6
s1**2+g1**2 - 1;
s2**2+g2**2 - 1;
C1*g1**3+C2*g2**3 - 1.2;
C1*s1**3+C2*s2**3 - 1.2;
C1*g1**2*s1+C2*g2**2*s2 - 0.7;
C1*g1*s1**2+C2*g2*s2**2 - 0.7;
TITLE : neurofysiology, posted by Sjirk Boon
ROOT COUNTS :
total degree : 1024
3-homogeneous Bezout number : 344
with partition : {s1 s2 }{g1 g2 }{C1 C2 }
generalized Bezout number : 216
based on the set structure :
{s1 g1 }{s1 g1 }
{s2 g2 }{s2 g2 }
{g1 g2 }{g1 g2 }{g1 g2 }{C1 C2 }
{s1 s2 }{s1 s2 }{s1 s2 }{C1 C2 }
{s1 s2 }{g1 g2 }{g1 g2 }{C1 C2 }
{s1 s2 }{s1 s2 }{g1 g2 }{C1 C2 }
mixed volume : 20
NOTE :
There are only 8 finite solutions for general values of
the constant terms.
It can be proved that it is equivalent to a quadrature formula
problem, so that there is only one solution upon symmetry.
REFERENCES :
The system has been posted to the newsgroup
sci.math.num-analysis by Sjirk Boon.
P. Van Hentenryck, D. McAllester and D. Kapur:
`Solving Polynomial Systems Using a Branch and Prune Approach'
SIAM J. Numerical Analysis, Vol. 34, No. 2, pp 797-827, 1997.
SYMMETRY GROUP :
g2 s2 g1 s1 C2 C1
g1 s1 g2 s2 C1 C2
s2 g2 s1 g1 C2 C1
s1 g1 s2 g2 C1 C2
-s1 s2 -g1 g2 -C1 C2
s1 -s2 g1 -g2 C1 -C2
THE GENERATING SOLUTIONS :
1 6
===========================================================
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 8
the solution for t :
s1 : -4.02451939639181E-01 -6.67657107123736E-67
g1 : -9.15441115681758E-01 3.52374584315305E-67
s2 : 9.15441115681758E-01 4.26558707329054E-67
g2 : 4.02451939639181E-01 -7.41841230137484E-67
C1 : -1.44169513021472E+00 -1.24258406048029E-66
C2 : 1.44169513021472E+00 -1.07566978369935E-66
== err : 3.255E-15 = rco : 1.566E-02 = res : 2.220E-16 ==