5
 10*H1 - 0.51234*H1*(1+(1/2)*H1+(1/3)*H2+(1/4)*H3+(1/5)*H4) - 10;
 10*H2 - 0.51234*H2*(1+(2/3)*H1+(2/4)*H2+(2/5)*H3+(2/6)*H4) - 10;
 10*H3 - 0.51234*H3*(1+(3/4)*H1+(3/5)*H2+(3/6)*H3+(3/7)*H4) - 10;
 10*H4 - 0.51234*H4*(1+(4/5)*H1+(4/6)*H2+(4/7)*H3+(4/8)*H4) - 10;
 10*H5 - 0.51234*H5*(1+(5/6)*H1+(5/7)*H2+(5/8)*H3+(5/9)*H4) - 10;

TITLE : The Chandrasekhar H-Equation for n=5

ROOT COUNTS :

total degree : 32
2-homogeneous Bezout number : 16
  with partition : {H1 H2 H3 H4 }{H5 }
generalized Bezout number : 16
  based on the set structure :
     {H1 }{H1 H2 H3 H4 }
     {H1 H2 }{H2 H3 H4 }
     {H1 H2 H3 }{H3 H4 }
     {H1 H2 H3 H4 }{H4 }
     {H1 H2 H3 H4 }{H5 }
mixed volume : 16

REFERENCES :

Laureano Gonzalez-Vega: "Some examples on problem solving by using the
  symbolic viewpoint when dealing with polynomial systems of equations".
  in: "Computer Algebra in Science and Engineering", Editors: J. Fleischer,
  J. Grabmeier, F.W. Hehl and W. Kuechlin.  Pages 102-116
  World Scientific Publishing, 1995.

S. Chandrasekhar: "Radiative Transfer", Dover, NY, 1960.

C.T. Kelley: "Solution of the Chandrasekhar H-equation by Newton's method".
  J. Math. Phys., 21 (1980), pp. 1625-1628.

Jorge J. More': "A collection of nonlinear model problems"
  in: "Computational Solution of Nonlinear Systems of Equations",
  Editors: Eugene L. Allgower and Kurt Georg.  Pages 723-762.
  Lectures in Applied Mathematics, Volume 26, AMS, 1990.

NOTE : the parameter c equals 0.51234.
  In general c can be any number in the interval (0,1]

THE SOLUTIONS :
16 5
===========================================================================
solution 1 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  1.22116479888813E+02  -1.32021704023690E-110
 H2 : -4.35531944616897E+01   1.36699638418230E-110
 H3 : -3.78128171700921E+02   8.05644256837480E-110
 H4 :  3.31749948667482E+02  -9.06479731564235E-110
 H5 : -1.75146615917029E+02   5.19471100480994E-107
== err :  1.664E-10 = rco :  1.255E-04 = res :  3.813E-12 ==
solution 2 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  6.08785935000550E+00   9.84653213001885E-109
 H2 :  1.73522013784859E+02   5.25858040241007E-107
 H3 : -2.12414822095362E+02  -1.58183208056303E-106
 H4 :  3.76564638397181E+01   1.09003771904209E-106
 H5 :  1.45682454486059E+01   9.76669538301870E-108
== err :  7.316E-12 = rco :  8.580E-04 = res :  3.686E-13 ==
solution 3 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  1.80453689446262E+00   7.56365608369007E-124
 H2 :  3.11885194140922E+00   3.78182804184504E-124
 H3 :  6.15673509859360E+00   3.78182804184504E-124
 H4 :  2.11049384592180E+01  -1.51273121673801E-123
 H5 : -2.48270982679489E+01   3.02546243347603E-123
== err :  8.835E-14 = rco :  1.359E-02 = res :  1.243E-14 ==
solution 4 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  7.77834160295590E+01  -1.39688318725853E-112
 H2 : -1.67884835368245E+01  -1.20196925415269E-112
 H3 : -7.59901182309949E+01   1.81919670898786E-111
 H4 :  1.98467006174816E+01  -1.74123113574552E-111
 H5 :  9.04282448137846E+00  -8.51124174562176E-112
== err :  7.350E-13 = rco :  5.456E-03 = res :  1.110E-13 ==
solution 5 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  5.01862469733524E+00  -4.12415548563793E-116
 H2 :  1.04633987544357E+02   5.52002349616154E-115
 H3 : -3.59594177863615E+01  -1.19283266353836E-114
 H4 : -6.88416795761099E+01   6.78899441481936E-115
 H5 :  6.14647583265297E+01  -1.99989816780473E-113
== err :  4.577E-12 = rco :  1.502E-03 = res :  2.891E-13 ==
solution 6 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  4.08432090095311E+01   5.79092418907521E-124
 H2 : -3.90230419773742E+00  -5.67274206276756E-124
 H3 : -2.58525293007850E+00  -1.41818551569189E-124
 H4 : -2.17058948803169E+00  -2.00909614723018E-124
 H5 : -1.96981472978245E+00  -1.18182126307657E-125
== err :  1.567E-14 = rco :  1.375E-01 = res :  5.285E-14 ==
solution 7 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  3.39619978844554E+02   4.28975619052278E-112
 H2 : -1.46116086702129E+03  -3.49941572296431E-111
 H3 :  2.20851939952594E+03   8.49763837737375E-111
 H4 : -1.08212699646998E+03  -5.93979907605355E-111
 H5 :  4.33612672042733E+02   8.48425110370624E-106
== err :  1.194E-08 = rco :  9.035E-06 = res :  3.940E-11 ==
solution 8 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  2.18899947055561E+00  -2.03125529591286E-126
 H2 :  5.17221490140303E+00   5.07813823978215E-127
 H3 :  3.63682693203126E+01  -2.36364252615315E-125
 H4 : -1.15444212985878E+01   2.95455315769144E-125
 H5 : -5.88446568719406E+00  -1.84659572355715E-126
== err :  2.984E-14 = rco :  2.707E-02 = res :  2.287E-14 ==
solution 9 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  6.41220091145328E+01  -3.41035934389290E-116
 H2 : -1.01234762031905E+01   1.07069421261754E-116
 H3 : -1.28642642831986E+01   1.75276608139612E-115
 H4 : -3.62827537489224E+01  -1.55052384123503E-115
 H5 :  3.81525025301074E+01  -1.44155096359529E-113
== err :  1.127E-12 = rco :  4.615E-03 = res :  1.297E-13 ==
solution 10 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  1.13589662856241E+02  -4.41804915039908E-111
 H2 : -1.30917932781336E+02   1.32021704023690E-110
 H3 :  1.50995923500665E+01  -9.19993764259574E-111
 H4 :  7.08019245424940E+00   4.71042005005784E-112
 H5 :  4.87669501314293E+00   6.23724585938694E-112
== err :  1.774E-13 = rco :  3.983E-03 = res :  1.461E-13 ==
solution 11 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  3.19666742019164E+00   0.00000000000000E+00
 H2 :  4.03333440633433E+01   1.93629595742466E-121
 H3 : -7.22654542456213E+00  -2.66240694145891E-121
 H4 : -4.11840366528928E+00   1.08916647605137E-121
 H5 : -3.17342712233808E+00  -6.05092486695206E-123
== err :  2.006E-14 = rco :  5.072E-02 = res :  1.132E-14 ==
solution 12 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  9.55766655450391E+00   2.45585498100182E-103
 H2 :  4.50156084269161E+02  -2.20972446404212E-102
 H3 : -1.05697990989999E+03   7.32766956248852E-102
 H4 :  6.29451221470009E+02  -6.17920582170578E-102
 H5 : -2.82166141279065E+02   1.11641293443496E-96
== err :  1.893E-09 = rco :  3.228E-05 = res :  2.048E-11 ==
solution 13 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  1.78330683940256E+02   2.65969203446269E-104
 H2 : -3.39631281910615E+02  -7.98779640514041E-103
 H3 :  7.51358384705354E+01   2.25681409350474E-102
 H4 :  1.18349821893506E+02  -1.55831792314257E-102
 H5 : -9.44546286584575E+01  -2.14812425246361E-100
== err :  2.110E-11 = rco :  3.097E-04 = res :  9.837E-13 ==
solution 14 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  1.14941934234002E+00   6.19614706375891E-120
 H2 :  1.20222626880350E+00   0.00000000000000E+00
 H3 :  1.23728159675204E+00  -1.54903676593973E-120
 H4 :  1.26258767132566E+00   2.47845882550356E-119
 H5 :  1.28182375002453E+00   0.00000000000000E+00
== err :  2.645E-16 = rco :  6.472E-01 = res :  5.829E-16 ==
solution 15 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  2.16324628178513E+02   3.31374904480557E-96
 H2 : -5.63234808923598E+02  -2.14845053964547E-95
 H3 :  4.43832707651702E+02   3.84482670629097E-95
 H4 : -6.47374645129330E+01  -2.05463413456902E-95
 H5 : -2.23874338973665E+01  -2.12092740326339E-96
== err :  1.063E-10 = rco :  1.202E-04 = res :  3.127E-12 ==
solution 16 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 H1 :  3.43663114154226E+00  -9.74569665529209E-114
 H2 :  1.34179171635312E+01   2.69630940796415E-112
 H3 :  1.80969151070583E+02  -5.78244668213998E-112
 H4 : -1.92972184496435E+02   3.42723665711105E-112
 H5 :  1.13973709620809E+02   5.30116000081015E-107
== err :  9.814E-12 = rco :  4.122E-04 = res :  5.906E-13 ==