5 a + b + c + d + x; a*b + b*c + c*d + d*x + x*a; a*b*c + b*c*d + c*d*x + d*x*a + x*a*b; a*b*c*d + b*c*d*x + c*d*x*a + d*x*a*b + x*a*b*c; a*b*c*d*x - 1; TITLE : cyclic 5-roots problem ROOT COUNTS : total degree : 120 5-homogeneous Bezout number : 120 with partition : {a }{b }{c }{d }{x } generalized Bezout number : 106 based on the set structure : {a b c d x } {a c x }{b d x } {a d }{b d x }{c x } {a x }{b x }{c x }{d x } {a }{b }{c }{d }{x } mixed volume : 70 = 14*5 SYMMETRY GROUP : b c d x a x d c b a SYMMETRIC SET STRUCTURE : { a b c d x } { a } { b } { c } { d } { x } { a } { b } { c } { d } { x } { a } { b } { c } { d } { x } { a } { b } { c } { d } { x } with generalized Bezout bound : 120, leading to 12 generating solutions. REFERENCES : Sx G\"oran Bj\"orck and Ralf Fr\"oberg: `A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots', in J. Symbolic Computation (1991) 12, pp 329--336. THE GENERATING SOLUTIONS : 7 5 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : 3.09016994374947E-01 -9.51056516295154E-01 b : 3.09016994374947E-01 -9.51056516295154E-01 c : -8.09016994374948E-01 2.48989828488278E+00 d : -1.18033988749895E-01 3.63271264002680E-01 x : 3.09016994374948E-01 -9.51056516295154E-01 == err : 8.556E-16 = rco : 6.220E-02 = res : 7.022E-16 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : 1.00000000000000E+00 -3.31628872515627E-75 b : 1.00000000000000E+00 -8.84343660041671E-75 c : -2.61803398874990E+00 3.31628872515627E-75 d : -3.81966011250105E-01 1.65814436257813E-75 x : 1.00000000000000E+00 6.90893484407556E-75 == err : 4.713E-15 = rco : 6.850E-02 = res : 4.441E-16 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : 3.09016994374948E-01 9.51056516295154E-01 b : 3.09016994374947E-01 9.51056516295154E-01 c : -8.09016994374948E-01 -2.48989828488278E+00 d : -1.18033988749895E-01 -3.63271264002680E-01 x : 3.09016994374947E-01 9.51056516295154E-01 == err : 6.582E-16 = rco : 6.220E-02 = res : 4.965E-16 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : -8.09016994374947E-01 5.87785252292473E-01 b : -8.09016994374947E-01 5.87785252292473E-01 c : 2.11803398874990E+00 -1.53884176858763E+00 d : 3.09016994374947E-01 -2.24513988289793E-01 x : -8.09016994374948E-01 5.87785252292473E-01 == err : 5.945E-15 = rco : 6.765E-02 = res : 4.003E-16 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : -8.09016994374947E-01 -5.87785252292473E-01 b : -8.09016994374947E-01 -5.87785252292473E-01 c : 2.11803398874990E+00 1.53884176858763E+00 d : 3.09016994374947E-01 2.24513988289793E-01 x : -8.09016994374948E-01 -5.87785252292473E-01 == err : 5.945E-15 = rco : 6.765E-02 = res : 4.003E-16 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : 1.00000000000000E+00 -7.24393703353565E-18 b : -8.09016994374947E-01 -5.87785252292473E-01 c : 3.09016994374947E-01 9.51056516295154E-01 d : 3.09016994374947E-01 -9.51056516295154E-01 x : -8.09016994374948E-01 5.87785252292473E-01 == err : 7.269E-16 = rco : 2.571E-01 = res : 4.442E-16 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 10 the solution for t : a : -8.09016994374947E-01 5.87785252292473E-01 b : -8.09016994374947E-01 -5.87785252292473E-01 c : 3.09016994374947E-01 -9.51056516295153E-01 d : 1.00000000000000E+00 2.82553319327192E-17 x : 3.09016994374947E-01 9.51056516295153E-01 == err : 6.769E-16 = rco : 2.221E-01 = res : 7.022E-16 ==