3 x1*x2^2 + x1*x3^2 - 1.1*x1 + 1; x2*x1^2 + x2*x3^2 - 1.1*x2 + 1; x3*x1^2 + x3*x2^2 - 1.1*x3 + 1; TITLE : A neural network modeled by an adaptive Lotka-Volterra system, n=3 ROOT COUNTS : total degree : 27 generalized Bezout bound : 21 set structure: {x1} {x2 x3} {x2 x3} {x2} {x1 x3} {x1 x3} {x3} {x1 x2} {x1 x2} mixed volume : 21 REFERENCES : Karin Gatermann: "Symbolic solution of polynomial equation systems with symmetry", Proceedings of ISSAC-90, pp 112-119, ACM New York, 1990. V. W. Noonburg: "A neural network modeled by an adaptive Lotka-Volterra system", SIAM J. Appl. Math., Vol. 49, No. 6, 1779-1792, 1989. Jan Verschelde and Ann Haegemans: `The GBQ-Algorithm for constructing start systems of homotopies for polynomial systems, SIAM J. Numer. Anal., Vol. 30, No. 2, pp 583-594, 1993. NOTE : The coefficients have been chosen so that full permutation symmetry was obtained. The parameter c = 1.1. The orbits of solutions : 3 4 1 3*(a,a,a) 4*(a,a,b) and 1*(a,b,c) THE GENERATING SOLUTIONS : 8 3 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 5.09959548065397E-01 4.79766841277292E-01 x2 : 5.09959548065397E-01 4.79766841277292E-01 x3 : 5.09959548065397E-01 4.79766841277292E-01 == err : 5.911E-16 = rco : 2.745E-01 = res : 2.493E-16 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 1.35560902253960E+00 -1.28703758201580E-17 x2 : -6.77804511269800E-01 -5.27500584353303E-01 x3 : -6.77804511269800E-01 5.27500584353303E-01 == err : 7.955E-16 = rco : 2.529E-01 = res : 4.003E-16 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -4.44383120980212E-01 -3.01427302521399E-61 x2 : -1.29427788609688E+00 1.65298843318187E-61 x3 : -1.29427788609688E+00 1.65298843318187E-61 == err : 2.849E-15 = rco : 2.583E-01 = res : 3.886E-16 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 8.98653694263692E-01 3.48820047576431E-01 x2 : -1.65123467890611E-01 7.61734168646636E-01 x3 : 8.98653694263692E-01 3.48820047576431E-01 == err : 3.699E-16 = rco : 2.949E-01 = res : 1.665E-16 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : 5.09959548065397E-01 -4.79766841277292E-01 x2 : 5.09959548065397E-01 -4.79766841277292E-01 x3 : 5.09959548065397E-01 -4.79766841277292E-01 == err : 5.242E-16 = rco : 2.745E-01 = res : 5.662E-17 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -5.03029502430507E-01 -2.11770212163837E-55 x2 : -5.03029502430507E-01 1.95759134039956E-54 x3 : 1.68372096585234E+00 -1.95759134039956E-54 == err : 1.716E-15 = rco : 3.764E-01 = res : 3.331E-16 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -1.65123467890611E-01 -7.61734168646636E-01 x2 : 8.98653694263692E-01 -3.48820047576431E-01 x3 : 8.98653694263692E-01 -3.48820047576431E-01 == err : 3.702E-16 = rco : 2.761E-01 = res : 2.791E-16 == solution 8 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 1 the solution for t : x1 : -1.01991909613079E+00 -9.49556774575980E-66 x2 : -1.01991909613079E+00 -7.59645419660784E-65 x3 : -1.01991909613079E+00 -4.74778387287990E-65 == err : 3.234E-15 = rco : 2.070E-01 = res : 6.661E-16 == <\PRE> <\HTML>