6
 s1**2+g1**2 - 1;
 s2**2+g2**2 - 1;
 C1*g1**3+C2*g2**3 - 1.2;
 C1*s1**3+C2*s2**3 - 1.2;
 C1*g1**2*s1+C2*g2**2*s2 - 0.7;
 C1*g1*s1**2+C2*g2*s2**2 - 0.7;

TITLE : neurofysiology, posted by Sjirk Boon

ROOT COUNTS :

total degree : 1024
3-homogeneous Bezout number : 344
  with partition : {s1 s2 }{g1 g2 }{C1 C2 }
generalized Bezout number : 216
  based on the set structure :
     {s1 g1 }{s1 g1 }
     {s2 g2 }{s2 g2 }
     {g1 g2 }{g1 g2 }{g1 g2 }{C1 C2 }
     {s1 s2 }{s1 s2 }{s1 s2 }{C1 C2 }
     {s1 s2 }{g1 g2 }{g1 g2 }{C1 C2 }
     {s1 s2 }{s1 s2 }{g1 g2 }{C1 C2 }
mixed volume : 20

NOTE :

There are only 8 finite solutions for general values of
the constant terms.
It can be proved that it is equivalent to a quadrature formula
problem, so that there is only one solution upon symmetry.

REFERENCES :

The system has been posted to the newsgroup
sci.math.num-analysis by Sjirk Boon.

P. Van Hentenryck, D. McAllester and D. Kapur:
`Solving Polynomial Systems Using a Branch and Prune Approach'
SIAM J. Numerical Analysis, Vol. 34, No. 2, pp 797-827, 1997.

SYMMETRY GROUP :

 g2 s2 g1 s1 C2 C1
 g1 s1 g2 s2 C1 C2
 s2 g2 s1 g1 C2 C1
 s1 g1 s2 g2 C1 C2

 -s1 s2 -g1 g2 -C1 C2
 s1 -s2 g1 -g2 C1 -C2

THE GENERATING SOLUTIONS :

1 6
===========================================================
solution 1 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 8
the solution for t :
 s1 : -4.02451939639181E-01  -6.67657107123736E-67
 g1 : -9.15441115681758E-01   3.52374584315305E-67
 s2 :  9.15441115681758E-01   4.26558707329054E-67
 g2 :  4.02451939639181E-01  -7.41841230137484E-67
 C1 : -1.44169513021472E+00  -1.24258406048029E-66
 C2 :  1.44169513021472E+00  -1.07566978369935E-66
== err :  3.255E-15 = rco :  1.566E-02 = res :  2.220E-16 ==