4
x1*x2-x1*x3-x4+ 1;
x2*x3-x2*x4-x1+ 1;
-x1*x3+x3*x4-x2+ 1;
x1*x4-x2*x4-x3+ 1;
TITLE : equilibrium points of a 4-dimensional Lorentz attractor
ROOT COUNTS :
total degree : 16
2-homogeneous Bezout number : 14
with partition : {x1 x2 }{x3 x4 }
generalized Bezout number : 12
based on the set structure :
{x1 x4 }{x2 x3 }
{x1 x2 }{x3 x4 }
{x1 x2 x4 }{x3 }
{x1 x2 x3 }{x4 }
mixed volume : 12
REFERENCES :
Tien-Yien Li : "Solving polynomial systems",
The Mathematical Intelligencer 9(3):33-39, 1987.
THE SOLUTIONS :
11 4
===========================================================
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 3.09016994374947E-01 9.51056516295154E-01
x2 : -8.09016994374948E-01 5.87785252292473E-01
x3 : 3.09016994374947E-01 -9.51056516295154E-01
x4 : -8.09016994374948E-01 -5.87785252292473E-01
== err : 1.021E-15 = rco : 3.839E-02 = res : 2.483E-16 ==
solution 2 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 1.00000000000000E+00 0.00000000000000E+00
x2 : 1.00000000000000E+00 -3.82342058671789E-57
x3 : 1.00000000000000E+00 -1.91171029335894E-57
x4 : 1.00000000000000E+00 -1.27447352890596E-57
== err : 1.291E-41 = rco : 3.375E-01 = res : 5.735E-57 ==
solution 3 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -1.00000000000000E+00 1.00000000000000E+00
x2 : -5.12631296267255E-17 -1.00000000000000E+00
x3 : -1.00000000000000E+00 -1.00000000000000E+00
x4 : -4.55035905491173E-17 1.00000000000000E+00
== err : 0.000E+00 = rco : 4.454E-02 = res : 0.000E+00 ==
solution 4 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -1.81709374138875E-17 -1.00000000000000E+00
x2 : -1.00000000000000E+00 -1.00000000000000E+00
x3 : 2.38907385022240E-17 1.00000000000000E+00
x4 : -1.00000000000000E+00 1.00000000000000E+00
== err : 3.349E-17 = rco : 3.811E-02 = res : 4.206E-17 ==
solution 5 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 3.09016994374947E-01 -9.51056516295154E-01
x2 : -8.09016994374948E-01 -5.87785252292473E-01
x3 : 3.09016994374947E-01 9.51056516295154E-01
x4 : -8.09016994374948E-01 5.87785252292473E-01
== err : 6.687E-16 = rco : 3.839E-02 = res : 2.483E-16 ==
solution 6 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 1.71463975042395E-17 1.00000000000000E+00
x2 : -1.00000000000000E+00 1.00000000000000E+00
x3 : -3.44326771178718E-17 -1.00000000000000E+00
x4 : -1.00000000000000E+00 -1.00000000000000E+00
== err : 2.177E-16 = rco : 3.811E-02 = res : 4.578E-16 ==
solution 7 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 0.00000000000000E+00 0.00000000000000E+00
x2 : 1.00000000000000E+00 0.00000000000000E+00
x3 : -6.48149604096329E-18 0.00000000000000E+00
x4 : 1.00000000000000E+00 0.00000000000000E+00
== err : 1.148E-41 = rco : 3.333E-01 = res : 0.000E+00 ==
solution 8 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -8.09016994374948E-01 -5.87785252292473E-01
x2 : 3.09016994374948E-01 9.51056516295154E-01
x3 : -8.09016994374947E-01 5.87785252292473E-01
x4 : 3.09016994374947E-01 -9.51056516295153E-01
== err : 9.148E-16 = rco : 3.574E-02 = res : 2.220E-16 ==
solution 9 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -8.09016994374948E-01 5.87785252292473E-01
x2 : 3.09016994374947E-01 -9.51056516295154E-01
x3 : -8.09016994374947E-01 -5.87785252292473E-01
x4 : 3.09016994374947E-01 9.51056516295153E-01
== err : 6.454E-16 = rco : 3.574E-02 = res : 2.483E-16 ==
solution 10 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 1.00000000000000E+00 6.96997109758186E-61
x2 : 5.84394251940559E-17 6.42673050142134E-61
x3 : 1.00000000000000E+00 -1.24460305557223E-60
x4 : -9.69173609317895E-18 6.22301527786114E-61
== err : 9.692E-18 = rco : 2.000E-01 = res : 1.110E-16 ==
solution 11 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -1.00000000000000E+00 -1.00000000000000E+00
x2 : -2.25656724857668E-17 1.00000000000000E+00
x3 : -1.00000000000000E+00 1.00000000000000E+00
x4 : -5.35036568346616E-17 -1.00000000000000E+00
== err : 0.000E+00 = rco : 4.454E-02 = res : 0.000E+00 ==
<\PRE>
<\HTML>