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Abstract

Our problem is to accurately solve linear systems on a general purpose graphics processing
unit with double double and quad double arithmetic. The linear systems originate from the
application of Newton’s method on polynomial systems. Newton’s method is applied as a
corrector in a path tracking method, so the linear systems are solved in sequence and not
simultaneously. One solution path may require the solution of thousands of linear systems. In
previous work we reported good speedups with our implementation to evaluate and differen-
tiate polynomial systems on the NVIDIA Tesla C2050. Although the cost of evaluation and
differentiation often dominates the cost of linear system solving in Newton’s method, because
of the limited bandwidth of the communication between CPU and GPU, we cannot afford to
send the linear system to the CPU for solving during path tracking.

Because of large degrees, the Jacobian matrix may contain extreme values, requiring ex-
tended precision, leading to a significant overhead. This overhead of multiprecision arithmetic
is our main motivation to develop a massively parallel algorithm. To allow overdetermined
linear systems we solve linear systems in the least squares sense, computing the QR decomposi-
tion of the matrix by the modified Gram-Schmidt algorithm. We describe our implementation
of the modified Gram-Schmidt orthogonalization method using double double and quad dou-
ble arithmetic for GPUs. Our experimental results on the NVIDIA Tesla C2050 and K20C
show that the achieved speedups are sufficiently high to compensate for the overhead of one
extra level of precision.

Keywords double double arithmetic, general purpose graphics processing unit (GPU), mas-
sively parallel algorithm, modified Gram-Schmidt method, orthogonalization, quad double
arithmetic, quality up.
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1 Introduction

We consider as given a system of m polynomial equations in n variables. The coefficients of the
polynomials are complex numbers. Besides m and n, two other factors determine the complexity
of the system: the number M of monomials that appear with nonzero coefficient and the largest
degree d that occurs as an exponent of a variable. The tuple (m,n,M, d) determines the cost of
evaluating and differentiating the system accurately. As the degrees increase, hardware double
precision arithmetic becomes insufficient to solve polynomial systems with path tracking methods.
In the problem setup for this paper we consider the tracking of one difficult solution path in
extended precision. For an introduction to polynomial system solving with path tracking methods,
see for example [11].

The extended precision arithmetic we perform with the quad double library QD 2.3.9 [6], and
in particular on a GPU using the software in [13]. For the numerical properties, we refer to [4]
and [18]. Our development of massively parallel algorithms is motivated by the desire to offset
the extra cost of double double and quad double arithmetic. We strive for a quality up [1] factor:
if we can afford to keep the execution time constant, how much can we improve the quality of
the solution?

Using double double or quad double arithmetic we obtain predictable cost overheads. In [25]
we experimentally determined that the overhead factors of double double over standard double
arithmetic is indeed similar to the overhead of complex over standard double arithmetic. In terms
of quality, the errors are expected to decrease proportionally to the increase in the precision.
In [24] we described a multicore implementation of a path tracker and we implemented our
methods used to evaluate and differentiate systems of polynomials on the NVIDIA Tesla C2050,
as described in [26]. The focus of this paper is on the solving of the linear systems, needed to run
Newton’s method.

Because of the limited bandwidth of CPU/GPU communication we cannot afford to transfer
the evaluated system and its Jacobian matrix from the GPU to the CPU and perform the linear
system solving on the CPU. Although the evaluation and differentiation of a polynomial system
often dominates the cost of Newton’s method [24], the cost of linear system solving increases rel-
ative to the parallel run times of evaluation and differentiation so that even with minor speedups,
using a parallel version of the linear system solver matters in the overall execution time.

In the next section we state our problem, mention related work and list our contributions.
In the third section we summarize the mathematical definition and properties of modified Gram-
Schmidt orthogonalization and we illustrate the higher cost of complex multiprecision arithmetic.
Then we describe our massively parallel version of the modified Gram-Schmidt algorithm and
give computational results.

2 Problem Statement and Related Work

Our problem originates from the application of homotopy continuation methods to solve polyno-
mial systems. While the tracking of many solution paths is a pleasingly parallel computation for
which message passing works well, see for example [20], it often occurs that there is one difficult
solution path for which the double precision is insufficient to reach the solution at the end of the
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path. With GPU acceleration we want to offset the extra cost of multiprecision.

In this paper we focus on the solving of a linear system (which may have more equations than
unknowns) on a GPU. The linear system occurs in the context of Newton’s method applied to a
polynomial system. Because the system could have more equations than unknowns and because
of increased numerical stability, we decided to solve the linear system with a least squares method
via a QR decomposition of the matrix. The algorithm we decided to implement is the modified
Gram-Schmidt algorithm, see [7] for its definition and a discussion of its numerical stability. A
computational comparison between Gaussian elimination and orthogonal matrix decomposition
can be found in [22].

Because the overhead factor of the computation cost of extended precision arithmetic, we can
afford to apply a fine granularity in our massively parallel algorithm.

2.1 Related Work

Comparing QR with Householder transformations and with the modified Gram-Schmidt algo-
rithm, the authors of [17] show that on message passing systems, a parallel modified Gram-
Schmidt algorithm can be much more efficient than a parallel Householder algorithm, and is
never slower. MPI implementations of three versions of Gram-Schmidt orthonormalizations are
described in [12]. The performance of different parallel modified Gram-Schmidt algorithms on
clusters is described in [19]. Because the modified Gram-Schmidt method cannot be expressed by
Level-2 BLAS operations, in [27] the authors proposed an efficient implementation of the classical
Gram-Schmidt orthogonalization method.

In [15] is a description of a parallel QR with classical Gram-Schmidt on GPU and results on
an implementation with the NVIDIA Geforce 295 are reported. A report on QR decompositions
using Householder transformations on the NVIDIA Tesla C2050 can be found in [2]. A high
performance implementation of the QR algorithm on GPUs is described in [8]. The authors
of [8] did not consider to implement the modified Gram-Schmidt method on a GPU because
the vectors in the inner products are large and the many synchronizations incur a prohibitive
overhead. According to [8], a blocked version is susceptible to precision problems. In our setting,
the length n of the vectors is small (our n may coincide with the warp size) and similar to what
is reported in [2], we expect the cost of synchronizations to be modest for a small number of
threads. Because of our small dimensions, we did not consider a blocked version.

In [3], the problem of solving many small independent QR factorizations on a GPU is investi-
gated. Although our QR factorizations are also small, in our application of Newton’s method in
the tracking of one solution path, the linear systems are not independent and must be solved in
sequence. After the QR decomposition, we solve an upper triangular linear system. The solving
of dense triangular systems on multicore and GPU accelerators is described in [21].

Triple precision (double + single float) implementations of BLAS routines on GPUs were
presented in [16].

Related to polynomial system solving on a GPU, we mention two recent works. In [14], a
subresultant method with a CUDA implementation of the FFT is described to solve systems of
two variables. The implementation with CUDA of a multidimensional bisection algorithm on an
NVIDIA GPU is presented in [10].
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2.2 Our Contributions are twofold:

1. We show that the extra cost of multiprecision arithmetic in the modified Gram-Schmidt
orthogonalization method can be compensated by GPU acceleration.

2. Combined with projected speedups of our massively parallel evaluation and differentiation
implementation [26], the results pave the way for a path tracker that runs entirely on a
GPU.

3 Modified Gram-Schmidt Orthogonalization

Roots of polynomial systems are typically complex and we calculate with complex numbers.
Following notations in [5], the inner product of two complex vectors x,y ∈ C

n is denoted by

xHy. In particular: xHy =

n
∑

ℓ=1

xℓyℓ, where c is the complex conjugate of c ∈ C. Figure 1 lists

pseudo code of the modified Gram-Schmidt orthogonalization method.

Input: A ∈ C
m×n.

Output: Q ∈ C
m×n, R ∈ C

n×n: QHQ = I,
R is upper triangular, and A = QR.

let ak be column k of A
for k from 1 to n do

rkk :=
√

aH
k ak

qk := ak/rkk, qk is column k of Q
for j from k + 1 to n do

rkj := qH
k aj

aj := aj − rkjqk

Figure 1: The modified Gram-Schmidt orthogonalization algorithm.

Given the QR decomposition of a matrix A, the system Ax = b is equivalent to QRx = b.
By the orthogonality of Q, solving Ax = b is reduced to the upper triangular system Rx = QHb.
This solution minimizes ||b − Ax||22.

Instead of computing QHb separately, for numerical stability as recommended in [7, §19.3],
we apply the modified Gram-Schmidt method to the matrix A augmented with b:

[

A b
]

=
[

Q qn+1

]

[

R y

0 z

]

. (1)

As qn+1 is orthogonal to the column space of Q, we have ||b − Ax||22 = ||Rx − y||22 + z2 and
y = QHb.

As reported in [7], the number of flops in the algorithm in Figure 1 equals 2mn2. In compu-
tations we experience the cubic behavior of the running time: doubling n and m multiplies the
running time by a factor of about 8.
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4 Complex and Multiprecision Arithmetic: Cost and Accuracy

With user CPU times of runs with the modified Gram-Schmidt algorithm on random data in
Table 1 we illustrate the overhead factor of using complex double, complex double double, and
complex quad double arithmetic over standard double arithmetic. Computations in this section
were done on one core of an 3.47 GHz Intel Xeon X5690 and with version 2.3.70 of PHCpack [23].
Going from double to complex quad double arithmetic, 3.7 seconds increase to 2916.8 seconds
(more than 48 minutes), by a factor of 788.3.

Table 1: User CPU times (in seconds) for 10,000 QR decompositions with n = m = 32, for
increasing levels of precision.

precision CPU time factor

double 3.7 1.0
complex double 26.8 7.2

complex double double 291.5 78.8
complex quad double 2916.8 788.3

Using the cost factors we can recalibrate the dimension. Suppose a flop costs 8 times more,
using 8 = 23, the number of flops in the modified Gram-Schmidt method is then 8 × 2mn2 =
2(2m)(2n)2. Working with operations that cost 8 times more increases the cost with the same
factor as doubling the dimension in the original arithmetic.

Taking the cubed roots of the factors in Table 1: 7.21/3 ≈ 1.931, 78.81/3 ≈ 4.287, 788.31/3 ≈
9.238, the cost of using complex double, complex double double, and complex quad double arith-
metic is equivalent to using double arithmetic, after multiplying the dimension 32 of the problem
respectively by the factors 1.931, 4.287, and 9.238, which then yields respectively 62, 134, and 296.
Orthogonalizing 32 vectors in C

32 in quad double arithmetic has the same cost as orthogonalizing
296 vectors in C

296 with double precision.

To measure the accuracy of the computed Q ∈ C
m×n and R ∈ C

n×n of a given A ∈ C
m×n,

we consider the matrix 1-norm [5] of A − QR:

e = ||A − QR||1 = max
i=1,2,...,m
j=1,2,...,n

∣

∣

∣

∣

∣

aij −
n

∑

ℓ=1

qiℓrℓj

∣

∣

∣

∣

∣

. (2)

For x ∈ [−10,+10], we have xd ∈ [10−d, 10+d], so as the degrees d of the polynomials in
our system increase we are likely to obtain more extreme values in the Jacobian matrix. In the
experiments discussed below we generate complex numbers of modulus one as exp(iθ), where
i =

√
−1 and θ is chosen at random from [0, 2π[. To generate complex numbers of varying

magnitude, we consider r exp iθ, with r chosen at random from [10−g , 10+g] where g determines
the range of the moduli of the generated complex numbers. To simulate the numbers in the
Jacobian matrices arising from evaluating polynomials of degree d, it seems natural to take the
parameter g equal to d.

In Table 2 experimental values for e are summarized. For complex numbers with moduli in
[10−g, 10+g], log10(e) decreases linearly as g increases. Computing e for 1,000 different random
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matrices, |min(log10(e)) − max(log10)(e))| remains almost constant and increases slightly as g
increases.

Table 2: For 1,000 QR decompositions on 32-by-32 matrices with randomly generated complex
numbers uniformly in [10−g, 10+g ], and for g = 1, 4, 8, 12, 16, we list me = min(log10(e)), Me =
max(log10(e)), and De = me − Me, computed in complex double and complex double double
arithmetic. For g = 17, 20, 24, 28, 32, results are for complex double double and complex quad
double arithmetic.

complex double complex double double
g me Me De me Me De

1 -14.5 -14.0 0.5 -30.6 -30.1 0.5
4 -11.7 -11.0 0.7 -27.8 -27.1 0.7
8 -7.8 -7.0 0.8 -24.0 -23.1 1.0

12 -3.9 -3.1 0.8 -20.1 -19.2 0.9
16 -0.2 1.0 1.2 -16.4 -15.1 1.3

complex double double complex quad double
g me Me De me Me De

17 -15.5 -14.1 1.3 -48.1 -47.1 1.0
20 -12.6 -11.1 1.5 -45.1 -44.2 0.9
24 -8.8 -7.2 1.6 -41.3 -40.2 1.2
28 -4.7 -3.2 1.5 -37.7 -36.1 1.6
32 -1.0 0.8 1.9 -33.9 -32.2 1.8

Our experiments show the numerical stability of the modified Gram-Schmidt method to be
good and predictable. If our numbers range in modulus between 10−g and 10+g and if we want
answers accurate of at least half of our working precision, then the working precision must be at
least 2g decimal places.

Our modified Gram-Schmidt method does not swap columns (as it must do for rank deficient
matrices). With Gaussian elimination we have to apply partial pivoting to prevent the growth of
the numbers. As concluded by [22, page 358]: “For QR factorization with or without pivoting, the
average maximum element of the residual matrix is O(n1/2), whereas for Gaussian elimination it
is O(n).” Even for relatively small dimensions as n = 32, we have n/

√
n ≈ 5.66. While Gaussian

elimination is 3 times faster than the modified Gram-Schmidt method, the average maximum
error is almost 6 times larger.

5 Massively Parallel Modified Gram-Schmidt Orthogonalization

Our main kernel Normalize Remove() in Gram-Schmidt orthogonalization normalizes a vector
and removes components of all vectors with bigger indexes in the direction of this vector. The
secondary kernel Normalize() only normalizes one vector. The algorithm in Figure 2 overwrites
the input matrix A so that on return the matrix A equals the matrix Q of the algorithm in
Figure 1.

The multiple blocks launched by the kernel within each iteration of the loop in the algorithm
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Input:A ∈ C
m×n, A = [a1 a2 . . . an],

ak ∈ C
m, k = 1, 2, . . . , n.

Output: A ∈ C
m×n, AHA = I (i.e.: A = Q),

R ∈ C
n×n: R = [rij ], rij ∈ C,

i = 1, 2, . . . , n, j = 1, 2, . . . , n.
for k from 1 to n − 1 do

launch kernel Normalize Remove(k)
with (n − k) blocks of threads,
as the jth block (for all j : k < j ≤ n)
normalizes ak and removes the component
of aj in the direction of ak

launch kernel Normalize(n) with one
thread block to normalize an.

Figure 2: A parallel version of the modified Gram-Schmidt orthogonalization algorithm.

in Figure 2 is the first coarse grained level of parallelism. If the number of variables is equal
to or larger than the warp size (the number of cores on a multiprocessor of the GPU), then the
second fine grained parallelism resides in the calculation of componentwise operations and of the
inner products. Threads within blocks perform these operations cooperatively. As one inner
product of two vectors of dimension n requires n multiplications (one operation per core), note
that a multiplication in double double and quad double arithmetic requires many operations with
hardware doubles.

The algorithm suggests the normalization of each ak is performed (n − k) times, by each of
the blocks in the kth launch of the kernel Normalize Remove(). However normalizing it only once
instead would suggest another launch of the kernel Normalize() associated with extra writing to
and reading from the global memory of the card of the vector being normalized. This would be
more expensive than to perform the normalization within Normalize Remove() multiple times.

The loop in the algorithm in Figure 2 performs n−1 normalizations, where each normalization
is followed by the update of all remaining vectors. In particular, after normalizing the kth vector,
we launch n − k blocks of m threads. Each thread block handles one aj . The update stage has
a triangular structure. The triangular structure implies that we have more parallelism for small
values of k. Therefore, we expect increased speedups at earlier stages of the algorithm in Figure 2.

The main ingredients in the kernels Normalize() and Normalize Remove() are inner products
and the normalizations, which we explain in the next two subsections. In subsection C below we
discuss the usage of the card resources by threads of the kernel Normalize Remove().

5.1 Computing Inner Products

The fine granularity of our massively parallel algorithm is explained in this section. In computing
xHy the products xℓ ⋆ yℓ are independent of each other. The inner product xHy is computed in
two stages:

1. All threads work independently in parallel: thread ℓ calculates xℓ ⋆ yℓ where the operation
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⋆ is a complex double, a complex double double, or a complex quad double multiplication.
Afterwards, all threads in the block are synchronized for the next stage.

2. The sum reduction [9, Figure 6.2] is applied to (x1y1, x2y2, . . . , xmym) to compute x1y1 +
x2y2 + · · · + xmym. The + in the sum above corresponds to the ⋆ in the item above and is
a complex double, a complex double double, or a complex quad double addition. There are
log2(m) steps. If m equals the warp size, there is thread divergence in every step.

The number of shared memory locations used by an inner product equals 2m. Each location
holds a complex double, or a complex double double, or a complex quad double.

The 2m memory locations suffice if we compute only one inner product, allowing that one of
the original vectors is overwritten. In our algorithm, we need the same vector qk the second time
when computing rkj := qH

k aj (see Figure 1) so we need an extra m shared memory locations to
store qkℓ ⋆ ajℓ for ℓ = 1, 2, . . . ,m. Storing rkj in a register, the extra m shared memory locations
are reused to store the products rkj ⋆qkℓ for ℓ = 1, 2, . . . ,m, in the computation of aj := aj−rkjqk.
So in total we have 3m memory locations in shared memory in the kernel Normalize Remove().

5.2 The Orthonormalization Stage

After the computation of the inner product aH
k ak, the orthonormalization stage consists of one

square root computation, followed by m division operations.

The first thread in a block performs the square root calculation rkk :=
√

aH
k ak and then, after a

synchronization, the m threads in a block independently perform in-place divisions akℓ := akℓ/rkk,
for ℓ = 1, 2, . . . ,m to compute qk.

Dividing each component of a vector by the norm happens independently, and as the cost of
the division increases for complex doubles, complex double doubles, and complex quad doubles,
we could expect an increased parallelism as we increase the working precision. Unfortunately, the
cost for the square root — executed in isolation by the first thread in each block — also increases
as the precision increases.

5.3 The Occupancy Of Multiprocessors

We apply the CUDA GPU Occupancy Calculator for compute capability 2.0. We take m = n
and consider the use of complex double double arithmetic. Concerning the occupancy of the
multiprocessors, the 3m vectors in one thread block take

3 × n × size of(complex double double) (3)

bytes of shared memory. For n = 32, this amounts to 3 × 32 × 32 = 3, 072 bytes. Also a thread
block uses 48× 32 = 1, 536 registers. The number of blocks scheduled per multiprocessor is 8. It
is actually the maximum number of blocks which could be scheduled per multiprocessor for the
device of compute capability 2.0. Allocated per block shared memory, and the number of registers
used do not appear as the limiting factor on the number of blocks scheduled per multiprocessor.
Although shared memory and registers of a multiprocessor are employed quite well: 8 blocks of
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threads use about (we multiply by 100 to get a percentage)

100 × 3, 136 × 8/49, 152 ≈ 51% (4)

of shared memory capacity, and

100 × 1, 536 × 8/32, 768 ≈ 38% (5)

of available registers. For dimension 32, the orthogonalization launches the kernel Normalize Remove()

31 times, while first 7 of these launches employ 4 multiprocessors, launches from 8 to 15 employ
3 multiprocessors, 16-23 employ 2 multiprocessors, and finally launches 24-31 employ only one
multiprocessor.

5.4 Data Movement

At the beginning of the kernel thread ℓ of a block reads the ℓth component of the vector ak

from the global memory into the ℓth location of the first column of the shared memory 3-by-m
array Sh Locations of complex numbers of the given precision allocated by the block. Subse-
quently it reads the ℓth component of the vector aj into the ℓth location of the second column of
Sh Locations. Both readings are done simultaneously by threads of the block.

For double and double double precision levels we have achieved coalesced access to the global
memory but we did not achieve coalesced access for complex quad double numbers. This could
explain why the speedups do not increase as we go from complex double double to the complex
quad double versions of the parallel Gram-Schmidt algorithm. We think that by reorganizing
the storage of complex quad doubles we can also achieve coalesced memory access for arrays of
complex quad doubles.

6 The Back Substitution Kernel

After the computation of Q and R, denoting QHb by y, we have to solve the triangular system
Rx = y. Because of the low dimension of our application, only one block of threads will be
launched. Pseudo code for a parallel version of the back substitution algorithm is shown in
Figure 3.

The natural order for the parallel version of the back substitution is to process the matrix R
in a column fashion. In the kth step we multiply the kth column of R by xk and subtract the
product from the right hand side vector y updated by such subtractions at all the previous steps.

Ignoring the cost of synchronization and thread divergence and with the warp size equal to
the dimension n, the parallel execution reduces the inner loop to one step. With focus on the
arithmetical cost, the total number of steps equals 2n. Note that the more costly division operator
is done by only one thread. More precisely than 2n, the arithmetical cost of the algorithm in
Figure 3 is n divisions, followed by n multiplications and n subtractions.

During the execution of the parallel back substitution, the right hand side vector y remains
in shared memory. At each step k, the current column k of R is loaded into shared memory for
processing.
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Input: R ∈ C
n×n, an upper triangular matrix,

y ∈ C
n, the right hand side vector.

Output: x is the solution of Rx = y.
for k from n down to 1 do

thread k does xk := yk/rkk

for j from 1 to k − 1 do
thread j does yj := yj − rjk ⋆ xk

Figure 3: Pseudo code for a parallel back substitution.

7 Computational Setup

Our code was written and tested on an HP Z800 workstation running Red Hat Enterprise Linux.
The C++ code was developed with version 4.4.6 of gcc and we used release 4.0 of the NVIDIA
CUDA compiler driver. For speedups, we compared the sequential run times on one core of an
3.47 GHz Intel Xeon X5690. The NVIDIA Tesla C2050 has 448 cores at a clock speed of 1147
Mhz, about three times slower than the clock speed of the CPU.

We also ran our code on a Red Hat Enterprise Linux workstation of Microway, with Intel
Xeon E5-2670 processors at 2.6 GHz, on the NVIDIA Tesla K20C, which offers 2496 cores with
a clock speed of 706 MHz. The same code was compiled with the same version 4.4.6 of gcc using
version 5.0 of the CUDA compiler driver.

8 Computational Results

In comparing speedups computed from wall clock times, note that the clockspeed of the host for
the C2050 is 3.47GHz, while for the K20C the host runs at 2.60GHz. The speedups improve for
the K20C because of the faster GPU and a slower CPU. In Table 7 we compare the system times
of the C2050 and the K20C, observing that the K20C executes the same code about twice as fast
as the C2050.

For dimension 32, the times and speedups are shown in Table 3. The times of Table 3 are
the heights of the bars in Figure 4. The small speedup for complex double arithmetic in Table 3
shows that, for dimension 32, the fine granularity pays off only with multiprecision arithmetic.

Table 3: Wall clock times (in seconds) and speedups for 10,000 orthogonalizations for n = m = 32
and precision p: double (D), double double (DD), and quad double (QD).

3.47GHz CPU & C2050 2.60GHz CPU & K20C
p CPU C2050 speedup CPU K20C speedup

D 14.43 5.34 2.70 16.19 5.75 2.82
DD 122.34 14.29 8.56 149.69 17.10 8.75
QD 799.75 125.95 6.35 850.55 119.10 7.14

10



CPU GPU
orthogonalization with modified Gram-Schmidt on 3.47 GHz CPU and C2050
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Figure 4: Plot corresponding to the data in Table 3 for C2050. The rightmost bar representing
time with a C2050 for quad double arithmetic is about as high as the corresponding middle bar
on a CPU with double double arithmetic. This plot illustrates the compensation of the overhead
of quad double arithmetic (versus double double arithmetic) by a GPU.

Comparing the time on the C2050 with quad double arithmetic to the time on the CPU with
double double arithmetic we observe that the 122.34 seconds on one 3.47 GHz CPU core is of the
same magnitude as the 125.95 seconds on the C2050. Obtaining more accurate orthogonalizations
in about the same time is quality up. The quality up improves for the 2.60 GHz CPU and the
K20C.

We obtain double digit speedups with complex double arithmetic for m = n ≥ 96, see Table 4
and Figure 5.

Table 5 shows that double digits speedups with complex double double arithmetic are obtained
for m = n ≥ 48. For quad doubles, for m = n = 48, the speedup is almost 10.

Figure 7 illustrates the relationship with polynomial evaluation and differentiation, obtained
after application of our parallel algorithms of [26]). The total speedup is still sufficient to com-
pensate for one level of extra precision.

We end this paper with a comparison between the C2050 and the new K20C, see Table 7.
Because the clock speed of the CPUs differ, the speedup is computed on the system times. The
theoretical peak performance of the K20C is about twice that of the C2050.

9 Conclusions

Using a massively parallel algorithm for the modified Gram-Schmidt orthogonalization on a
NVIDIA Tesla C2050 and K20C Computing Processors we can compensate for the cost of one
extra level of precision, even for modest dimensions, using a fine granularity. Accelerating with a
GPU, for larger dimensions we obtain double digit speedups and obtain orthogonalizations faster

11



Table 4: Wall clock times (in seconds) for 10,000 runs of the modified Gram-Schmidt method
(each followed by one backsubstitution) in complex double arithmetic for various dimensions n
on CPU and GPU, with corresponding speedups.

3.47GHz CPU & C2050 2.60GHz CPU & K20C
n CPU GPU speedup CPU GPU speedup

16 2.01 4.11 0.49 2.26 3.36 0.67
32 14.61 6.52 2.24 16.48 5.58 2.95
48 47.80 11.11 4.30 53.03 10.26 5.17
64 112.60 15.38 7.32 123.80 15.16 8.17
80 217.52 22.89 9.50 238.83 22.45 10.64
96 373.06 30.43 12.26 409.30 28.64 14.29

112 589.35 40.82 14.44 649.30 36.59 17.75
128 876.11 49.10 17.84 962.17 45.29 21.24
144 1243.26 67.41 18.44 1363.57 59.48 22.92
160 1701.57 80.42 21.16 1867.36 70.54 26.47
176 2260.07 99.94 22.61 2480.18 84.26 29.43
192 2932.15 116.90 25.08 3221.12 97.62 33.00
208 3722.77 149.45 24.91 4080.77 112.19 36.37
224 4641.71 172.30 26.94 5099.98 128.11 39.81
240 5703.77 211.30 26.99 6253.65 146.31 42.74
256 6935.10 234.29 29.60 7575.85 164.33 46.10

that are twice as accurate.
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