4
( 7.67718790000000E-01 + 3.28202780000000E-01*i)*x1*x3
+( 7.67718790000000E-01 + 3.28202780000000E-01*i)*x1*x4
+(-1.76771879000000E+00 - 3.28202780000000E-01*i)*x1
+( 5.48909490000000E-01 + 1.09394900000000E-01*i)*x3
+( 4.79608000000000E-02 + 8.88686780000000E-01*i);
( 3.30100210000000E-01 + 8.90584170000000E-01*i)*x2*x3
+( 3.30100210000000E-01 + 8.90584170000000E-01*i)*x2*x4
+(-1.33010021000000E+00 - 8.90584170000000E-01*i)*x2
+( 1.11290920000000E-01 + 6.71774920000000E-01*i)*x4
+( 8.29151510000000E-01 + 6.69877470000000E-01*i);
(-7.67718790000000E-01 - 3.28202780000000E-01*i)*x1*x3
+(-7.67718790000000E-01 - 3.28202780000000E-01*i)*x1*x4
+(-8.92481630000000E-01 - 4.52965620000000E-01*i)*x3*x4
+( 7.67718790000000E-01 + 3.28202780000000E-01*i)*x1
+(-5.48909490000000E-01 - 1.09394900000000E-01*i)*x3;
(-3.30100210000000E-01 - 8.90584170000000E-01*i)*x2*x3
+(-3.30100210000000E-01 - 8.90584170000000E-01*i)*x2*x4
+(-8.92481630000000E-01 - 4.52965620000000E-01*i)*x3*x4
+( 3.30100210000000E-01 + 8.90584170000000E-01*i)*x2
+(-1.11290920000000E-01 - 6.71774920000000E-01*i)*x4;
TITLE : lumped-parameter chemically reacting system
ROOT COUNTS :
total degree : 16
4-homogeneous Bezout number : 8
with partition : {x1 }{x3 }{x4 }{x2 }
generalized Bezout number : 11
based on the set structure :
{x1 }{x3 x4 }
{x3 x4 }{x2 }
{x1 x4 }{x3 x4 }
{x3 x2 }{x4 x2 }
mixed volume : 7
REFERENCES :
T.Y. Li and X. Wang:
`Solving deficient polynomial systems with homotopies which keep the
subschemes at infinity invariant'
Math. Comp., 56(194):693--710, 1991.
THE SOLUTIONS :
4 4
===========================================================
solution 1 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -7.31946270990745E-01 3.45282894413807E-01
x3 : 2.96125742484022E+00 7.79531334186353E+00
x4 : 5.47960966576759E-02 -9.98459435938367E-02
x2 : 4.92444390092549E-02 1.26473584413808E-01
== err : 7.155E-14 = rco : 8.372E-04 = res : 9.155E-16 ==
solution 2 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 8.90824374327220E-01 -8.04191545444130E-01
x3 : 1.65730911752914E+00 -1.60704603265004E+00
x4 : -5.65236181483837E-01 5.91969194503908E-01
x2 : 1.67201508432722E+00 -1.02300085544413E+00
== err : 3.505E-15 = rco : 1.976E-02 = res : 1.256E-15 ==
solution 3 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : -2.21409313579331E+00 1.07437202505838E+00
x3 : 6.87353439387281E-01 -1.02860646625644E+00
x4 : 1.66607991847987E+00 7.64394178351801E-01
x2 : -1.43290242579331E+00 8.55562715058377E-01
== err : 5.643E-15 = rco : 5.514E-02 = res : 1.780E-15 ==
solution 4 :
t : 1.00000000000000E+00 0.00000000000000E+00
m : 1
the solution for t :
x1 : 4.33734859250612E-02 7.50365995187170E-01
x3 : 1.02702785627962E-01 2.78773736114270E-01
x4 : 4.60230559530168E-01 -6.94768664549850E-02
x2 : 8.24564195925061E-01 5.31556685187170E-01
== err : 4.856E-16 = rco : 6.703E-02 = res : 1.495E-16 ==