4 - 1.122525605*p3 - 0.1202590019*p3*p2 + 1.078803537*p2 + 0.7696590455*p4 + 0.1628390188*p4*p3*p2 - 0.1163105815*p4*p3 - 0.5333928492*p4*p2 - 0.6823118878; - 0.4266067331*p3 + 0.9756757996*p4 + 0.646954510E-01*p4*p3 - 0.2142068753*p3*p1 + 2.814522341*p1 + 0.3980853635*p4*p3*p1 - 2.546266040*p4*p1 - 1.157918209; 2.023260100*p2 - 0.1342402078*p4 - 0.3904810713*p4*p2 + 0.4274147938*p1 + 0.5269506245*p4*p1 - 3.069473137*p2*p1 + 0.3284270487*p4*p2*p1 - 0.9128973443; - 0.6256820158*p3 - 0.1614530476*p3*p2 + 1.080721123*p2 + 1.366746822*p3*p1 - 2.347725424*p1 + 0.5941402017*p2*p1 - 2.233884240*p3*p2*p1 + 1.026687422; TITLE : totally mixed Nash equilibria for 4 players with two pure strategies ROOT COUNTS : total degree : 81 4-homogeneous Bezout number : 9 with partition : {p3 }{p2 }{p4 }{p1 } generalized Bezout number : 9 based on the set structure : {p3 }{p2 }{p4 } {p3 }{p4 }{p1 } {p2 }{p4 }{p1 } {p3 }{p2 }{p1 } mixed volume : 9 REFERENCES : Andrew McLennan: "The maximal generic number of pure Nash equilibria", Journal of Economic Theory, Volume 72, pages 408-410, 1997. Richard D. McKelvey and Andrew McLennan: "The maximal number of regular totally mixed Nash equilibria", Journal of Economic Theory, Volume 72, pages 411-425, 1997. David M. Kreps and Robert Wilson: "Sequential Equibria", Econometrica, Volume 50, Number 4, pages 863-894,1982. DESCRIPTION : The index set I = { 1,2,..,n } identifies people invited to attend a party. The economical relevance is for instance a group of fishermen who have to exploit a certain site. The mathematical problem is then to decide the probabilities of attendance or frequency of participation, the variables are probabilities p1,p2,..,pn, all in [0,1]. At an equilibrium state, the payoff remains unchanged when you vary your frequency of participation. Formally, for the i-th participant we have \sum_{S^i \subseteq I^i} p(S^i) u_i(S^i \cup \{ i \}) = \sum_{S^i \subseteq I^i} p(S^i) u_i(S^i), for I^i = I \setminus \{ i \}, p(S^i) = \prod_{j \in S^i} p_j \prod_{j \not\in S^i} (1-p_j), with p(S^i) expressing the probability that the group S^i attends and u_i(S^i) a fixed constant meaning the utility for S^i to attend. The equilibrium system then becomes: \sum_{S^i \subseteq I^i} p(S^i) v_i(S^i) = 0, for i=1,2,..,n, where the constants v_i(S^i) are the differences of the utilities. The n-homogeneous Bezout number provides a generically exact root count. It equals #derangements of I, which is #permutations without a fixed point. Asymptotically, this number is n!/e, illustrating the exploding complexity. The above instance is generated by a naive Maple program and has 3 real and 6 conjugated complex solutions. # MapleV5 program to generate the equations for totally mixed Nash equilibria, # for games with n players each having two pure strategies. # The utility constants are chosen as random real numbers. # Type "eqs(4)" to generate the 4-dimensional game. prdp := proc ( n,i ) # returns product of p_j, j=1,2,..,n, j/= i local res,j; res := 1; for j from 1 to n do if j <> i then res := res*p.j; fi; od; RETURN(res); end; die := convert(rand(-10^14..10^14)/10^14,float); recp := proc ( n,i,k,acc ) # generates all monomials for i-th equation local res; res := 0; if k <> i then res := die()*p.k*acc + die()*(1-p.k)*acc; if k < n then res := res + recp(n,i,k+1,p.k*acc) + recp(n,i,k+1,(1-p.k)*acc); fi; else if k < n then res := recp(n,i,k+1,acc); fi; fi; RETURN(res); end; nash := proc ( n,i ) # generates i-th equation local res,acc; acc := 1; res := recp(n,i,1,acc); RETURN(res); end: eqs := proc ( n ) # prints the equations local i; for i from 1 to n do print(equation.i); lprint(expand(nash(n,i))); od; end; TIMING (black-box PHC, on Pentium II PC running Linux) : --------------------------------------------------------------------- | TIMING INFORMATION SUMMARY | --------------------------------------------------------------------- | root counts | start system | continuation | total time | --------------------------------------------------------------------- | 0h 0m 0s740ms | 0h 0m 0s 40ms | 0h 0m 1s820ms | 0h 0m 2s890ms | --------------------------------------------------------------------- THE SOLUTIONS : 9 4 =========================================================================== solution 1 : start residual : 7.105E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.20207135996546E+00 3.90491606131416E+00 p2 : 7.05289831086892E-02 4.85282385222248E-01 p4 : -4.20760357534055E+00 5.21546258072302E+00 p1 : 2.16618017393526E-01 3.71033535799464E-01 == err : 8.726E-15 = rco : 1.078E-02 = res : 7.105E-15 = complex regular == solution 2 : start residual : 5.995E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.13673925416567E+01 2.08809742975953E-53 p2 : 3.00236552649914E+00 -3.41691958908379E-54 p4 : 4.20372689943980E+00 2.61012178719941E-54 p1 : -1.36306330553272E-01 -2.03915764624954E-55 == err : 4.828E-15 = rco : 6.592E-03 = res : 5.995E-15 = real regular == solution 3 : start residual : 1.110E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 9.41267336920057E-01 -1.83670992315982E-40 p2 : 1.78906366432274E+00 0.00000000000000E+00 p4 : -5.72319083041370E-01 5.51012976947947E-40 p1 : 5.58317908664846E-01 -6.88766221184934E-41 == err : 1.410E-15 = rco : 2.939E-02 = res : 1.110E-15 = real regular == solution 4 : start residual : 7.286E-16 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.90882759573636E-01 2.80449874990590E-01 p2 : 2.67524686818387E-01 5.28096464462515E-01 p4 : 9.75485872161110E-01 7.62566831944149E-02 p1 : 6.49664839410180E-01 3.29927069627074E-01 == err : 1.064E-15 = rco : 2.464E-01 = res : 7.286E-16 = complex regular == solution 5 : start residual : 4.746E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.20207135996546E+00 -3.90491606131416E+00 p2 : 7.05289831086891E-02 -4.85282385222248E-01 p4 : -4.20760357534055E+00 -5.21546258072302E+00 p1 : 2.16618017393526E-01 -3.71033535799464E-01 == err : 1.145E-14 = rco : 1.078E-02 = res : 4.746E-15 = complex regular == solution 6 : start residual : 1.492E-16 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.78626029394593E+00 0.00000000000000E+00 p2 : -4.35294134302052E-02 0.00000000000000E+00 p4 : 4.76027740936828E+00 4.17619485951906E-53 p1 : 5.19449153497582E-01 0.00000000000000E+00 == err : 4.588E-16 = rco : 2.608E-02 = res : 1.492E-16 = real regular == solution 7 : start residual : 6.523E-16 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.90882759573636E-01 -2.80449874990590E-01 p2 : 2.67524686818387E-01 -5.28096464462515E-01 p4 : 9.75485872161110E-01 -7.62566831944148E-02 p1 : 6.49664839410180E-01 -3.29927069627074E-01 == err : 1.280E-15 = rco : 2.464E-01 = res : 6.523E-16 = complex regular == solution 8 : start residual : 3.768E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.24549206499949E+00 3.90006072365250E-02 p2 : 2.57342908188006E+00 -3.07216368095310E+00 p4 : 2.77809519935403E+00 -2.70082446208238E-01 p1 : 3.99741872358003E-01 -1.89631036660809E-02 == err : 1.469E-14 = rco : 4.378E-03 = res : 3.768E-15 = complex regular == solution 9 : start residual : 2.054E-15 t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : p3 : 1.24549206499949E+00 -3.90006072365251E-02 p2 : 2.57342908188007E+00 3.07216368095310E+00 p4 : 2.77809519935403E+00 2.70082446208238E-01 p1 : 3.99741872358003E-01 1.89631036660808E-02 == err : 1.038E-14 = rco : 4.378E-03 = res : 2.054E-15 = complex regular == ===========================================================================