4 x1*x2-x1*x3-x4+ 1; x2*x3-x2*x4-x1+ 1; -x1*x3+x3*x4-x2+ 1; x1*x4-x2*x4-x3+ 1; TITLE : equilibrium points of a 4-dimensional Lorentz attractor ROOT COUNTS : total degree : 16 2-homogeneous Bezout number : 14 with partition : {x1 x2 }{x3 x4 } generalized Bezout number : 12 based on the set structure : {x1 x4 }{x2 x3 } {x1 x2 }{x3 x4 } {x1 x2 x4 }{x3 } {x1 x2 x3 }{x4 } mixed volume : 12 REFERENCES : Tien-Yien Li : "Solving polynomial systems", The Mathematical Intelligencer 9(3):33-39, 1987. THE SOLUTIONS : 11 4 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 3.09016994374947E-01 9.51056516295154E-01 x2 : -8.09016994374948E-01 5.87785252292473E-01 x3 : 3.09016994374947E-01 -9.51056516295154E-01 x4 : -8.09016994374948E-01 -5.87785252292473E-01 == err : 1.021E-15 = rco : 3.839E-02 = res : 2.483E-16 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 1.00000000000000E+00 0.00000000000000E+00 x2 : 1.00000000000000E+00 -3.82342058671789E-57 x3 : 1.00000000000000E+00 -1.91171029335894E-57 x4 : 1.00000000000000E+00 -1.27447352890596E-57 == err : 1.291E-41 = rco : 3.375E-01 = res : 5.735E-57 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -1.00000000000000E+00 1.00000000000000E+00 x2 : -5.12631296267255E-17 -1.00000000000000E+00 x3 : -1.00000000000000E+00 -1.00000000000000E+00 x4 : -4.55035905491173E-17 1.00000000000000E+00 == err : 0.000E+00 = rco : 4.454E-02 = res : 0.000E+00 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -1.81709374138875E-17 -1.00000000000000E+00 x2 : -1.00000000000000E+00 -1.00000000000000E+00 x3 : 2.38907385022240E-17 1.00000000000000E+00 x4 : -1.00000000000000E+00 1.00000000000000E+00 == err : 3.349E-17 = rco : 3.811E-02 = res : 4.206E-17 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 3.09016994374947E-01 -9.51056516295154E-01 x2 : -8.09016994374948E-01 -5.87785252292473E-01 x3 : 3.09016994374947E-01 9.51056516295154E-01 x4 : -8.09016994374948E-01 5.87785252292473E-01 == err : 6.687E-16 = rco : 3.839E-02 = res : 2.483E-16 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 1.71463975042395E-17 1.00000000000000E+00 x2 : -1.00000000000000E+00 1.00000000000000E+00 x3 : -3.44326771178718E-17 -1.00000000000000E+00 x4 : -1.00000000000000E+00 -1.00000000000000E+00 == err : 2.177E-16 = rco : 3.811E-02 = res : 4.578E-16 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 0.00000000000000E+00 0.00000000000000E+00 x2 : 1.00000000000000E+00 0.00000000000000E+00 x3 : -6.48149604096329E-18 0.00000000000000E+00 x4 : 1.00000000000000E+00 0.00000000000000E+00 == err : 1.148E-41 = rco : 3.333E-01 = res : 0.000E+00 == solution 8 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -8.09016994374948E-01 -5.87785252292473E-01 x2 : 3.09016994374948E-01 9.51056516295154E-01 x3 : -8.09016994374947E-01 5.87785252292473E-01 x4 : 3.09016994374947E-01 -9.51056516295153E-01 == err : 9.148E-16 = rco : 3.574E-02 = res : 2.220E-16 == solution 9 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -8.09016994374948E-01 5.87785252292473E-01 x2 : 3.09016994374947E-01 -9.51056516295154E-01 x3 : -8.09016994374947E-01 -5.87785252292473E-01 x4 : 3.09016994374947E-01 9.51056516295153E-01 == err : 6.454E-16 = rco : 3.574E-02 = res : 2.483E-16 == solution 10 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 1.00000000000000E+00 6.96997109758186E-61 x2 : 5.84394251940559E-17 6.42673050142134E-61 x3 : 1.00000000000000E+00 -1.24460305557223E-60 x4 : -9.69173609317895E-18 6.22301527786114E-61 == err : 9.692E-18 = rco : 2.000E-01 = res : 1.110E-16 == solution 11 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -1.00000000000000E+00 -1.00000000000000E+00 x2 : -2.25656724857668E-17 1.00000000000000E+00 x3 : -1.00000000000000E+00 1.00000000000000E+00 x4 : -5.35036568346616E-17 -1.00000000000000E+00 == err : 0.000E+00 = rco : 4.454E-02 = res : 0.000E+00 == <\PRE> <\HTML>