4 15.0*b**4*c*d**2 + 6.0*b**4*c**3 + 21.0*b**4*c**2*d - 144.0*b**2*c - 8.0*b**2*c**2*e - 28.0*b**2*c*d*e - 648.0*b**2*d + 36.0*b**2*d**2*e + 9.0*b**4*d**3 - 120.0; 30.0*c**3*b**4*d - 32.0*d*e**2*c - 720.0*d*b**2*c - 24.0*c**3*b**2*e - 432.0*c**2*b**2 + 576.0*e*c - 576.0*d*e + 16.0*c*b**2*d**2*e + 16.0*d**2*e**2 + 16.0*e**2*c**2 + 9.0*c**4*b**4 + 5184.0 + 39.0*d**2*b**4*c**2 + 18.0*d**3*b**4*c - 432.0*d**2*b**2 + 24.0*d**3*b**2*e - 16.0*c**2*b**2*d*e - 240.0*c; 216.0*d*b**2*c - 162.0*d**2*b**2 - 81.0*c**2*b**2 + 5184.0 + 1008.0*e*c - 1008.0*d*e + 15.0*c**2*b**2*d*e - 15.0*c**3*b**2*e - 80.0*d*e**2*c + 40.0*d**2*e**2 + 40.0*e**2*c**2; 261.0 + 4.0*d*b**2*c - 3.0*d**2*b**2 - 4.0*c**2*b**2 + 22.0*e*c - 22.0*d*e; TITLE : the system of Pierrette Cassou-Nogu`es ROOT COUNTS : total degree : 1344 2-homogeneous Bezout bound : 368, with partition {{b},{c,d,e}} generalized Bezout bound : 312 based on (see T.Y.Li, Tianjun Wang and Xiaoshen Wang) {b} {b} {b} {b} {c d} {c d} {c d e} {b} {b} {b} {b} {c d} {c d} {c d e} {c d e} {b} {b} {e} {c d} {c d} {c d e} {b} {b} {c d} {c d e} mixed volume : 24 REFERENCES : Obtained by electronic mail by Carlo Traverso. See the POSSO test suite. T.Y. Li, Tianjun Wang, Xiaoshen Wang: "Random Product Homotopy with Minimal BKK Bound", in: "The Mathematics of Numerical Analysis" , Edited by Renegar, J. and Shub, M. and Smale, S. , Lectures in Applied Mathematics vol 32, 1996. Proceedings of the AMS-SIAM Summer Seminar in Applied Mathematics, Park City, Utah, July 17-August 11, 1995, Park City, Utah". NOTE : The system is deficient w.r.t. face normal (0,0,0,-1), with corresponding double component of solutions at infinity (b,c,c,e). The corresponding face system is -8*b**2*c**2*e - 28*b**2*c*d*e + 36*b**2*d**2*e = 0 16*c**2*e**2 - 32*c*d*e**2 + 16*d**2*e**2 = 0 40*c**2*e**2 - 80*c*d*e**2 + 40*d**2*e**2 = 0 22*c*e - 22*d*e = 0 THE SOLUTIONS : 16 4 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -7.54821372735305E-78 1.47284085072902E+01 c : 5.11897562286027E-01 -2.36672343825525E-79 d : -2.87205751065023E-01 1.32304584187543E-79 e : -3.80894550509321E+01 -1.98024646165642E-77 == err : 3.573E-13 = rco : 1.763E-05 = res : 1.091E-11 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 7.54821372735305E-78 -1.47284085072902E+01 c : 5.11897562286027E-01 -2.36672343825525E-79 d : -2.87205751065023E-01 1.32304584187543E-79 e : -3.80894550509321E+01 -1.98024646165642E-77 == err : 3.573E-13 = rco : 1.763E-05 = res : 1.091E-11 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -6.68640299606734E-03 8.94855573620861E-02 c : 5.62348716108504E+01 7.98084362941689E+01 d : 1.09694720379898E+01 -5.08259658932153E+01 e : -7.52233440839102E-02 -5.99175264541474E-02 == err : 2.650E-13 = rco : 3.639E-07 = res : 1.728E-11 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -6.68640299606762E-03 -8.94855573620861E-02 c : 5.62348716108506E+01 -7.98084362941687E+01 d : 1.09694720379896E+01 5.08259658932153E+01 e : -7.52233440839101E-02 5.99175264541477E-02 == err : 1.771E-13 = rco : 3.639E-07 = res : 1.029E-11 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 6.68640299606752E-03 8.94855573620863E-02 c : 5.62348716108503E+01 -7.98084362941685E+01 d : 1.09694720379896E+01 5.08259658932152E+01 e : -7.52233440839104E-02 5.99175264541477E-02 == err : 8.458E-14 = rco : 3.639E-07 = res : 9.095E-12 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 6.68640299606761E-03 -8.94855573620862E-02 c : 5.62348716108505E+01 7.98084362941687E+01 d : 1.09694720379896E+01 -5.08259658932153E+01 e : -7.52233440839102E-02 -5.99175264541477E-02 == err : 3.486E-13 = rco : 3.639E-07 = res : 2.301E-11 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -5.38538073236606E-04 1.52598333728220E-03 c : -1.07543281631105E+03 5.30600350408460E+03 d : 2.56422532949456E+02 9.41056507764428E+03 e : -3.08017284129789E-03 7.79451935745435E-05 == err : 3.507E-10 = rco : 4.323E-14 = res : 6.269E-10 == solution 8 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -8.34114996980346E-02 -2.50448888097739E-75 c : 4.02749534214863E+01 -2.91833407813751E-72 d : 5.17567280407121E+01 -3.90879897738419E-72 e : 8.62858019518498E-01 7.18529223783858E-75 == err : 7.684E-13 = rco : 8.909E-08 = res : 3.638E-12 == solution 9 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 5.38538073236606E-04 -1.52598333728220E-03 c : -1.07543281631105E+03 5.30600350408460E+03 d : 2.56422532949456E+02 9.41056507764428E+03 e : -3.08017284129789E-03 7.79451935745435E-05 == err : 3.507E-10 = rco : 4.323E-14 = res : 6.269E-10 == solution 10 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 8.34114996980346E-02 2.50448888097739E-75 c : 4.02749534214863E+01 -2.91833407813751E-72 d : 5.17567280407121E+01 -3.90879897738419E-72 e : 8.62858019518498E-01 7.18529223783858E-75 == err : 7.684E-13 = rco : 8.909E-08 = res : 3.638E-12 == solution 11 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -4.73975992311414E+01 -1.72623882440134E-70 c : 7.08768865860076E-02 -5.42213206563050E-73 d : 3.41971008721347E-03 -9.43069606216313E-75 e : -1.46865638657142E+02 -6.10126377935950E-70 == err : 4.169E-12 = rco : 9.519E-08 = res : 1.734E-12 == solution 12 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 4.73975992311414E+01 1.72623882440134E-70 c : 7.08768865860076E-02 -5.42213206563050E-73 d : 3.41971008721347E-03 -9.43069606216313E-75 e : -1.46865638657142E+02 -6.10126377935950E-70 == err : 4.169E-12 = rco : 9.519E-08 = res : 1.734E-12 == solution 13 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 5.38538073236603E-04 1.52598333728219E-03 c : -1.07543281631105E+03 -5.30600350408462E+03 d : 2.56422532949454E+02 -9.41056507764432E+03 e : -3.08017284129789E-03 -7.79451935745534E-05 == err : 1.891E-10 = rco : 4.323E-14 = res : 4.973E-10 == solution 14 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -4.33810415852418E-82 1.94275907300796E-03 c : 3.88078816153025E+03 -1.35263989994167E-75 d : 7.35174304802575E+03 -2.58599272171609E-75 e : 8.76917468831414E-03 1.82532392122536E-81 == err : 3.453E-10 = rco : 2.633E-14 = res : 2.328E-10 == solution 15 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : 4.33810415852418E-82 -1.94275907300796E-03 c : 3.88078816153025E+03 -1.35263989994167E-75 d : 7.35174304802575E+03 -2.58599272171609E-75 e : 8.76917468831414E-03 1.82532392122536E-81 == err : 3.453E-10 = rco : 2.633E-14 = res : 2.328E-10 == solution 16 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : b : -5.38538073236603E-04 -1.52598333728219E-03 c : -1.07543281631105E+03 -5.30600350408462E+03 d : 2.56422532949454E+02 -9.41056507764432E+03 e : -3.08017284129789E-03 -7.79451935745534E-05 == err : 1.891E-10 = rco : 4.323E-14 = res : 4.973E-10 ==