5 x1**2*x2**2*x3**2*x4**2*x5**2 + 3*x1**2 + x2**2 + x3**2 + x4**2 + x5**2 + x1*x2*x3*x4*x5 + 5; x1**2*x2**2*x3**2*x4**2*x5**2 + x1**2 + 3*x2**2 + x3**2 + x4**2 + x5**2 + x1*x2*x3*x4*x5 + 5; x1**2*x2**2*x3**2*x4**2*x5**2 + x1**2 + x2**2 + 3*x3**2 + x4**2 + x5**2 + x1*x2*x3*x4*x5 + 5; x1**2*x2**2*x3**2*x4**2*x5**2 + x1**2 + x2**2 + x3**2 + 3*x4**2 + x5**2 + x1*x2*x3*x4*x5 + 5; x1**2*x2**2*x3**2*x4**2*x5**2 + x1**2 + x2**2 + x3**2 + x4**2 + 3*x5**2 + x1*x2*x3*x4*x5 + 5; TITLE : a 5-dimensional sparse symmetric polynomial system ROOT COUNTS : Total degree : 10000 5-homogeneous Bezout number : 3840 mixed volume : 160 REFERENCES : Jan Verschelde and Karin Gatermann: `Symmetric Newton Polytopes for Solving Sparse Polynomial Systems', Adv. Appl. Math., 16(1): 95-127, 1995. SYMMETRY GROUP : invariant under all permutations + sign symmetry, generated by -x1 -x2 x3 x4 x5 -x1 x2 -x3 x4 x5 -x1 x2 x3 -x4 x5 -x1 x2 x3 x4 -x5 THE GENERATING SOLUTIONS : 10 5 =========================================================== solution 1 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 5.23681844701480E-01 -1.16679253451397E+00 x2 : 5.23681844701480E-01 -1.16679253451397E+00 x3 : -5.23681844701480E-01 1.16679253451397E+00 x4 : 5.23681844701480E-01 -1.16679253451397E+00 x5 : 5.23681844701480E-01 -1.16679253451397E+00 == err : 3.555E-15 = rco : 6.219E-02 = res : 3.722E-15 == solution 2 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 5.62945437488535E-01 -1.06731054777957E+00 x2 : 5.62945437488535E-01 -1.06731054777957E+00 x3 : -5.62945437488535E-01 1.06731054777957E+00 x4 : 5.62945437488535E-01 -1.06731054777957E+00 x5 : -5.62945437488535E-01 1.06731054777957E+00 == err : 2.585E-15 = rco : 7.123E-02 = res : 3.286E-15 == solution 3 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : -2.86768329351213E-02 8.27714843748319E-01 x2 : -2.86768329351213E-02 8.27714843748319E-01 x3 : 2.86768329351213E-02 -8.27714843748319E-01 x4 : 2.86768329351213E-02 -8.27714843748319E-01 x5 : -2.86768329351213E-02 8.27714843748319E-01 == err : 3.373E-16 = rco : 2.222E-01 = res : 4.450E-16 == solution 4 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 2.86768329351213E-02 8.27714843748319E-01 x2 : 2.86768329351213E-02 8.27714843748319E-01 x3 : -2.86768329351213E-02 -8.27714843748319E-01 x4 : -2.86768329351213E-02 -8.27714843748319E-01 x5 : -2.86768329351213E-02 -8.27714843748319E-01 == err : 3.406E-16 = rco : 2.222E-01 = res : 4.441E-16 == solution 5 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 5.23681844701480E-01 1.16679253451397E+00 x2 : -5.23681844701480E-01 -1.16679253451397E+00 x3 : 5.23681844701480E-01 1.16679253451397E+00 x4 : 5.23681844701480E-01 1.16679253451397E+00 x5 : 5.23681844701480E-01 1.16679253451397E+00 == err : 3.555E-15 = rco : 6.219E-02 = res : 3.722E-15 == solution 6 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 1.23947841569073E+00 4.36197964162307E-01 x2 : -1.23947841569073E+00 -4.36197964162307E-01 x3 : 1.23947841569073E+00 4.36197964162307E-01 x4 : 1.23947841569073E+00 4.36197964162307E-01 x5 : 1.23947841569073E+00 4.36197964162307E-01 == err : 3.568E-15 = rco : 5.702E-02 = res : 1.601E-14 == solution 7 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 1.22889165583880E+00 5.12364025922987E-01 x2 : -1.22889165583880E+00 -5.12364025922987E-01 x3 : -1.22889165583880E+00 -5.12364025922987E-01 x4 : -1.22889165583880E+00 -5.12364025922987E-01 x5 : -1.22889165583880E+00 -5.12364025922987E-01 == err : 5.297E-16 = rco : 4.594E-02 = res : 3.972E-15 == solution 8 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : 1.22889165583880E+00 -5.12364025922987E-01 x2 : -1.22889165583880E+00 5.12364025922987E-01 x3 : -1.22889165583880E+00 5.12364025922987E-01 x4 : -1.22889165583880E+00 5.12364025922987E-01 x5 : -1.22889165583880E+00 5.12364025922987E-01 == err : 5.297E-16 = rco : 4.594E-02 = res : 3.972E-15 == solution 9 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : -1.23947841569073E+00 4.36197964162307E-01 x2 : -1.23947841569073E+00 4.36197964162307E-01 x3 : -1.23947841569073E+00 4.36197964162307E-01 x4 : -1.23947841569073E+00 4.36197964162307E-01 x5 : -1.23947841569073E+00 4.36197964162307E-01 == err : 3.568E-15 = rco : 5.702E-02 = res : 1.601E-14 == solution 10 : t : 1.00000000000000E+00 0.00000000000000E+00 m : 16 the solution for t : x1 : -5.62945437488535E-01 -1.06731054777957E+00 x2 : -5.62945437488535E-01 -1.06731054777957E+00 x3 : -5.62945437488535E-01 -1.06731054777957E+00 x4 : -5.62945437488535E-01 -1.06731054777957E+00 x5 : 5.62945437488535E-01 1.06731054777957E+00 == err : 2.585E-15 = rco : 7.123E-02 = res : 3.286E-15 ==