5 
x1*x2^2 + x1*x3^2 + x1*x4^2 + x1*x5^2 - 1.1*x1 + 1;
x2*x1^2 + x2*x3^2 + x2*x4^2 + x2*x5^2 - 1.1*x2 + 1;
x3*x1^2 + x3*x2^2 + x3*x4^2 + x3*x5^2 - 1.1*x3 + 1;
x4*x1^2 + x4*x2^2 + x4*x3^2 + x4*x5^2 - 1.1*x4 + 1;
x5*x1^2 + x5*x2^2 + x5*x3^2 + x5*x4^2 - 1.1*x5 + 1;

TITLE : A neural network modeled by an adaptive Lotka-Volterra system, n=5

ROOT COUNTS :

total degree : 243

generalized Bezout bound : 233
 with symmetric supporting set structure :
  {x1 }{x2 x3 x4 x5}{x2 x3 x4 x5}
  {x2 }{x1 x3 x4 x5}{x1 x3 x4 x5}
  {x3 }{x1 x2 x4 x5}{x1 x2 x4 x5}
  {x4 }{x1 x2 x3 x5}{x1 x2 x3 x5}
  {x5 }{x1 x2 x3 x4}{x1 x2 x3 x4}

mixed volume : 233

REFERENCES :

V. W. Noonburg:
"A neural network modeled by an adaptive Lotka-Volterra system",
SIAM J. Appl. Math (1988).

SYMMETRY :

The coefficients have been chosen so that full permutation symmetry
was obtained.  The parameter c = 1.1.

------------------------------------------------
|    orbit information of list of solutions    |
------------------------------------------------
|       TYPE        | NB <> | NB GEN | NB SOLS |
------------------------------------------------
|  1 2 2 2 2        |   2   |    4   |    20   |
|  1 1 2 2 3        |   3   |    3   |    90   |
|  1 1 1 2 3        |   3   |    3   |    60   |
|  1 1 1 2 2        |   2   |    6   |    60   |
|  1 1 1 1 1        |   1   |    3   |     3   |
------------------------------------------------
| Total number of generating solutions :   19  |
| Total number of generated solutions  :  233  |
------------------------------------------------

THE GENERATING SOLUTIONS :

19 5
===========================================================
solution 1 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -7.73451118106700E-01  -1.41476362957624E-60
 x2 : -7.73451118106701E-01   8.07047293847617E-61
 x3 : -7.73451118106701E-01  -7.92462101790130E-61
 x4 : -7.73451118106701E-01   1.95502345203899E-60
 x5 : -7.73451118106703E-01  -4.47279223096270E-61
== err :  2.934E-15 = rco :  1.588E-02 = res :  4.996E-16 ==
solution 2 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -4.33372590962199E-01  -4.43586227384486E-01
 x2 : -4.33372590962199E-01  -4.43586227384486E-01
 x3 : -4.33372590962199E-01  -4.43586227384486E-01
 x4 : -9.38352927500085E-01   6.79487362807545E-01
 x5 :  1.37172551846228E+00  -2.35901135423059E-01
== err :  3.197E-15 = rco :  2.574E-01 = res :  5.796E-16 ==
solution 3 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -2.19537481589068E-01  -5.53617661717944E-01
 x2 : -2.19537481589068E-01  -5.53617661717944E-01
 x3 : -2.19537481589068E-01  -5.53617661717944E-01
 x4 :  1.14746568550757E+00  -4.45985472207374E-01
 x5 :  1.14746568550757E+00  -4.45985472207374E-01
== err :  5.944E-16 = rco :  2.034E-01 = res :  2.789E-16 ==
solution 4 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -6.46857457740524E-01  -7.70636640956298E-02
 x2 : -6.46857457740524E-01  -7.70636640956299E-02
 x3 : -9.53749557893902E-01   9.98677038789894E-02
 x4 : -6.46857457740524E-01  -7.70636640956298E-02
 x5 : -9.53749557893902E-01   9.98677038789892E-02
== err :  7.504E-16 = rco :  1.595E-02 = res :  2.797E-16 ==
solution 5 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -9.53749557893902E-01  -9.98677038789892E-02
 x2 : -9.53749557893902E-01  -9.98677038789891E-02
 x3 : -6.46857457740523E-01   7.70636640956296E-02
 x4 : -6.46857457740524E-01   7.70636640956298E-02
 x5 : -6.46857457740524E-01   7.70636640956298E-02
== err :  1.948E-15 = rco :  1.537E-02 = res :  2.317E-16 ==
solution 6 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -6.51984348487134E-01  -5.84641757363990E-01
 x2 : -6.51984348487134E-01  -5.84641757363990E-01
 x3 : -6.51984348487134E-01   5.84641757363990E-01
 x4 : -6.51984348487134E-01   5.84641757363990E-01
 x5 :  1.30396869697427E+00   1.41230388317418E-17
== err :  2.338E-15 = rco :  2.030E-01 = res :  3.608E-16 ==
solution 7 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -4.37859037787807E-01   7.28681768047407E-01
 x2 : -4.37859037787807E-01   7.28681768047407E-01
 x3 : -6.51984348487134E-01  -8.51616563963253E-01
 x4 :  1.08984338627494E+00   1.22934795915846E-01
 x5 :  1.08984338627494E+00   1.22934795915846E-01
== err :  9.285E-16 = rco :  2.656E-01 = res :  2.483E-16 ==
solution 8 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -1.93716127613667E-01  -8.24599937545298E-01
 x2 : -1.93716127613667E-01  -8.24599937545298E-01
 x3 :  8.66394939329591E-01  -2.82542286504236E-01
 x4 :  8.66394939329591E-01  -2.82542286504236E-01
 x5 :  8.66394939329591E-01  -2.82542286504236E-01
== err :  8.110E-16 = rco :  2.710E-01 = res :  3.140E-16 ==
solution 9 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -4.84962665540328E-02   1.15839619891421E+00
 x2 :  5.65907615444606E-01   1.90347351502924E-01
 x3 :  5.65907615444606E-01   1.90347351502924E-01
 x4 :  5.65907615444606E-01   1.90347351502924E-01
 x5 :  5.65907615444606E-01   1.90347351502924E-01
== err :  2.069E-15 = rco :  2.499E-01 = res :  5.579E-16 ==
solution 10 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -9.38352927500085E-01  -6.79487362807545E-01
 x2 : -4.33372590962199E-01   4.43586227384486E-01
 x3 : -4.33372590962199E-01   4.43586227384486E-01
 x4 : -4.33372590962199E-01   4.43586227384486E-01
 x5 :  1.37172551846228E+00   2.35901135423059E-01
== err :  3.174E-15 = rco :  1.676E-01 = res :  6.845E-16 ==
solution 11 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -6.51984348487134E-01   8.51616563963253E-01
 x2 : -4.37859037787807E-01  -7.28681768047407E-01
 x3 : -4.37859037787807E-01  -7.28681768047407E-01
 x4 :  1.08984338627494E+00  -1.22934795915846E-01
 x5 :  1.08984338627494E+00  -1.22934795915846E-01
== err :  9.384E-16 = rco :  2.440E-01 = res :  4.827E-16 ==
solution 12 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -4.33372590962199E-01   9.82817291550256E-01
 x2 : -4.33372590962199E-01  -9.82817291550256E-01
 x3 :  8.66745181924397E-01  -2.56088381459571E-17
 x4 :  8.66745181924397E-01  -2.01882508032343E-17
 x5 :  8.66745181924397E-01  -2.79407198488834E-17
== err :  4.410E-16 = rco :  2.711E-01 = res :  4.578E-16 ==
solution 13 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -4.84962665540328E-02  -1.15839619891421E+00
 x2 :  5.65907615444606E-01  -1.90347351502924E-01
 x3 :  5.65907615444606E-01  -1.90347351502924E-01
 x4 :  5.65907615444606E-01  -1.90347351502924E-01
 x5 :  5.65907615444606E-01  -1.90347351502924E-01
== err :  2.069E-15 = rco :  2.499E-01 = res :  5.579E-16 ==
solution 14 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  3.86725559053351E-01   4.16737296237545E-01
 x2 :  3.86725559053351E-01   4.16737296237545E-01
 x3 :  3.86725559053351E-01   4.16737296237546E-01
 x4 :  3.86725559053351E-01   4.16737296237546E-01
 x5 :  3.86725559053351E-01   4.16737296237545E-01
== err :  6.656E-16 = rco :  2.491E-01 = res :  1.241E-16 ==
solution 15 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -3.72527361916890E-01  -1.23442380694877E-64
 x2 : -3.72527361916890E-01  -1.30594905149215E-65
 x3 : -3.72527361916890E-01   1.61424651677917E-64
 x4 : -3.72527361916890E-01   1.09199029076238E-64
 x5 :  1.83522115087550E+00  -3.56083790465992E-65
== err :  1.546E-15 = rco :  2.298E-01 = res :  1.110E-16 ==
solution 16 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -2.19537481589068E-01   5.53617661717944E-01
 x2 : -2.19537481589068E-01   5.53617661717944E-01
 x3 : -2.19537481589068E-01   5.53617661717944E-01
 x4 :  1.14746568550757E+00   4.45985472207374E-01
 x5 :  1.14746568550757E+00   4.45985472207374E-01
== err :  5.944E-16 = rco :  2.034E-01 = res :  2.789E-16 ==
solution 17 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -1.93716127613667E-01   8.24599937545298E-01
 x2 : -1.93716127613667E-01   8.24599937545298E-01
 x3 :  8.66394939329591E-01   2.82542286504236E-01
 x4 :  8.66394939329591E-01   2.82542286504236E-01
 x5 :  8.66394939329591E-01   2.82542286504236E-01
== err :  6.073E-16 = rco :  2.710E-01 = res :  4.003E-16 ==
solution 18 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 : -8.29137708676524E-01   6.11747293874862E-56
 x2 : -7.59287868972322E-01  -1.21074985246066E-56
 x3 : -7.59287868972323E-01  -1.35094194064032E-55
 x4 : -7.59287868972323E-01   8.53897264366995E-56
 x5 : -7.59287868972322E-01  -3.82342058671789E-57
== err :  6.973E-16 = rco :  1.310E-02 = res :  2.220E-16 ==
solution 19 :
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1
the solution for t :
 x1 :  3.86725559053351E-01  -4.16737296237545E-01
 x2 :  3.86725559053351E-01  -4.16737296237546E-01
 x3 :  3.86725559053351E-01  -4.16737296237546E-01
 x4 :  3.86725559053351E-01  -4.16737296237545E-01
 x5 :  3.86725559053351E-01  -4.16737296237545E-01
== err :  6.692E-16 = rco :  2.491E-01 = res :  2.172E-16 ==