑

j=1

xij (2.3)

for i from 1 to d.
The connection of ti with roots of a polynomial of degree d is easy to see, upon noting

(w − x1)(w − x2) · · · (w − xd) = wd − t1w
d−1 + t2w

d−2 − · · ·+ (−1)dtd. (2.4)

If, in the right hand side of (2.4), we (like in [16]) substitute w by xi, for i from 1 to
d, and add up these n sums, then we obtain Newton’s relation:

pd − t1pd−1 + t2pd−2 − · · ·+ d(−1)dtd = 0. (2.5)
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The equation (2.5) allows to write the elementary symmetric functions in terms of
the power sums and vice versa.

The following fact is classical.

Theorem 2.1. Let p : X → Y be a proper, finite, d-sheeted surjective complex
analytic morphism from a reduced pure n-dimensional complex analytic space X to
a normal irreducible and reduced complex analytic variety Y . Given a holomorphic
function f : X → C, and a symmetric polynomial g : Cd → C, there is a unique
holomorphic function fg : Y → C, such that for all points y in the Zariski open and
dense set U ⊂ Y such that p : p−1(U)→ U is an unramified cover, it follows that for
the d points {x1, . . . , xd} = p−1(y), we have fg(y) := g(f(x1), . . . , f(xd)).

For the symmetric functions ti we denote fti by tri,p(f), and call it the i-th trace.

It is traditional to call tr1,p(f), or
tr1,p(f)

d
, the trace, and trd,p(f), the norm of f . In

fact, the ti all occur naturally as traces, e.g., letting A : Cd → Cd denote a matrix

with eigenvalues {x1, . . . , xd}, ti is the trace of the matrix A induces on ∧iCd ∼= C(d

i),
the i-th exterior product of Cd. The parameterized version of (2.4) is

fd − tr1,p(f)f
d−1 + tr2,p(f)f

d−2 + · · ·+ (−1)dtrd,p(f) = 0. (2.6)

This line of reasoning is used in one main approach to the Weierstrass Preparation
Theorem [8, 9].

Proof. (of Theorem 2.1). The proof that fg is holomorphic follows by a minor
variant of the argument used in [8, Theorem A4]. To see this, note that there is a
codimension one analytic subset B ⊂ Y such that X \ p−1(B) and Y \B are smooth;
and such that pX\p−1(B) : X\p−1(B)→ Y \B is a d-sheeted unramified cover. Indeed,
define U ′ equal to Y minus the union of

1. the singular set Sing(Y ) of Y , which is an analytic set of complex codimension
2 [8, Theorem Q12]; and

2. the image under p of the singular set of X , which is an analytic set by Rem-
mert’s Proper Mapping Theorem [8, Theorem N1].

Thus pp−1(U ′) : p
−1(U ′)→ U ′ is a proper and finite map between complex manifolds.

The set of branch points R of this map is an analytic set on U ′, since it is the set
defined by the local condition that the determinant of the Jacobian of the mapping
pp−1(U ′) is zero. Define U := U ′ \ p(R).

Thus for y ∈ Y \ B, fg(y) := g(f(x1), . . . , f(xd)) is a holomorphic function.
Since p is proper, given any point y ∈ B, there is a relatively compact open set U
containing y such that p−1(U) is relatively compact and f is bounded in absolute value
on p−1(U). Thus fg is bounded on U \ (B ∩ U). Thus by the Riemann Extension
Theorem for bounded holomorphic functions, fg|U has a unique holomorphic extension
to Y \ Sing(Y ), where Sing(Y ) denotes the singular set of Y . Since Y is normal, it
follows from the Levi Extension Theorem [8, Theorem Q15i], that fg|Y \Sing(Y ) has a
unique holomorphic extension to Y .

In Theorem 2.1, if it is assumed in addition that X , Y , p, and f are algebraic, then
it follows that fg is also algebraic. Rather than introduce all the needed definitions
and algebraicity criteria to state the general case, we prove only a corollary that covers
our needs.

Corollary 2.2. Let Z ⊂ Cn be a pure k-dimensional algebraic subvariety of
Cn. Assume

1. that π : Cn → Ck is a generic linear projection; and
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2. that φ is a linear function on Cn, which is one-to-one on a fiber π−1
Z (y)

for some y ∈ Ck with π−1(y) consisting of smooth points of Z at which the
tangent space, dπZ , has rank k.

Then, it follows that for all j, trj,πZ
(φ) is a polynomial on Ck of degree less than or

equal to j. In particular, tr1,πZ
(φ) is linear or constant.

Proof. Let q denote the map Cn → Ck+1 given by (φ, π). Let z denote the
coordinate on Ck+1 such that z(q(x)) = π(x) and let L denote the projection of
Ck+1 → Ck such that π = L ◦ q. By the Noether normalization theorem it follows
that the genericity of π implies that p := πZ is a proper finite-to-one morphism. Since
πZ = L ◦ qZ , it follows by elementary point set topology that qZ is proper and finite
also. Moreover by genericity it follows that the degree d of p is degZ, by the hypothesis
on φ that qZ maps Z generically one-to-one to Ck+1, and therefore that deg q(Z) =
degZ. Since for a dense open set U ⊂ Ck, q gives an isomorphism of p−1(U) with
L−1
q(Z)(U), we conclude that trj,p(φZ ) and trj,Lq(Z)

(zq(Z) agree on U and hence on all

of Ck. Thus, with the convention that tr0,Lq(Z)
(zq(Z)) = tr0,p(φZ ) = 1, we have the

equivalent relations given in Equation (2.6) f d−tr1,p(f)f
d−1+· · ·+(−1)dtrd,p(f) = 0,

d∑

i=0

(−1)itri,Lq(Z)
(zq(Z))z

d−i
q(Z) = 0 (2.7)

d∑

i=0

(−1)itri,p(φZ)φZd−i = 0. (2.8)

Since q(Z) is a degree d hypersurface and zd−tr1,p(zq(Z))z
d−1+ · · ·+(−1)dtrd,p(zq(Z))

vanishes when restricted to it, we conclude that this must be a minimum degree
defining polynomial of q(Z). Thus we have proved the assertions of the Corollary.

Remark 2.3. Note that assuming the genericity hypothesis on π in Corollary 2.2,
the hypothesis on φ can be replaced by the equivalent more easily checked condition
that φ is a linear function on Cn, which is one-to-one on a fiber π−1

Z (y) for some
y ∈ Ck with π−1(y) consisting of degZ distinct points.

Remark 2.4. Note that, without the genericity assumption, Corollary 2.2 fails
for a number of reasons. First, it might be that πZ is not proper. In this case, the
traces are only rational functions. For example, taking Z := {xy − 1 = 0} ⊂ C2 and

π : C2 → C given by π(x, y) = x, we get tr1,πZ
(y) =

1

x
. By the Noether normalization

theorem, the genericity assumption about the linear projection π implies that πZ is
proper and finite, but even proper and finite, without the genericity assumption, is
not enough. The key implication of genericity of the linear projection π, beyond the
properness of πZ , is the fact that for generic linear projections π, degZ = degπZ .
For example, taking Z := {y2 − xd = 0} ⊂ C2 and π : C2 → C given by π(x, y) = x,
we get tr2,πZ

(y) = xd. In general, if
1. Z ⊂ Cn is a pure k-dimensional algebraic subvariety of Cn;
2. f is linear on Cn; and
3. π : Cn → Ck is a linear projection with πZ proper, finite, but not necessarily

satisfying degZ = degπZ ,
then it follows that deg tri,πZ

(f) ≤ degZ − degπ + i.

3. An Application to Monodromy. In this section we show that the linear
trace gives necessary and sufficient conditions to determine the breakup of the set
witness points of the algorithm of [27] into the disjoint subsets of generic points
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corresponding to the numerical irreducible decomposition. Usually, we use this result
to give a very fast verification of the monodromy breakup of the algorithm of [29],
but it is also called into play if the monodromy breakup is too fine. The algorithms
will be described in the next section.

The important observation that the linear trace is sufficient is due to Rupprecht
[20] in the case of curves. We note that there are two serious gaps in the argument of
[20], which are filled by Theorems 3.3 and 3.4 below.

The strategy is to slice and project to reduce to the case of a curve in P2. To
do this we need a number of lemmas on linear projections and the intersections with
linear spaces that are general subject to certain constraints. Unless otherwise said,
closure is in either the Zariski topology or the usual topology induced by the Euclidean
metric on Cn.

Lemma 3.1. Let A be a pure k-dimensional reduced algebraic subset of Cn, with
irreducible decomposition ∪ri=1Ai. Assume that L is an (n − k)-dimensional linear
subspace of Cn meeting A in a finite set A consisting of degA distinct isolated points.
Then, taking closures in Pn, L∩A = A. Moreover, if k ≥ 2, then letting L be a general
member of the set of (n − k + 1)-dimensional linear subspaces of Cn that contain L,
it follows that L ∩ Ai is an irreducible curve for each i = 1, . . . , r.

Proof. The statement that L ∩ A = A follows from any of a number of related
results, e.g., [5, Example 8.4.6] or [5, Example 12.3.2].

To prove the second statement it suffices to prove the analogous result on Pn

using the closures of the sets Ai, L, L. Since L ∩A is a set A of cardinality degA, it
follows that A consists of smooth points of A, and that the intersection of A and L are
transverse at the points of intersection. From this it follows from Bertini’s Theorem,
that the intersection with Ai of a general member of the set M of (n − k + 1)-
dimensional linear subspaces of Cn that contain L is smooth away from the singular
locus of Ai. If k = 2, so that the set M consists of hyperplanes, the rest of the
argument follows exactly as in [25, Theorem 3.42]. If k ≥ 2, the result follows by a
straightforward descending induction. For example, if k = 3, then it follows using
[25, Theorem 3.42] that the intersection with Ai of a general member of the set of
(n− 1)-dimensional linear subspaces H of Cn that contain L is irreducible. Keeping
L as it is, taking H in place of Cn, and replacing the Ai with Ai ∩H , we now have
dimAi ∩H = 2, i.e., we have reduced to the proven result.

Lemma 3.2. Let n, L, L, A, A = A1 ∪ · · · ∪ Ar be as in Lemma 3.1. Choose a
general linear projection π : L → C, which is one-to-one on A. Let π̃ : Cn → Ck+1

be a linear map extending π, so that the fibers of π̃ are parallel to the fibers of π.
Then π̃A and π̃A∩L are generically one-to-one and proper. Moreover π̃A (respectively,
π̃A∩L), maps a neighborhood of A in A (respectively, in A∩L) isomorphically onto a
neighborhood of the image of A in A (respectively, in A ∩ L).

Proof. We give the proof that π̃A is generically one-to-one and proper, and leave
the remaining argument, which follows the same line of reasoning to the reader. We
work in the projective space Pn. As explained in [27], π̃ corresponds to the central
projection from a linear I := Pn−k−2 contained in the linear Pn−1 at infinity, i.e., in
Pn \Cn. The condition that L is mapped to a line corresponds to I ⊂ L\L. Since by
Lemma 3.1, we know that (L\L)∩ (A\A) = ∅, we know, as discussed in [27], that π̃A
is proper, and therefore finite-to-one on A. If π̃A was not generically one-to-one, then
deg π̃(A) would be less than degA. But this does not happen since π̃ is one-to-one on
A, and the degree of π̃(A) is the cardinality of π̃(A) which is equal to the intersection
of π̃(A) with the line π̃(L).
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Theorem 3.3. Let A be a reduced pure k-dimensional algebraic subset of Cn.
Let A := A1 ∪ · · · ∪ Ar be the decomposition into distinct irreducible components.
Let L ⊂ Cn be a general linear subspace of dimension n − k meeting A transversely
in the set A := A ∩ L. For all i = 1, . . . , r, let Ai := Ai ∩ L and let di be the

cardinality of the set Ai. Let d denote the cardinality of A, i.e.,
r∑

i=1

di. Let U denote

the Zariski open set of the Grassmannian of (n − k)-dimensional linear subspaces of
Cn consisting of linear spaces transverse to A. Let Sym(A) (respectively Sym(Ai))
denote the symmetric group of all permutations of A (respectively Ai). Considering
L as a basepoint of U , the image in Sym(A) of the natural monodromy action of

π1(U,L) on A is the direct sum
r⊕

i=1

Sym(Ai).

Proof. We can assume without loss of generality that no components of A are
linear, since such components do not affect the result.

Choose L and π̃ : Cn → Ck+1 as in Lemma 3.2. Let U ′ denote the Zariski open
set of the projective space of lines in Ck+1, consisting of the lines transverse to π̃(A).
Note that for ` ∈ U ′ we have that π̃−1(`) ∈ U . Thus identifying A with π̃(A), the
homomorphism π1(U

′, π̃(L)) → Aut(A) factors π1(U
′, π̃(L)) → π1(U,L) → Aut(A).

Thus, from here on we can assume without loss of generality that n = k+1. Moreover,
a line in L transverse to L ∩A is transverse to A in Cn. Thus, letting U ′′ denote the
Zariski open set of lines in L ∼= C2 that are transverse to L∩A, we have a composition
π(U ′′, L)→ π1(U,L)→ Aut(A). Thus without loss of generality we can assume that
n = 2.

Thus we have n = 2 and k = 1. We have the classical fact [1, Lemma, page 111]
that the image of π1(U,L) ∈ Aut(A) surjects onto Sym(Ai) for each i = 1, . . . , r.
In particular, we can assume without loss of generality that r ≥ 2. By elementary
algebra, we see that using this surjectivity, we would be done if we showed that, for
each i, there exist two distinct points a, b ∈ Ai and a γ ∈ π1(U,L), such that γ acts on
A by sending a→ b, b→ a, and leaves the remaining points of A fixed. The classical
argument for the existence of such a γ in the irreducible case [1, Lemma, page 111]
carries over with no change to the reducible case if we show that for each i = 1, . . . , r,
and a generic point x ∈ Ai, the tangent line ` ⊂ C2 to Ai at x is transverse to Aj for
j 6= i. To show this, it suffices to work projectively, i.e., show the fact for the closures
Bi in P2 of the Ai. To see this, consider the dual curves B̂i ⊂ (P2)∗. Here (P2)∗

is the P2 whose points correspond to lines in the P2 that the Bi belong to, and B̂i

is the closure in (P2)∗ of the set of points corresponding to tangent lines to smooth
points of Bi. What we need is exactly that Bi and Bj for distinct i, j go to distinct

curves B̂i and B̂j . Noting that none of the Bi are linear, this would follow if we knew

that the dual of B̂i is Bi. This is a basic fact about dual curves (and more generally
varieties) [14].

To prove the corollary that we will need of Theorem 3.3, we need the following
generalization of the classical First Lefschetz Theorem. This topological result is a
special case of a useful general result of Goresky and MacPherson [7, Theorem, §5.2,
page 199].

Theorem 3.4. [Goresky-MacPherson] Let D be an arbitrary algebraic subset of
Cn, and let U := Cn \D. Then given a general 1-dimensional linear subspace L ⊂ Cn

and a point x ∈ L∩U , it follows that we have a surjective map of fundamental groups

π1(L ∩ U, x)→ π1(U, x)→ 0.



8 ANDREW J. SOMMESE, JAN VERSCHELDE, AND CHARLES W. WAMPLER

Proof. Following the notation of [7, §5.2, Theorem on page 199], take X to be the
Zariski open dense set U of Pn with n := N , π the inclusion, c = n − 1, which gives
φ(k) = n− 1 for k = 0, and −∞ for k 6= 0, which gives n̂ = 1.

Corollary 3.5. Let A be a reduced pure k-dimensional algebraic subset of Cn.
Let A := A1 ∪ · · · ∪Ar be the decomposition into distinct irreducible components. Let
π : Cn → Ck denote a generic linear projection, and let x, y ∈ Ck denote general
points, with L := π−1(x) ⊂ Cn a general linear subspace of dimension n− k meeting
A transversely in the set A := A ∩ L. For all i = 1, . . . , r, let Ai := Ai ∩ L and let

di be the cardinality of the set Ai. Let d denote the cardinality of A, i.e.,
r∑

i=1

di. Let

U denote the Zariski open set of the line ` ⊂ Ck containing x, y, consisting of the
u ∈ ` such that π−1(u) is transverse to A. Let Sym(A) (respectively Sym(Ai)) denote
the symmetric group of all permutations of A (respectively Ai). Considering L as a
basepoint of U , the image in Sym(A) of the natural monodromy action of π1(U,L) on

A is the direct sum
r⊕

i=1

Sym(Ai).

Proof. By the same reduction as in Theorem 3.3, it can be assumed that n = 2,
k = 1, and that we are working with compact curves in P2. Given the Zariski open
set U ′ of points in (P2)∗ corresponding to lines transverse to A, and given a general
line ` ⊂ (P2)∗, with a point L on `, then setting U := ` ∩ U ′, we will be done if we
show that π1(U,L)→ π1(U,L)→ 0. This is guaranteed by Theorem 3.4.

Theorem 3.6. Let A ⊂ Cn be an affine algebraic set of pure dimension k. Let
A := A1 + · · · + Ar denote the irreducible decomposition of A. Let π : Cn → Ck

be a generic linear projection and let ` ⊂ Ck be a general line. Let L := π−1(x)
for a general point x ∈ `. Let φ be a linear function on Cn which is one-to-one on
A := π−1

A (x). For all i = 1, . . . , r let Ai := π−1
Ai

(x). Let U denote the Zariski open
set of the Grassmannian of (n− k)-dimensional linear spaces of Cn corresponding to
(n− k)-dimensional linear spaces transverse to A. Let B denote a subset of A. Then
the following are equivalent:

1. B is invariant under the monodromy action of π1(U,L) on A;
2. B = ∪i∈IAi for some subset I ⊂ {1, . . . , r};
3. the analytic continuation of

∑
b∈B φ(b) as a function of x is linear.

Proof. The equivalence of 1) and 2) follows from Theorem 3.3. Corollary 2.2
shows that 2) implies 3). So it remains to show that 3) implies 1).

To see this assume that B contains a point b ∈ Ai but not a point a ∈ Ai. Let
y1, . . . , yN denote the points of B \ b. Let U ′ denote the Zariski open subset of `
consisting of the points x′ ∈ ` with π−1(x′) transverse to A. By Corollary 3.5, there
is a γ ∈ π1(U

′, L) which takes yj → yj for all j and interchanges a and b. Thus since
the analytic continuation of

∑
b∈B φ(b) is linear in x, we conclude that

φ(a) +

N∑

j=1

φ(yj) = φ(b) +

N∑

j=1

φ(yj), (3.1)

and thus that φ(a) = φ(b). But this contradicts φ being one-to-one on A. Thus if
b ∈ Ai for some point b ∈ B, we conclude that Ai ⊂ B.

Remark 3.7. Here is a simple example to show the sort of bad behavior that
genericity rules out. Let A be the curve in C2 defined by (y2−x)(y2−4x)(y2−9x) = 0.
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Consider the projection π : C2 → C given by π(x, y) = x. Note that πA is proper
and generically six-to-one with degA = 6. For the linear function φ on C2, choose y.
Over x ∈ C, the values of φ on the fiber π−1

A (y) are

{√x,−√x, 2√x,−2√x, 3√x,−3√x}. (3.2)

The groupings corresponding to the irreducible components are {√x, −√x}, {2√x,
−2√x}, and {3√x, −3√x}. Notice though that the sum (−1)√x+(−2)√x+3

√
x is

identically zero, and hence linear, though the grouping {−√x,−2√x, 3√x} does not
correspond to a union of irreducible components of A.

Remark 3.8. In practice, when we use Theorem 3.6, it is convenient to use a
generic projection π : Cn → Ck+1. Letting A := A1 + · · ·+Ar be as in Theorem 3.6,
it follows, e.g., from [27, §5.2], that

1. the map πA from A to its image π(A) is proper;
2. the images of A,A1, . . . , Ar under π are affine algebraic sets with π(A) having

the irreducible decomposition π(A) := π(A1) + · · ·+ π(Ar);
3. deg π(Ai) = degAi for all i; and
4. πA is one-to-one on π−1

A (U) for some Zariski open dense set of π(A).
Moreover, since the composition of π with the projection Ck+1 → Ck given by
(z1, . . . , zk+1)→ (z1, . . . , zk) is generic, we can use π(A) and this projection in place
of A and the generic projection π of Theorem 3.6. Then, zk+1 has the properties
required of φ in Theorem 3.6, and, since the projection π : Cn → Ck+1 is generic, we
can take one of the coordinate axes, e.g., the zk axis, as `.

It is worth noting that the defining equation of π(A) under a generic projection
will have every monomial of total degree less than or equal to the degree of A occurring,
no matter how sparse the defining equations of A are.

4. Algorithms for the Linear Trace. In this section we present an algorithm
to verify the decomposition predicted by the monodromy algorithm. We first define
a projection operator which organizes the samples in a structured grid. The main
part of this section is the algorithm Certify, followed by comments on how to inte-
grate this algorithm in the numerical irreducible decomposition of a pure dimensional
component.

4.1. Sampling on Parallel Slices. To compute the linear trace, a structured
grid of sample points is useful. The same construction is used in the following section
concerning higher traces. Our technique is to use random slicing hyperplanes to define
the projection operator π, as follows.

Definition 4.1. Consider a k-dimensional component in Cn and suppose we use
the k hyperplanes

ci0 + ci1x1 + ci2x2 + · · ·+ cinxn = 0, i = 1, 2, . . . , k, (4.1)

as slices to obtain generic points on the component. To project the generic points
down to Ck+1 we use the map π : Cn → Ck+1 defined by




x1

x2

...
xn−1

xn



7→




y1

y2

...
yk
yk+1



=




c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
ck1 ck2 · · · ckn
a1 a2 · · · an







x1

x2

...
xn−1

xn



, (4.2)
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where the numbers ai, i = 1, 2, . . . , k are chosen at random.
The main property of this projection operator is highlighted in the following

proposition.
Proposition 4.2. For a k-dimensional component in Cn, let π : Cn → Ck+1 be

as in (4.2). Then for any generic point x = (x1, x2, . . . , xn) on the slices used in the
definition of π, we have

π(x) = (−c10,−c20, . . . ,−ck0, a1x1 + a2x2 + · · ·+ anxn). (4.3)

To obtained a structured grid of samples from the k-dimensional component,
we let only the constant terms ci0 of the slicing planes vary, for i = 1, 2, . . . , k.
Geometrically this means we take samples on slices parallel to each other.

4.2. Certification of Monodromy Groupings with Linear Traces. Sup-
pose we are given a set S of d generic points on random hyperplanes L = (L1, L2,

. . . , Lk), where the points are known to be from the same k-dimensional irreducible
component because the monodromy algorithm found loops connecting them. As the
monodromy algorithm might miss some connections, the actual degree of the compo-
nent could be higher than d. With linear traces we verify whether the degree of the
component equals d, described by the Certify algorithm.

Algorithm 4.3. b = Certify(f, L, S, ε)
Input: f(x) = 0 is a polynomial system with x ∈ Cn;

L = (L1, L2, . . . , Lk) is a tuple of k random hyperplanes;
S is set of d generic points satisfying f(x) = 0 and L(x) = 0;
ε is tolerance to decide whether a number is close enough to zero.

Output: b ∈ {false, true}, b is true when S is a set of generic points
on a degree d irreducible component, false otherwise.

let S(0) = S, c
(0)
0 = c0; [notational convenience]

for i = 1, 2 do [sample to get test points]

choose c
(i)
0 ∈ C at random;

L
(i)
k := c

(i)
0 + ck1x1 + ck2x2 + · · ·+ cknxn; [L

(i)
k is parallel to Lk]

compute S(i) as solutions to f(x) = 0, [apply homotopy from Lk to L
(i)
k

and L1(x) = L2(x) = · · · = L
(i)
k (x) = 0; using S as start solutions]

end for;
use L to define π : Cn → Ck+1 as in (4.2); [projection operator]
let φ(x) = zk+1, where z = π(x); [definition of φ in Theorem 3.6]

for i = 0, 1, 2 compute si :=
∑

x∈S(i)

φ(x); [sum (k+1)-th coordinate]

find a, b such that si = a+ bc
(i)
0 for i = 0, 1; [linear interpolation of trace]

return (|s2 − (a+ bc
(2)
0 )| < ε). [the comparison certifies]

The justification for this algorithm is Theorem 3.6. The first k coordinates of
π(x) in (4.2) are the generic projection required by the theorem and the (k + 1)-th
coordinate is the linear function φ. We test linearity of the trace by sampling in
a generic direction: the kth coordinate of π(x) suffices due to the genericity of the
coefficients used to define it. By the theorem, linearity implies that the set of points
S is the union of witness points for irreducible sets whose degrees sum to d, while
by assumption, monodromy has found that all the points are in one irreducible set.
Thus, there is one set and its degree is d.
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4.3. An Integrated Decomposition Algorithm. The linear trace test can
be used as a simple replacement for the filtering polynomials used in our earlier pa-
pers [27, 28, 29], but additional efficiencies can be gained by integrating the technique
more deeply into the algorithms.

First, we can improve the termination condition for the monodromy method.
Previously, we continued to compute monodromy loops until either all points are
connected into one group or until some preset number of consecutive loops fails to
find any new connections. Setting the number of these stable loops too high is costly,
while too low means that some connections could be missed. With the linear trace test,
one can determine when a group is complete and immediately remove it from further
iterations. Once the number of uncertified groups is reduced to a small number,
combinations of them can be examined to discover which ones sum to form linear
traces, thereby completing the decomposition without further monodromy loops.

In this vein, it is possible to perform the decomposition with linear traces only, as
is done for a single multivariate polynomial in [6, 20]. However, without monodromy,
the algorithm is combinatorial and is likely to be too expensive for high degrees. The
use of traces in [21] (with predecessors papers [22, 23, 24]) is followed by linear algebra
techniques. Recently, monodromy and traces have been combined to factor a single
multivariate polynomial in [3].

The factorization of a single multivariate polynomial can be regarded as a special
case of the decomposition of the solution sets of polynomial systems. For this general
problem, we indicate a second improvement. In implementing the monodromy algo-
rithm in [29], it is worthwhile to compute the linear span of the components as we
described in [28]. Generic points that lie in different spans, lie on different irreducible
components, so we only have to execute the monodromy starting at points that lie
in the same linear span. Also the restriction to the linear span will give a speedup
when there is a gap between the dimension of the linear span and the dimension of
the ambient space.

Finally, the main decomposition algorithm [27] requires a test to determine if a
generic point obtained from the embedding algorithm at dimension k is a member of
some irreducible set of dimension greater than k. Originally, we used the interpolating
polynomials for these sets to determine membership, but as in [28], it is possible
to use a homotopy test of membership. Using the homotopy membership test for
higher dimensional sets and certifying irreducible groups by linear traces, we eliminate
completely the expensive and numerically difficult step of computing interpolating
polynomials, which represents a big improvement in our overall algorithm.

5. Interpolation Algorithms via Traces. As just mentioned, the computa-
tion of interpolating polynomials is no longer required to complete the numerical
irreducible decomposition. Nevertheless, in the case that one still wishes to compute
such polynomials, the higher order traces can be useful, as we show in this section.
For components of low degree and span, interpolating polynomials can be competitive
with a homotopy membership test.

Our techniques for computing interpolating polynomials can be briefly summa-
rized as follows. Since the witness points for a component lie on a linear slice, they
can be marched forward together to compute a structured grid of sample points. In
[29], a “bootstrapping” technique was used to construct the Newton form of the inter-
polating polynomial. Here, by using traces, we eliminate the expense of extra samples
for bootstrapping and apply Newton interpolation directly. Finally, using the Newton
identities, we reduce the number of samples to the number of monomials, which is
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optimal.

5.1. Newton Interpolation with Divided Differences. To interpolate a bi-
variate function f(x, y) with a polynomial p(x, y) of degree d, we need to sample
the function at points (ai, bj), for all i, j: 0 ≤ i + j ≤ d. The Newton form of the
interpolation polynomial p(x, y) is classical (see e.g. [12], [16]) :

p(x, y) =

d∑

k=0

d−k∑

l=0

f [a0 · · · ak; b0 · · · bl]
k−1∏

i=0

(x− ai)

l−1∏

j=0

(y − bj). (5.1)

The coefficients f [a0 · · · ak; b0 · · · bl] are divided differences, defined inductively. Start-
ing with f [ak; bl] = f(ak, bl) all divided differences are generated by:

f [a0a1 · · · ak; bl] =
f [a0a1 · · ·ak−1; bl]− f [a1a2 · · · ak; bl]

a0 − ak
(5.2)

and f [a0a1 · · · ak; b0b1 · · · bl]

=
f [a0a1 · · · ak; b0b1 · · · bl−1]− f [a0a1 · · · ak; b1b2 · · · bl]

b0 − bl
, (5.3)

for k = 0, 1, . . . , d and l = 0, 1, . . . , d − k. The efficient computation of divided
differences is organized in a table, requiring only one vector of elements to store.
Generalizing (5.1) to any number of variables is only burdened by notation.

The direct application of Newton interpolation is prevented because the interpo-
lation points must lie on a grid structured for all directions. When we sample curves
or surfaces we always have one last component which is different for all samples. To
overcome this we may apply a “bootstrapping” technique. We explain the idea in
the case of two variables. For x = ak, we construct a univariate polynomial p(y)
interpolating through the roots. Note that at those roots, y is usually different from
the chosen grid points bl. Once we have p(y), we use it to find f(ak, bl) = p(bl), and
we have a complete structured grid on which the above formulas (5.1) apply. This
construction generalizes to the Newton form of the interpolating polynomial to repre-
sent any surface of any degree and dimension. It was implemented and used in [29] to
certify groupings predicted by the monodromy algorithm. We provide an alternative
to the bootstrapping technique using traces, as explained next.

5.2. The Trace Form with a Complete Grid. With traces, the classical
multivariate interpolation schemes with generalized divided differences are directly
applicable. We will show how to interpolate with a polynomial p of degree d in three
variables (x, y, z), where p is expressed like

p(x, y, z) = zd − t1(x, y)z
d−1 + t2(x, y)z

d−2 − · · ·+ (−1)dtd(x, y), (5.4)

where ti(x, y) is the i-th trace with deg(ti(x, y)) = i. To represent the polynomi-
als ti(x, y) we use the Newton form (5.1) with coefficients constructed with divided
differences, given in formulas (5.2) and (5.3).

The major cost in the construction of the interpolating polynomial is the number
of required sample points. While the number of monomials grows exponentially as
the degree d and dimension k of the irreducible component increases, the number of
samples in a complete grid grows as d(d+1)k, which is much faster than the number
of monomials, as illustrated in Table 5.1.
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Number of Monomials Number of Samples
d\k 2 3 4 5 d\k 2 3 4 5

1 3 4 5 6 1 2 4 8 16
2 6 10 15 21 2 6 18 54 162
3 10 20 35 56 3 12 48 192 768
4 15 35 70 126 4 20 100 500 2500
5 21 56 126 252 5 30 180 1080 6480

Table 5.1

Number of terms for degrees d and dimensions k respectively increasing in the rows and columns,
versus d(d+1)k which is the number of samples needed for the trace form using the full grid, without
exploiting Newton identities.

5.3. Using the Newton Identities. Ideally, we would like to take no more
samples than the number of monomials. Exploiting the Newton identities (2.5) we
show how to achieve this goal on an example, the interpolation of a planar quartic.
Figure 5.1 gives a schematic representation of the grid of sample points.
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Fig. 5.1. Two grids of sample points to interpolate a planar quartic: the grid at the left is
complete, while at the right we find the white dots using Newton identities. The semi-regularity of
the grid (same x-value in one column; different y-values in each row) is typical.

In the interpolation of a planar quartic, we compute the four traces consecutively.
To compute the second trace t2, we may already use t1, and to compute t3, we already
dispose of t1, t2, and for t4, we make use of t1, t2, and t3. We show how this saves
sample points :

1. At x = a2, instead of four, we compute three samples (a2, b21), (a2, b22),
(a2, b23) and compute b24 using the first trace t1, evaluated at x = a2 :

b24 := t1(a2)− b21 − b22 − b23. (5.5)

2. At x = a3, we know already the coefficient of the Newton forms of t1 and t2
and use continuation only for two samples : (a3, b31) and (a3, b32). For the
values b33 and b34 we solve the system

{
t1(a3) = b31 + b32 + b33 + b34
t2(a3) = b31b32 + b31b33 + b31b34 + b32b33 + b32b34 + b33b34

(5.6)

With the Newton identities (2.5) we compute from the values of the ele-
mentary symmetric functions (t1(a3), t2(a3)) the power sums for x = a3 :
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(s1(a3), s2(a3)). This means that the bij ’s satisfy

{
s1(a3) = b31 + b32 + b33 + b34
s2(a3) = b231 + b232 + b233 + b234

(5.7)

or
{

b33 + b34 = s1(a3)− b31 − b32
b233 + b234 = s2(a3)− b231 − b232

(5.8)

Let s̃1(a3) = s1(a3) − b31 − b32 and s̃2(a3) = s2(a3) − b231 − b232. Then we
invoke the Newton identities (2.5) to compute from the modified powers sums
(s̃1(a3), s̃2(a3)) evaluated at a3 into the values of the elementary symmetric
functions at a3 : (t̃1(a3), t̃2(a3)). With (t̃1(a3), t̃2(a3)) we define

y2 − t1(a3)y + t2(a3) = y2 − (b33 + b34)y + b33b34 (5.9)

= (y − b33)(y − b34) (5.10)

= 0. (5.11)

Thus finding the missing samples (white dots on Figure 5.1 for x = a3) has
been reduced to solving a quadratic univariate equation.

3. At x = a4 we apply the Newton identities also twice to construct a univariate
equation of degree three to find the missing samples.

This procedure generalizes to any degree and any dimension, requiring only as many
samples as the number of monomials.

To find the roots of univariate polynomials, we use the method of Weierstrass
(also known as Durand-Kerner), described in [17] as “quite effective and increasingly
popular.” Convergence is global and quadratic in the limit [18]. Our implementation
is basic, see [13] for algorithmic improvements to this method.

5.4. Numerical Aspects and Experiments. In this section we first compare
our new algorithms with our approach to interpolation in [27], where we solved the
linear system of interpolation conditions directly. Then we illustrate the numerical
stability of the new algorithms on a test polynomial.

Compared to the direct approach of [27], we first observe an improved condi-
tioning of the interpolation problem when a structured grid of samples is used. This
improved conditioning leads to more accurate results regardless of the interpolation
algorithm. In an unstructured grid, errors on the samples creep in with greater fluc-
tuation than on a structured grid, where the i-th coordinate, i = 1, 2, . . . , k, is the
same for all samples from a k-dimensional component. The second advantage of our
new algorithms concerns time. Using divided differences to solve the linear system
of N interpolation conditions requires O(N 2) operations instead of O(N3) for plain
Gaussian elimination or QR factorization.

The bootstrapping method for Newton interpolation we used in [29] and the basic
interpolation with traces both require more samples than the number of monomials,
see Table 5.1. Exploiting the Newton identities, we get the complete interpolating
polynomial with an optimal number of samples. We next describe an experiment to
illustrate that this exploitation is numerically stable.

We consider to interpolate the polynomial

p(x, y) =
∑

0≤i+j≤d

xiyj , for d = 2, 3, . . . , 10. (5.12)
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To this polynomial we apply our general implementation, treating p(x, y) as a polyno-
mial system. Assuming monodromy has shown the d generic points to belong to the
same connected component, as test (because in this particular case there is nothing
to certify) we compare three methods of certification :

1. construction of the complete trace form on a square grid;
2. construction of the complete trace form on a triangular grid, exploiting New-

ton identities;
3. construction of only the linear trace.

As in the general method for polynomial systems, we compute the magnitude of the
highest value the interpolation polynomial returns at the grid and at some extra test
points sampled from the component. These residuals would all be zero on exact data
and with exact arithmetic. Due to approximate samples — accurate up to machine
precision — and floating-point arithmetic we observe errors when evaluating at the
grid and at the test points, see Table 5.2.

In Table 5.2 we see an increasing loss of precision as the degree increases, for
both with and without the exploitation of the Newton identities. This loss is due to
the intrinsic complexity of high degree polynomials. There is no significant difference
between the first two methods. From the last three columns of Table 5.2 we observe
no error propagation, i.e.: residuals at test points are of the same magnitude as the
errors on the sample points. Compared to the complete trace form, linear traces are
tolerant to approximate data and require no extra precision, at least not for the case
of moderate degrees.

square grid triangular grid linear trace
d eps gres tres eps gres tres eps gres tres

2 –16 –15 –13 –15 –16 –13 –16 −∞ –15
3 –15 –15 –14 –16 –15 –15 –16 −∞ –15
4 –14 –14 –13 –15 –15 –14 –16 −∞ –15
5 –14 –13 –12 –15 –15 –14 –16 −∞ –15
6 –15 –13 –14 –16 –14 –12 –16 −∞ –15
7 –15 –13 –10 –15 –14 –12 –16 −∞ –15
8 –15 –12 –13 –15 –13 –11 –15 −∞ –15
9 –15 –12 –14 –15 –13 –11 –16 −∞ –15
10 –15 –11 –08 –14 –12 –10 –16 –16 –15

Table 5.2

Numerics on the dense polynomial with unit coefficients for degrees d from 2 up to 10, on
square and triangular grid (i.e.: without and with the exploitation of Newton identities), and in the
last column for the linear traces. Because only magnitudes matter, 8.559E–16 is shortened to –16,
and −∞ stands for a zero residual. We list the accuracy of the grid (eps), the magnitude of the
highest residual after evaluation at the grid (gres) and at some test points (tres).

In Table 5.3 we list timings (on a Pentium III 800 MHz Linux machine) for the
three certification methods. We see an efficiency gain with the exploitation of the
Newton identities and a drastic difference when only the linear traces are computed.

In this experiment, the exploitation of the Newton identities is beneficial: fewer
samples are needed and the loss of accuracy is not significantly different from the
basic construction. However, for higher degrees, in situations where multi-precision
arithmetic is necessary we experienced severe losses of accuracy. In particular, we
applied this exploitation of Newton identities to one of the curves of degree 16 arising
in the cyclic 8-roots problem (described in greater detail below). Even if the roots of
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square triangular linear
d grid grid traces

2 40 ms 50 ms 20 ms
3 110 ms 70 ms 30 ms
4 210 ms 170 ms 60 ms
5 420 ms 300 ms 110 ms
6 890 ms 480 ms 130 ms
7 1s 540 ms 760 ms 240 ms
8 2s 570 ms 1s 260 ms 320 ms
9 3s 730 ms 1s 800 ms 410 ms

10 4s 520 ms 3s 40 ms 600 ms
Table 5.3

Timings on the dense polynomial with unit coefficients, for degrees d from 2 to 10 to construct
the complete interpolator plainly on a square grid, exploiting Newton identities on a triangular grid.
In the last column are timings to construct linear traces.

the univariate polynomials were computed at full precision, the evaluation of those
roots at high degree polynomials turned out to be insufficient to reach the same
accuracy as without exploitation of the Newton identities. Based on these experiences,
we recommend the exploitation of Newton identities only for moderate degrees.

6. Applications. The algorithms have been implemented in a separate module
of PHCpack [34], recently described in [30]. All reported timings are user cpu times
on a Pentium III 800 Mhz Linux machine.

In the applications we consider here, the positive dimensional components are
pure dimensional. Therefore, we restrict the numerical irreducible decomposition
of [27] to the following three stages :

1. Computation of the generic points with the embedding of [26];
2. Application of monodromy [29], grouping the generic points which belong to

the same irreducible component; and
3. Validation of the breakup predicted by monodromy by interpolation:

(a) either with the complete polynomials;
(b) or only with the linear traces.

The methods presented in this paper only affect the last stage. We report timings for
the other two stages to show the overall impact of our new approach. The experiments
do not exploit the possible improvements that could result by integrating linear traces
into the monodromy phase, as discussed in §4.3.

6.1. The Cyclic 8-roots and 9-roots Problems. In [27] we had to limit
ourselves to the reduced versions of those problems. With the recent advances in the
decomposition algorithms we can factor the components into irreducibles without
recourse to multi-precision arithmetic.

6.1.1. The Cyclic 8-roots Problem. In this section we confirm earlier results
obtained in [2] by computer algebra methods. The timings for the three stages are as
follows :

1. The computation of all 144 generic points on the one dimensional components
using the embedding in [26] takes 1h 12m 42s 650ms. Note that this compu-
tation also contains the calculation of the start solutions of paths leading to
all isolated roots.
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2. The set of 144 generic points breaks up into 8 subsets of 16 points and
8 subsets of 2 points. The monodromy breakup algorithm of [29] requires
6m 24s 930ms.

3. (a) In [29] we did the validation constructing interpolating polynomials,
using standard arithmetic for the eight quadrics and using 32 deci-
mal places for the eight curves of degree 16. This whole process took
41m 54s 780ms to complete.
So stage three accounts for 35% of the total execution time.

(b) With linear traces we need fewer samples and expensive multi-precision
arithmetic can be avoided. This interpolation takes only 27s 540ms.
Compared to the time needed in stage three with the complete interpo-
lation polynomial, this runs more than 150 times faster. The total time
for the three stages reduces from about two hours to one hour and 18
minutes.

We summarize the numerical results of this calculation in Table 6.1. See [28] for
the computation of the linear span of the component.

accuracy residual difference
d of samples at grid at test pts

2 6.055E–16 1.110E–16 4.929E–14
2 4.733E–16 2.776E–16 4.308E–14
2 1.608E–15 8.882E–16 8.882E–15
2 4.143E–16 5.551E–17 5.551E–15
2 1.812E–15 1.776E–15 1.954E–14
2 1.095E–15 8.882E–16 3.642E–14
2 5.403E–16 2.220E–16 8.238E–14
2 1.815E–15 5.551E–16 2.132E–14
16 1.318E–14 6.661E–16 2.665E–14
16 6.182E–14 8.882E–16 1.199E–13
16 2.991E–14 8.882E–16 9.326E–14
16 1.239E–13 8.882E–16 9.859E–14
16 1.667E–13 8.882E–16 2.167E–13
16 8.589E–14 8.882E–16 7.372E–14
16 9.708E–15 2.220E–16 1.030E–13
16 8.168E–15 1.776E–15 5.418E–14

Table 6.1

Numerical results of the certification of cyclic 8-roots. The columns contain the degree d, the
accuracy of the samples in the grid, the largest value of the linear trace polynomial evaluated at
the grid res and the absolute value of the difference between the predicted and computed sum of the
roots.

We wish to point out that the sample points are distributed widely to have a
good conditioning of the interpolating polynomial. Comparing the second column
with column four of Table 6.1, we observe there is hardly any loss of accuracy for
any of the roots; neither the quadrics nor the 16-th degree polynomials show any
significant loss.

6.1.2. The Cyclic 9-roots Problem. This problem has been solved with
Gröbner basis methods in [4]. The timings for the three stages with our approach are
as follows :
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1. To compute generic points, we used the mixed-volume calculator of T.Y.
Li and X. Li [15] to set up the homotopy to solve the embedding of [26].
The mixed volume computation took 13m 4s 540ms, and the total time to
compute all 20,376 paths of the embedding for two dimensional components
was 9h 11m 27s 820ms. Only 18 of these paths land on two dimensional
components: the other paths either diverge to infinity or are paths destined
to lead to the isolated solutions at a later stage of the embedding technique.

2. The set of 18 generic points breaks up into 6 subsets of 3 points each. The
monodromy breakup algorithm of [29] requires 2m 32s 400ms.

3. (a) In [29] we did the validation constructing interpolating polynomials, with
32 decimal places, which took 14m 56s 570ms.

(b) The validation with linear traces only took 9s 350ms. Details are in
Table 6.2.

accuracy residual difference
d of samples at grid at test pts

3 3.507E-13 0.000E+00 6.864E-14
3 5.118E-13 2.776E-17 1.456E-13
3 9.343E-13 1.388E-17 2.313E-13
3 1.529E-13 5.551E-17 3.583E-14
3 6.984E-13 0.000E+00 8.460E-14
3 1.165E-13 0.000E+00 4.080E-15

Table 6.2

Numerical results of the certification of cyclic 9-roots. The columns contain the degree d, the
accuracy of the samples in the grid, the largest value of the linear trace polynomial evaluated at
the grid res and the absolute value of the difference between the predicted and computed sum of the
roots.

6.2. A Moving Stewart-Gough Platform. A generic Stewart-Gough plat-
form mechanism has forty isolated solutions, first established by continuation [19]
and later proven analytically [10, 35]. A special case of this mechanism, due to Griffis
and Duffy, has a solution curve of degree forty. This means that a Griffis-Duffy plat-
form has a one-degree-of-freedom motion, whereas a generic Stewart-Gough platform
is rigid. Husty and Karger [11] pointed out this fact and also identified a more spe-
cial Griffis-Duffy platform for which the solution curve breaks up into lower degree
irreducible components. We treat both cases here with our numerical methods and
briefly discuss some differences we found from Husty and Karger’s results.

For the general Griffis-Duffy platform, which herein we call case A, the solution set
consists of 12 lines and one irreducible curve of degree 28. The lines all correspond to
degeneracies that do not give actual assembly configurations of the mechanism. The
specialized case B also has 12 degenerate lines, but now the curve of degree 28 breaks
up into lower degree irreducible components: four sextics and a quartic. The timings
for the three stages in our approach are as follows :

1. To compute forty generic points using the embedding of [26] requires 52s 490ms
for Case A, and 55s 810ms for Case B.

2. For Case A, the monodromy algorithm of [29] takes 33s 430ms to predict
a single component of degree 28. For Case B, it takes 27s 630ms for the
monodromy algorithm to group the 28 generic points into five sets, four of
the five have cardinality six, and one set has four points.
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3. (a) For Case A, the validation with Newton interpolation for the curve of
degree 28 requires multi-precision (with 64 decimal places) and 812 sam-
ples (for 435 monomials), completes in 1h 19m 13s 110ms. For Case B,
using 32 decimal places in constructing the complete interpolating poly-
nomials with divided differences takes 2m 34s 50ms.

(b) With linear traces, Case A takes 4s 750ms and Case B requires 4s 320ms.
This example shows several advantages of using linear traces for validation of the mon-
odromy breakup. Compared to the use of interpolating polynomials, linear traces not
only drastically reduce the computation time, but also the time becomes nearly iden-
tical for both Cases A and B. Interpolating a degree 28 polynomial in two variables
for Case A is expensive and requires high-precision arithmetic. In fact, because of nu-
merical instability of traces in this case, we used the bootstrapping Newton technique
as in [29] to construct the complete interpolation filter. Case B, comprised of five
irreducible curves whose degrees sum to 28, is much more tractable by interpolating
polynomials, but still the use of only linear traces is much superior. Table 6.3 lists
numerical results of the methods, showing that the linear traces are quite stable using
only double precision arithmetic. In summary, compared to interpolating polynomi-
als, our Certify algorithm, based on linear traces, eliminates the large fluctuation in
timings with superior numerical stability and efficiency.

with complete interpolation using linear traces only
accuracy residual residual accuracy residual difference

d of samples at grid at test pts of samples at grid at test pts

28 1.316E–59 3.800E–37 1.107E–20 4.013E–13 1.791E–12 1.791E–12

6 3.259E–28 2.800E–27 1.020E–20 1.272E–12 2.442E–15 4.694E–13
6 5.243E–29 8.495E–28 6.416E–21 9.944E–13 1.332E–15 3.659E–13
6 1.152E–28 6.000E–30 2.502E–21 8.660E–13 2.220E–16 5.853E–13
6 4.730E–29 2.540E–28 4.936E–20 7.438E–14 2.220E–15 1.083E–11
4 4.758E–30 4.300E–31 3.357E–27 1.063E–14 2.220E–16 3.408E–14

Table 6.3

Numerical results of the certification of Case A (d = 28) and Case B (d = 6, 6, 6, 6, 4) for the
irreducible curves occurring in moving Stewart-Gough platforms. The columns contain the accuracy
of the samples in the grid, the largest value of the interpolating filter (or the linear trace) evaluated
at the grid and the residual at the test points. With linear traces, we list the difference between the
predicted and computed sum at the test points.

We show how we can observe the propagation of roundoff errors. Compare the
accuracy of the samples with the residuals at the test points in Table 6.3. For Case A,
the accuracy of the samples is 10−59, while the residuals at the test points evaluate
to 10−20. During the calculation we lost about 30 decimal places. The loss in Case B
is more modest, between 7 and 9 decimal places, make the difference in exponents in
second and fourth column of Table 6.3. With linear traces, we observe from the data
in Table 6.3, that we lose at most 3 decimal places.

While the reduction in execution times may turn modest in the near future as
more and faster machines will become even more widely available, the major benefit of
using linear traces is that reliable results are obtained solely with standard machine
arithmetic, that is, without using any multi-precision numbers. This means that
errors on the coefficients of the input system that are less than the standard machine
precision can be neglected and the algorithm is numerically stable.

We conclude this section with some remarks not related to numerical performance,
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but rather concerning the decomposition itself. The decompositions we have computed
for the Griffis-Duffy platforms differ from the results obtained by Husty and Karger
in [11], one discrepancy is reconcilable, but others are not. First, for the general
example, Case A, we find a degree 28 curve, which at first seems to conflict with their
result of a degree 20 curve. This is not, however, a contradiction, because we have
analyzed the curve in the full space of rotation and translation (represented in Study
coordinates). The degree falls to 20 when the curve is projected onto its rotational
component only, as done by Husty and Karger. They state wrongly, however, that
the curve’s degree will double to forty when lifted back to the full space. Our results
show that there are 12 degenerate lines leaving only a degree 28 curve. We also find
a significant difference for the specialized Case B: Husty and Karger miss one of the
five irreducible components in their analysis. Their approach, using a combination of
special reasoning and computer algebra, gives some extra insight in some respects, but
our automated numerical method is less subject to human error. To tackle difficult
problems, it will sometimes be beneficial to use both numeric and symbolic processes.
In this case, knowing about the existence of the fifth irreducible component and seeing
its numerical structure, one might return to the symbolic approach to further elucidate
it. (Of course, one might also pursue a completely automated symbolic approach as
well, but that is another story.)

We refer to [32] for a description of this and other applications of our approach
to polynomial systems in mechanism design.

7. Conclusions. In [27], we presented a numerical algorithm to decompose solu-
tion sets of polynomial systems into irreducible components of various dimensions and
degrees. The main drawback of that algorithm is numerical instability on components
of high degree, due to the reliance on interpolating polynomials to filter generic points
into irreducible components. To deal with this difficulty, multi-precision arithmetic
was used whenever high degrees were encountered, requiring a high accuracy for the
input coefficients of the polynomial systems and requiring much more computer time
than standard precision for each arithmetic operation. While the sequels [28] and [29]
lessened the need for high precision arithmetic to some extent, it is only in this pa-
per that we can present a numerically stable decomposition algorithm, to solve the
cornerstone problem in numerical algebraic geometry [33].

We summarize how standard machine arithmetic can be employed throughout the
numerical irreducible decomposition algorithm. The sequence of homotopies of [26]
produces generic points on every positive dimensional component, mixed with “junk”:
points on higher solution components. To separate those junk points from the generic
points, we now propose to use the homotopy membership test of [28] instead of the
filtering polynomials in [27]. Unlike with high degree polynomials, this homotopy
membership test does not require multi-precision arithmetic. Also the monodromy
algorithm of [29] predicts the breakup of pure dimensional components using only
standard machine arithmetic. With this paper, we finally remove any need for inter-
polating polynomials, because linear traces suffice to certify the predicted breakup.
As linear polynomials are tolerant to roundoff and efficient to interpolate, our de-
composition algorithms have gained significantly in speed and robustness. Practical
evidence for these claims is provided in the reports on benchmark applications.
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and Applied Algebra, 139(1-3):61–88, 1999. Proceedings of MEGA’98, 22–27 June 1998,
Saint-Malo, France.

[5] W. Fulton. Intersection Theory, volume (3) 2 of Ergeb. Math. Grenzgeb. Springer–Verlag,
Berlin, 1984.

[6] A. Galligo and D. Rupprecht. Semi-numerical determination of irreducible branches of a
reduced space curve. Proceedings of ISSAC 2001, July 22–25, 2001.

[7] M. Goresky and R. Macpherson. Stratified Morse Theory. Folge 3, vol. 14 of Ergeb. Math.
Grenzgeb., Springer-Verlag, Berlin, 1988.

[8] R.C. Gunning. Introduction to Holomorphic Functions of Several Complex Variables, Volume
II: Local Theory. Wadsworth & Brooks/Cole, California, 1990.

[9] R.C. Gunning and H. Rossi. Analytic functions of several complex variables. Prentice-Hall,
Englewood Cliffs, New Jersey, 1965.

[10] M.L. Husty. An algorithm for solving the direct kinematics of general Stewart-Gough Plat-
forms Mech. Mach. Theory, 31(4):365–380, 1996.

[11] M.L. Husty and A. Karger. Self-motions of Griffis-Duffy type parallel manipulators Proc. 2000
IEEE Int. Conf. Robotics and Automation, CDROM, San Francisco, CA, April 24–28,
2000.

[12] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. Dover Reprint of the 1966 Wiley
edition, 1994.

[13] P. Kirrinnis. Fast numerical improvement of factors of polynomials and of partial fractions.
In Proceedings of ISSAC’98, ed. by O. Gloor, 260–267, ACM, 1998.

[14] S.L. Kleiman. Tangency and Duality. In Proceedings of the 1984 Vancouver Conference in
Algebraic Geometry, 1984, ed. by J.B. Carrell, A.V. Geramita, and P. Russell, 163–225.
CMS Proceedings, 6, American Mathematical Society, 1986.

[15] T.Y. Li and X. Li. Finding mixed cells in the mixed volume computation. Found. Comput.
Math. 1(2): 161–181, 2001.
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