4 
x1*x2-x1*x3-x4+ 1;
x2*x3-x2*x4-x1+ 1;
-x1*x3+x3*x4-x2+ 1;
x1*x4-x2*x4-x3+ 1;

TITLE : equilibrium points of a 4-dimensional Lorentz attractor

ROOT COUNTS :

total degree : 16
2-homogeneous Bezout number : 14
  with partition : {x1 x2 }{x3 x4 }
generalized Bezout number : 12
  based on the set structure :
     {x1 x4 }{x2 x3 }
     {x1 x2 }{x3 x4 }
     {x1 x2 x4 }{x3 }
     {x1 x2 x3 }{x4 }
mixed volume : 12

REFERENCES :

Tien-Yien Li : "Solving polynomial systems",
The Mathematical Intelligencer 9(3):33-39, 1987.

THE SOLUTIONS :

11 4
===========================================================
solution 1 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  3.09016994374947E-01   9.51056516295154E-01
 x2 : -8.09016994374948E-01   5.87785252292473E-01
 x3 :  3.09016994374947E-01  -9.51056516295154E-01
 x4 : -8.09016994374948E-01  -5.87785252292473E-01
== err :  1.021E-15 = rco :  3.839E-02 = res :  2.483E-16 ==
solution 2 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  1.00000000000000E+00   0.00000000000000E+00
 x2 :  1.00000000000000E+00  -3.82342058671789E-57
 x3 :  1.00000000000000E+00  -1.91171029335894E-57
 x4 :  1.00000000000000E+00  -1.27447352890596E-57
== err :  1.291E-41 = rco :  3.375E-01 = res :  5.735E-57 ==
solution 3 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -1.00000000000000E+00   1.00000000000000E+00
 x2 : -5.12631296267255E-17  -1.00000000000000E+00
 x3 : -1.00000000000000E+00  -1.00000000000000E+00
 x4 : -4.55035905491173E-17   1.00000000000000E+00
== err :  0.000E+00 = rco :  4.454E-02 = res :  0.000E+00 ==
solution 4 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -1.81709374138875E-17  -1.00000000000000E+00
 x2 : -1.00000000000000E+00  -1.00000000000000E+00
 x3 :  2.38907385022240E-17   1.00000000000000E+00
 x4 : -1.00000000000000E+00   1.00000000000000E+00
== err :  3.349E-17 = rco :  3.811E-02 = res :  4.206E-17 ==
solution 5 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  3.09016994374947E-01  -9.51056516295154E-01
 x2 : -8.09016994374948E-01  -5.87785252292473E-01
 x3 :  3.09016994374947E-01   9.51056516295154E-01
 x4 : -8.09016994374948E-01   5.87785252292473E-01
== err :  6.687E-16 = rco :  3.839E-02 = res :  2.483E-16 ==
solution 6 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  1.71463975042395E-17   1.00000000000000E+00
 x2 : -1.00000000000000E+00   1.00000000000000E+00
 x3 : -3.44326771178718E-17  -1.00000000000000E+00
 x4 : -1.00000000000000E+00  -1.00000000000000E+00
== err :  2.177E-16 = rco :  3.811E-02 = res :  4.578E-16 ==
solution 7 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  0.00000000000000E+00   0.00000000000000E+00
 x2 :  1.00000000000000E+00   0.00000000000000E+00
 x3 : -6.48149604096329E-18   0.00000000000000E+00
 x4 :  1.00000000000000E+00   0.00000000000000E+00
== err :  1.148E-41 = rco :  3.333E-01 = res :  0.000E+00 ==
solution 8 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -8.09016994374948E-01  -5.87785252292473E-01
 x2 :  3.09016994374948E-01   9.51056516295154E-01
 x3 : -8.09016994374947E-01   5.87785252292473E-01
 x4 :  3.09016994374947E-01  -9.51056516295153E-01
== err :  9.148E-16 = rco :  3.574E-02 = res :  2.220E-16 ==
solution 9 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -8.09016994374948E-01   5.87785252292473E-01
 x2 :  3.09016994374947E-01  -9.51056516295154E-01
 x3 : -8.09016994374947E-01  -5.87785252292473E-01
 x4 :  3.09016994374947E-01   9.51056516295153E-01
== err :  6.454E-16 = rco :  3.574E-02 = res :  2.483E-16 ==
solution 10 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  1.00000000000000E+00   6.96997109758186E-61
 x2 :  5.84394251940559E-17   6.42673050142134E-61
 x3 :  1.00000000000000E+00  -1.24460305557223E-60
 x4 : -9.69173609317895E-18   6.22301527786114E-61
== err :  9.692E-18 = rco :  2.000E-01 = res :  1.110E-16 ==
solution 11 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -1.00000000000000E+00  -1.00000000000000E+00
 x2 : -2.25656724857668E-17   1.00000000000000E+00
 x3 : -1.00000000000000E+00   1.00000000000000E+00
 x4 : -5.35036568346616E-17  -1.00000000000000E+00
== err :  0.000E+00 = rco :  4.454E-02 = res :  0.000E+00 ==
<\PRE>
<\HTML>