8 a + b - 0.63254; c + d + 1.34534; t*a + u*b - v*c - w*d + 0.8365348; v*a + w*b + t*c + u*d - 1.7345334; a*t**2 - a*v**2 - 2*c*t*v + b*u**2 - b*w**2 - 2*d*u*w - 1.352352; c*t**2 - c*v**2 + 2*a*t*v + d*u**2 - d*w**2 + 2*b*u*w + 0.843453; a*t**3 - 3*a*t*v**2 + c*v**3 - 3*c*v*t**2 + b*u**3 - 3*b*u*w**2 + d*w**3 - 3*d*w*u**2 + 0.9563453; c*t**3 - 3*c*t*v**2 - a*v**3 + 3*a*v*t**2 + d*u**3 - 3*d*u*w**2 - b*w**3 + 3*b*w*u**2 - 1.2342523; TITLE : heart-dipole problem ROOT COUNTS : total degree : 576 2-homogeneous Bezout number : 193 with partition : {a b c d }{t u v w } generalized Bezout number : 193 based on the set structure : {a b } {c d } {a b c d }{t u v w } {a b c d }{t u v w } {a b c d }{t u v w }{t u v w } {a b c d }{t u v w }{t u v w } {a b c d }{t u v w }{t u v w }{t u v w } {a b c d }{t u v w }{t u v w }{t u v w } mixed volume : 121 REFERENCES : Nelsen, C.V. and Hodgkin, B.C.: `Determination of magnitudes, directions, and locations of two independent dipoles in a circular conducting region from boundary potential measurements' IEEE Trans. Biomed. Engrg. Vol. BME-28, No. 12, pages 817-823, 1981. Morgan, A.P. and Sommese, A.J.: `Coefficient-Parameter Polynomial Continuation' Appl. Math. Comput. Vol. 29, No. 2, pages 123-160, 1989. Errata: Appl. Math. Comput. 51:207 (1992) Morgan, A.P. and Sommese, A. and Watson, L.T.: `Mathematical reduction of a heart dipole model' J. Comput. Appl. Math. Vol. 27, pages 407-410, 1989. SYMMETRY GROUP (FOR THE POLYTOPES ONLY!) 1 (a b)(c d) (a b)(t u)(v w) (c d)(t u)(v w) (a c)(b d)(t v)(u w) (a d)(b c) (a d)(t w)(u v) (b c)(t w)(u v) a b c d t u v w 1 2 3 4 5 6 7 8 2 1 4 3 5 6 7 8 2 1 3 4 6 5 8 7 1 2 4 3 6 5 8 7 3 4 1 2 7 8 5 6 4 3 2 1 5 6 7 8 4 2 3 1 8 7 6 5 1 3 2 4 8 7 6 5 NOTE : The deficiency of this system is due to the solutions of the homogeneous part. The Groebner bases for the homogeneous part contains the polynomials { a + b, c+d , b*t - b*u - d*v + d*w, b*v - b*w + d*t - d*u, d*t**2 - 2*d*t*u + d*u**2 + d*v**2 - 2*d*v*w + d*w**2 } which leads to four solution components at infinity : 1) a=0, b=0, c=0, d=0, with t,u,v and w arbitrary complex numbers 2) a= - d*i, b=d*i, c= - d, t= - i*v + i*w + u 3) a=d*i, b= - d*i, c= - d, t=i*v - i*w + u 4) a= - b, c= - d, t=u, v=w The consecutive contributions of the constant monomials to the mixed volume are as follows : i 1 2 3 4 5 6 7 8 vi 0 0 65 65 104 104 121 121 vi = mixed volume of the system with only the first i contant terms THE SOLUTIONS : 4 8 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : a : 3.16270000000000E-01 -9.40179958538160E-01 b : 3.16270000000000E-01 9.40179958538160E-01 c : -6.72670000000000E-01 -3.26802748753925E-01 d : -6.72670000000000E-01 3.26802748753925E-01 t : 1.05055232394915E-01 8.20732577685255E-02 u : 1.05055232394915E-01 -8.20732577685255E-02 v : -2.70836601845149E-01 1.06019057303938E+00 w : -2.70836601845149E-01 -1.06019057303938E+00 == err : 2.975E-15 = rco : 4.003E-02 = res : 2.483E-16 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : a : -1.05327487539249E-02 -2.40131204422346E-52 b : 6.43072748753925E-01 2.08809742975953E-52 c : 2.67509958538160E-01 1.04462108712268E-52 d : -1.61284995853816E+00 -1.04404871487976E-52 t : 1.16524580543429E+00 -7.51715074713430E-52 u : -9.55135340644462E-01 1.07014993275176E-52 v : -3.52909859613675E-01 -3.75857537356715E-52 w : -1.88763344076624E-01 8.35238971903811E-53 == err : 2.694E-15 = rco : 4.064E-02 = res : 2.828E-16 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : a : 6.43072748753925E-01 -3.18618382226490E-57 b : -1.05327487539250E-02 3.18618382226490E-57 c : -1.61284995853816E+00 -8.92131470234173E-57 d : 2.67509958538160E-01 8.92131470234173E-57 t : -9.55135340644462E-01 1.27447352890596E-57 u : 1.16524580543429E+00 -6.24492029163921E-56 v : -1.88763344076624E-01 -3.66411139560464E-57 w : -3.52909859613675E-01 3.82342058671789E-57 == err : 2.465E-15 = rco : 3.546E-02 = res : 3.886E-16 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : a : 3.16270000000000E-01 9.40179958538160E-01 b : 3.16270000000000E-01 -9.40179958538160E-01 c : -6.72670000000000E-01 3.26802748753925E-01 d : -6.72670000000000E-01 -3.26802748753925E-01 t : 1.05055232394915E-01 -8.20732577685255E-02 u : 1.05055232394915E-01 8.20732577685254E-02 v : -2.70836601845149E-01 -1.06019057303938E+00 w : -2.70836601845149E-01 1.06019057303938E+00 == err : 3.067E-15 = rco : 4.003E-02 = res : 4.518E-16 ==