8 w1 + w2 + w3 + w4 + ( 4.88303340950105E-01 - 8.72673963870222E-01*i); w1*x1 + w2*x2 + w3*x3 + w4*x4 + ( 5.18782365203204E-01 - 8.54906344317417E-01*i); w1*x1**2 + w2*x2**2 + w3*x3**2 + w4*x4**2 + ( -9.00683429228647E-01 - 4.34475960569656E-01*i); w1*x1**3 + w2*x2**3 + w3*x3**3 + w4*x4**3 + ( -9.48682692199895E-01 - 3.16229583562890E-01*i); w1*x1**4 + w2*x2**4 + w3*x3**4 + w4*x4**4 + ( 4.63259783551860E-01 + 8.86222530148881E-01*i); w1*x1**5 + w2*x2**5 + w3*x3**5 + w4*x4**5 + (-7.89936368499146E-01 + 6.13188823872697E-01*i); w1*x1**6 + w2*x2**6 + w3*x3**6 + w4*x4**6 + ( 9.79201808025014E-01 + 2.02888686625312E-01*i); w1*x1**7 + w2*x2**7 + w3*x3**7 + w4*x4**7 + (-2.74557888517134E-01 - 9.61570572476619E-01*i); TITLE : Gaussian quadrature formula with 4 knots and 4 weights ROOT COUNTS : total degree : 8! = 40320 2-homogeneous Bezout bound : 6769. with partition : {w1 w2 w3 w4 }{x1 x2 x3 x4 } mixed volume : 729 NOTE : The moments are randomly complex chosen coefficients. By a particular symmetric choice of the subdivision, only one solution path needs to be traced. THE GENERATING SOLUTIONS : 1 8 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 24 the solution for t : w1 : -8.96692094492292E-01 6.38170292403620E-01 w2 : 2.80402306915529E-01 1.15138545346693E-01 w3 : -8.51835305232690E-03 1.45273304678796E-02 w4 : 1.36504799678985E-01 1.04837795652029E-01 x1 : 5.59984862188214E-01 -6.79436139074726E-01 x2 : -9.59291346545661E-01 7.19343084013266E-01 x3 : -2.93171086615633E-01 1.81847906572470E+00 x4 : -9.91696113366362E-01 -5.80505222592590E-01 == err : 1.837E-15 = rco : 4.215E-04 = res : 6.713E-16 ==