3
 1.25623491196412E-02*x2**6+ 5.62718762857620E-01*x2**5+
 4.79909553837465E+00*x2**4+ 1.48399354804415E+01*x2**3-1.45832692729029E-01*x1**2*x3+
 1.32206878780498E+01*x2**2+ 3.64174153281780E+00*x2+ 2.82896953297879E-01;
-1.00037203701072E-01*x2**5-1.70631629738197E+00*x2**4
-7.91449875082614E+00*x2**3+ 5.38347462575619E+00*x2*x1**2+ 7.77761241586725E-02*x1**2*x3
-9.40121946251430E+00*x2**2+ 1.92514482107687E-01*x2*x1-3.23704898069416E+00*x2
-3.01751660098453E-01;
-3.97516381945663E+00*x1**2+ 8.81655270550827E+01*x1*x3+
 3.27346103274571E+02*x2+ 8.71643679865540E-06;

TITLE : problem pb 601, obtained after variable scaling

ROOT COUNTS :

total degree : 60
3-homogeneous Bezout number : 48
  with partition : {x2 }{x1 }{x3 }
generalized Bezout number : 34
  based on the set structure :
     {x2 x1 }{x2 x1 }{x2 x3 }{x2 }{x2 }{x2 }
     {x2 x3 }{x2 x1 }{x2 x1 }{x2 }{x2 }
     {x2 x1 }{x1 x3 }
mixed volume : 18

REFERENCES :

L.T. Watson.
`Globally convergent homotopy methods: a tutorial.
Appl. Math. Comput., 31(Spec. Issue):369--396, 1989. 

SCALING COEFFICIENTS :

2
-5.58284669093836E+00  -0.00000000000000E+00
-1.67520041104278E+01   0.00000000000000E+00
-1.32808756630858E+01   0.00000000000000E+00
-1.82165145539501E+00   0.00000000000000E+00
-4.31352888756371E+00   0.00000000000000E+00
-1.68078300746298E+01   0.00000000000000E+00 

THE SOLUTIONS :

18 3
===========================================================================
== 1 =  #step : 114 #fail : 23 #iter : 394 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  1.51417056266106E+02
the solution for t : 
 x2 : -3.47876021004140E+01   4.17619485951906E-53
 x1 :  1.25014277263060E+02  -3.34095588761525E-52
 x3 :  6.66975557480272E+00   1.04404871487976E-53
== err :  1.025E-14 = rco :  1.559E-02 = res :  4.329E-10 ==
== 2 =  #step : 2256 #fail : 408 #iter : 6008 = regular solution ==
t :  8.18837546585981E-01   0.00000000000000E+00
m : 1                  Length of path :  3.59940345549310E+03
the solution for t : 
 x2 :  4.07793127917372E+02  -2.51414162526606E+02
 x1 : -4.88332596829551E+05   1.01622917239244E+05
 x3 : -2.20634619238498E+04   4.85863401586538E+03
== err :  1.553E-10 = rco :  7.740E-08 = res :  2.519E-01 ==
== 3 =  #step :  34 #fail :  1 #iter : 108 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  3.88580115711918E+01
the solution for t : 
 x2 : -1.18880069085656E-03   1.97619646321882E-03
 x1 : -1.75072552725694E+00   3.00444343606573E+00
 x3 : -8.13980201652647E-02   1.35428527182017E-01
== err :  5.787E-16 = rco :  5.508E-04 = res :  4.002E-15 ==
== 4 =  #step :  31 #fail :  0 #iter :  98 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  3.44567006862109E+01
the solution for t : 
 x2 : -1.18880069085656E-03  -1.97619646321882E-03
 x1 : -1.75072552725694E+00  -3.00444343606573E+00
 x3 : -8.13980201652647E-02  -1.35428527182017E-01
== err :  6.153E-17 = rco :  5.508E-04 = res :  2.397E-15 ==
== 5 =  #step : 2257 #fail : 409 #iter : 6007 = regular solution ==
t :  8.19658881053935E-01   0.00000000000000E+00
m : 1                  Length of path :  3.59691763617562E+03
the solution for t : 
 x2 : -4.27334623518065E+02  -2.27353236579361E+02
 x1 :  3.38890720668619E+05   3.70587721432870E+05
 x3 :  1.55399332079013E+04   1.66074574940813E+04
== err :  5.570E-10 = rco :  8.152E-08 = res :  2.253E-01 ==
== 6 =  #step :  52 #fail :  8 #iter : 179 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  6.54738725451108E+01
the solution for t : 
 x2 : -1.34084837788082E-01   1.45083281976863E-02
 x1 : -6.75378871328467E-02   1.62498762938185E-01
 x3 : -1.37146978805544E+00  -2.48756854009304E+00
== err :  7.053E-15 = rco :  3.199E-05 = res :  1.776E-15 ==
== 7 =  #step :  44 #fail :  5 #iter : 151 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  5.57039072442433E+01
the solution for t : 
 x2 : -8.12251666196718E-01  -5.08868644921481E-02
 x1 : -3.67815066454638E-03  -2.82474779594114E-01
 x3 : -8.07904973435950E-01   1.06530097501544E+01
== err :  7.324E-15 = rco :  7.128E-05 = res :  7.105E-15 ==
== 8 =  #step : 2256 #fail : 410 #iter : 6006 = regular solution ==
t :  8.18800817136328E-01   0.00000000000000E+00
m : 1                  Length of path :  3.60102551350054E+03
the solution for t : 
 x2 :  1.29286768096253E+01   4.80362125722100E+02
 x1 :  1.53436050424424E+05  -4.75748078260604E+05
 x3 :  6.69957235456581E+03  -2.16273574298210E+04
== err :  3.312E-10 = rco :  9.523E-08 = res :  1.250E-01 ==
== 9 =  #step :  58 #fail :  8 #iter : 189 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  7.80037872308306E+01
the solution for t : 
 x2 : -4.37182877824838E+00  -1.57749037776311E+00
 x1 : -1.72688322695659E+00   3.96081790054435E-01
 x3 : -8.26863225772740E+00  -5.25245374362730E+00
== err :  5.205E-15 = rco :  1.465E-02 = res :  3.216E-13 ==
== 10 =  #step :  31 #fail :  0 #iter : 106 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  4.10343141813164E+01
the solution for t : 
 x2 : -2.35913424673580E-01   2.13238963442555E-30
 x1 : -1.62836982216020E-01  -3.74708929979981E-30
 x3 : -5.38642098420832E+00   5.04870979341448E-28
== err :  4.885E-14 = rco :  2.276E-05 = res :  1.421E-14 ==
== 11 =  #step : 113 #fail : 21 #iter : 361 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  1.59798310617040E+02
the solution for t : 
 x2 : -3.47235200857174E+01   2.73691106313441E-48
 x1 : -1.24172498368731E+02   1.91583774419409E-47
 x3 : -6.63688975440234E+00   8.55284707229503E-49
== err :  5.768E-15 = rco :  1.563E-02 = res :  5.002E-10 ==
== 12 =  #step : 127 #fail : 24 #iter : 314 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  1.93118414758458E+02
the solution for t : 
 x2 : -8.12251666196717E-01   5.08868644921481E-02
 x1 : -3.67815066454634E-03   2.82474779594114E-01
 x3 : -8.07904973435948E-01  -1.06530097501544E+01
== err :  3.222E-15 = rco :  7.128E-05 = res :  3.553E-15 ==
== 13 =  #step :  54 #fail :  6 #iter : 179 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  6.51956233418061E+01
the solution for t : 
 x2 : -4.45034660791591E+00  -1.62904049389287E+00
 x1 :  1.76739501810143E+00  -4.52350992973645E-01
 x3 :  8.03194887050077E+00   5.43713373782053E+00
== err :  1.833E-14 = rco :  1.579E-02 = res :  1.019E-13 ==
== 14 =  #step :  31 #fail :  0 #iter : 111 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  4.33745778684609E+01
the solution for t : 
 x2 : -3.04202065274022E-01   8.66668474974256E-34
 x1 :  1.23706734580432E-01   1.30150734523044E-33
 x3 :  9.13571147655490E+00  -4.19082355898663E-31
== err :  1.529E-14 = rco :  8.890E-06 = res :  1.110E-16 ==
== 15 =  #step : 108 #fail : 18 #iter : 352 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  1.36394843947802E+02
the solution for t : 
 x2 : -4.37182877824838E+00   1.57749037776311E+00
 x1 : -1.72688322695660E+00  -3.96081790054435E-01
 x3 : -8.26863225772739E+00   5.25245374362729E+00
== err :  8.617E-15 = rco :  1.465E-02 = res :  1.922E-13 ==
== 16 =  #step :  39 #fail :  3 #iter : 125 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  5.39353043865107E+01
the solution for t : 
 x2 : -1.34084837788082E-01  -1.45083281976863E-02
 x1 : -6.75378871328466E-02  -1.62498762938185E-01
 x3 : -1.37146978805544E+00   2.48756854009303E+00
== err :  1.546E-14 = rco :  3.199E-05 = res :  2.139E-14 ==
== 17 =  #step :  90 #fail : 13 #iter : 306 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  1.15672043218905E+02
the solution for t : 
 x2 : -4.45034660791591E+00   1.62904049389287E+00
 x1 :  1.76739501810143E+00   4.52350992973644E-01
 x3 :  8.03194887050078E+00  -5.43713373782052E+00
== err :  1.114E-14 = rco :  1.579E-02 = res :  4.547E-13 ==
== 18 =  #step :  52 #fail :  8 #iter : 161 = regular solution ==
t :  1.00000000000000E+00   0.00000000000000E+00
m : 1                  Length of path :  5.94247475902365E+01
the solution for t : 
 x2 :  2.23778697913352E-03  -6.35033028702915E-29
 x1 :  3.55502844589014E+00  -1.96268593218988E-27
 x3 :  1.57950205937646E-01   3.90486148084401E-29
== err :  6.120E-14 = rco :  6.899E-04 = res :  3.442E-15 ==
== #regu : 18 = #sing : 0 = #clus : 0 = #infi : 0 = #fail : 0 ==