6
w1 + w2 + w3
+ (-1.85584131425170E-01 + 9.82628378464191E-01*i);
w1*x1 + w2*x2 + w3*x3
+ (-9.91336064106736E-01 + 1.31349944809144E-01*i);
w1*x1**2 + w2*x2**2 + w3*x3**2
+ ( 3.99008911367837E-01 - 9.16947047898107E-01*i);
w1*x1**3 + w2*x2**3 + w3*x3**3
+ (-7.85981252767830E-01 + 6.18250329799760E-01*i);
w1*x1**4 + w2*x2**4 + w3*x3**4
+ ( 3.99008911367837E-01 - 9.16947047898107E-01*i);
w1*x1**5 + w2*x2**5 + w3*x3**5
+ ( 1.49480150971521E-01 + 9.88764726547995E-01*i);
TITLE : Gaussian quadrature formula with 3 knots and 3 weights
ROOT COUNTS :
total degree : 720
2-homogeneous Bezout number : 225
with partition : {w1 w2 w3 }{x1 x2 x3 }
generalized Bezout number : 225
based on the set structure :
{w1 w2 w3 }
{w1 w2 w3 }{x1 x2 x3 }
{w1 w2 w3 }{x1 x2 x3 }{x1 x2 x3 }
{w1 w2 w3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }
{w1 w2 w3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }
{w1 w2 w3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }{x1 x2 x3 }
mixed volume : 49
NOTE :
The moments are chosen at random.
By means of a particular symmetric subdivision,
only one solution path needs to be traced.
THE GENERATING SOLUTIONS :
1 6
===========================================================
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 6
the solution for t :
w1 : 8.82956381242511E-01 -4.97446186089554E-01
w2 : 1.74696857880646E-02 -4.37569014860605E-01
w3 : -7.14841935605406E-01 -4.76131775140323E-02
x1 : 4.67557036438764E-01 3.14543130902305E-01
x2 : -8.99531291584821E-02 -7.48528771335924E-01
x3 : -1.02732562627853E+00 3.52094231469549E-01
== err : 2.264E-15 = rco : 2.130E-02 = res : 2.945E-16 ==