5 1 + y1 + y2 + y3 + y4 + y5; y1 + y1*y2 + y2*y3 + y3*y4 + y4*y5 + y5; y1*y2 + y1*y2*y3 + y2*y3*y4 + y3*y4*y5 + y4*y5 + y5*y1; y1*y2*y3 + y1*y2*y3*y4 + y2*y3*y4*y5 + y3*y4*y5 + y4*y5*y1 + y5*y1*y2; y1*y2*y3*y4 + y1*y2*y3*y4*y5 + y2*y3*y4*y5 + y3*y4*y5*y1 + y4*y5*y1*y2 + y5*y1*y2*y3; z0**6*y1*y2*y3*y4*y5 - 1; TITLE : reduced cyclic 6-roots problem ROOT COUNTS : total degree : 5! = 120 3-homogeneous Bezout number = 96. with partition : {y1 y4 }{y2 y5 }{y3 } generalized Bezout bound : 84 based on { y1 y2 y3 y4 y5 } { y1 y3 y5 }{ y2 y4 } { y1 y4 }{ y2 y5 }{ y3 } { y1 }{ y2 }{ y3 }{ y4 }{ y5 } { y1 }{ y2 }{ y3 }{ y4 }{ y5 } mixed volume : 26 REFERENCES : See Ioannis Z. Emiris: `Sparse Elimination and Application in Kinematics' PhD Thesis, Computer Science, University of California at Berkeley, 1994, page 25. yi = zi/z0 This reduces the dimension of the problem by 1 and the mixed volume drops with 6. THE SYMMETRY GROUP : y1 y2 y3 y4 y5 y5 y4 y3 y2 y1 THE GENERATING SOLUTIONS : 13 5 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 4.35420544682339E-01 0.00000000000000E+00 y2 : -4.35420544682339E-01 -6.63257745031253E-75 y3 : -1.00000000000000E+00 -8.29072181289067E-75 y4 : -2.29663026288654E+00 -4.55989699708987E-75 y5 : 2.29663026288654E+00 2.10031619259897E-74 == err : 1.757E-15 = rco : 7.119E-02 = res : 1.665E-16 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 1.00000000000000E+00 -4.86389013022919E-74 y2 : -2.67949192431123E-01 -8.84343660041671E-74 y3 : -3.73205080756888E+00 8.40126477039588E-74 y4 : 1.00000000000000E+00 4.42171830020836E-74 y5 : 1.00000000000000E+00 -5.08497604523961E-74 == err : 2.459E-15 = rco : 1.787E-02 = res : 1.110E-16 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -3.66025403784439E-01 -9.30604859102100E-01 y2 : -7.32050807568877E-01 6.81250038633213E-01 y3 : 7.32050807568877E-01 -6.81250038633213E-01 y4 : 3.66025403784439E-01 9.30604859102100E-01 y5 : -1.00000000000000E+00 4.70224363277577E-17 == err : 5.957E-16 = rco : 1.413E-01 = res : 6.280E-16 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -3.73205080756888E+00 -7.82410672410628E-69 y2 : -3.73205080756888E+00 -4.92628941888173E-69 y3 : -3.73205080756888E+00 -3.62227163153069E-69 y4 : -3.73205080756888E+00 -2.39069927681025E-69 y5 : 1.39282032302755E+01 1.97051576755269E-68 == err : 8.118E-15 = rco : 2.117E-03 = res : 4.547E-13 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -2.67949192431123E-01 4.38555434438390E-79 y2 : -2.67949192431123E-01 1.48434147040686E-78 y3 : -2.67949192431123E-01 -1.34940133673351E-78 y4 : -2.67949192431123E-01 -2.19277717219195E-79 y5 : 7.17967697244908E-02 -3.20482817474208E-79 == err : 3.168E-16 = rco : 6.091E-03 = res : 1.110E-16 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 1.00000000000000E+00 1.35835186182401E-71 y2 : -3.73205080756888E+00 -5.09381948184003E-72 y3 : -2.67949192431123E-01 -6.22577936669337E-72 y4 : 1.00000000000000E+00 -6.79175930912004E-72 y5 : 1.00000000000000E+00 4.52783953941336E-72 == err : 2.749E-15 = rco : 1.733E-02 = res : 3.331E-16 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -2.67949192431123E-01 -7.73800702536462E-75 y2 : -3.73205080756888E+00 -3.53737464016668E-74 y3 : 1.00000000000000E+00 1.87923027758855E-74 y4 : 1.00000000000000E+00 1.21597253255730E-74 y5 : 1.00000000000000E+00 1.27124401130990E-74 == err : 2.613E-15 = rco : 1.997E-02 = res : 1.110E-16 == solution 8 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -1.00000000000000E+00 4.63650768835928E-69 y2 : -4.35420544682339E-01 2.02847211365718E-69 y3 : -1.89591050731465E-01 -2.89781730522455E-70 y4 : 1.89591050731465E-01 -2.31825384417964E-69 y5 : 4.35420544682339E-01 -3.76716249679191E-69 == err : 2.074E-16 = rco : 2.307E-02 = res : 2.220E-16 == solution 9 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -1.00000000000000E+00 -3.99971315179912E-17 y2 : 3.66025403784439E-01 -9.30604859102100E-01 y3 : 7.32050807568877E-01 6.81250038633213E-01 y4 : -7.32050807568877E-01 -6.81250038633213E-01 y5 : -3.66025403784439E-01 9.30604859102100E-01 == err : 5.225E-16 = rco : 1.207E-01 = res : 3.140E-16 == solution 10 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 1.00000000000000E+00 -5.48194293047987E-80 y2 : 1.00000000000000E+00 1.68675167091688E-80 y3 : 1.00000000000000E+00 1.68675167091688E-80 y4 : -2.67949192431123E-01 0.00000000000000E+00 y5 : -3.73205080756888E+00 -4.21687917729221E-80 == err : 2.358E-15 = rco : 1.905E-02 = res : 6.661E-16 == solution 11 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 5.00000000000000E-01 8.66025403784439E-01 y2 : -5.00000000000000E-01 8.66025403784439E-01 y3 : -1.00000000000000E+00 -1.29604050740420E-16 y4 : -5.00000000000000E-01 -8.66025403784439E-01 y5 : 5.00000000000000E-01 -8.66025403784439E-01 == err : 5.178E-16 = rco : 1.754E-01 = res : 4.710E-16 == solution 12 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : 2.29663026288654E+00 1.62277769092575E-68 y2 : 5.27451056440629E+00 3.94103153510539E-68 y3 : -5.27451056440629E+00 -3.59329345847844E-68 y4 : -2.29663026288654E+00 -1.44890865261227E-68 y5 : -1.00000000000000E+00 -1.73869038313473E-69 == err : 1.791E-15 = rco : 3.857E-03 = res : 1.421E-14 == solution 13 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 2 the solution for t : y1 : -3.66025403784439E-01 -9.30604859102100E-01 y2 : 3.66025403784439E-01 9.30604859102100E-01 y3 : -1.00000000000000E+00 -5.41719466407389E-17 y4 : 3.66025403784439E-01 -9.30604859102100E-01 y5 : -3.66025403784439E-01 9.30604859102100E-01 == err : 7.381E-16 = rco : 1.626E-01 = res : 4.578E-16 ==