next up previous index
Next: Getting Started Up: PHCpack: a general-purpose solver Previous: Conclusions and Future Developments

References

Allison, Chakraborty, and Watson 1989
Allison, D. C. S., Chakraborty, A., and Watson, L. T. 1989.
Granularity issues for solving polynomial systems via globally convergent algorithms on a hypercube.
J. of Supercomputing 3, 5-20.

Backelin and Fröberg 1991
Backelin, J. and Fröberg, R. 1991.
How we proved that there are exactly 924 cyclic 7-roots.
In Proceedings of ISSAC-91 (1991), pp. 101-111. ACM.

Bellido 1992
Bellido, A. M. 1992.
Construction of iteration functions for the simultaneous computation of the solutions of equations and algebraic systems.
Numerical Algorithms 6, 3-4, 317-351.

Bernshtein 1975
Bernshtein, D. N. 1975.
The number of roots of a system of equations.
Functional Anal. Appl. 9, 3, 183-185.
Translated from Funktsional. Anal. i Prilozhen., 9(3):1-4,1975.

Bini and Mourrain 1998
Bini, D. and Mourrain, B. 1998.
Polynomial test suite.
Available at http://www-sop.inria.fr/saga/POL/.

Björk and Fröberg1991
Björk, G. and Fröberg, R. 1991.
A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots.
J. Symbolic Computation 12, 3, 329-336.

Björk and FröbergBjörk and Fröberg1994
Björk, G. and Fröberg, R. 1994.
Methods to ``divide out'' certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots.
In M. Gyllenberg and L. Persson Eds., Analysis, Algebra and Computers in Math. research, Volume 564 of Lecture Notes in Applied Mathematics, pp. 57-70. Marcel Dekker.

Blum, Cucker, Shub, and Smale 1997
Blum, L., Cucker, F., Shub, M., and Smale, S. 1997.
Complexity and Real Computation.
Springer-Verlag, New York.

Boege, Gebauer, and Kredel 1986
Boege, W., Gebauer, R., and Kredel, H. 1986.
Some examples for solving systems of algebraic equations by calculating Groebner bases.
J. Symbolic Computation 2, 83-98.

Boon 1992
Boon, S. 1992.
Solving systems of equations.
Article 2972 of sci.math.symbolic and Article 3529 of sci.math.num-analysis, 25 June 1992.

Canny and Rojas1991
Canny, J. and Rojas, J. M. 1991.
An optimal condition for determining the exact number of roots of a polynomial system.
In Proceedings of ISSAC-91 (1991), pp. 96-101. ACM.

Chu, Li, and Sauer 1988
Chu, M., Li, T. Y., and Sauer, T. 1988.
Homotopy method for general $\lambda$-Matrix problems.
SIAM J. Matrix Anal. Appl. 9, 4, 528-536.

Cox, Little, and O'Shea 1998
Cox, D., Little, J., and O'Shea, D. 1998.
Using Algebraic Geometry, Volume 185 of Graduate Texts in Mathematics.
Springer-Verlag, New York.

Emiris 1994
Emiris, I. Z. 1994.
Sparse Elimination and Applications in Kinematics.
Ph. D. thesis, Computer Science Division, Dept. of Electrical Engineering and Computer Science, University of California, Berkeley.
Available at http://www.inria.fr/saga/emiris.

Emiris 1997
Emiris, I. Z. 1997.
A general solver based on sparse resultants: Numerical issues and kinematic applications.
Rapport de recherche no. 3110, INRIA, France.
Available via anonymous ftp to ftp.inria.fr.

Emiris 1998
Emiris, I. Z. 1998.
Symbolic-numeric algebra for polynomials.
In A. Kent and J. Williams Eds., Encyclopedia of Computer Science and Technology, Volume 39 of Encyclopedia of Computer Science, pp. 261-281. Marcel Dekker.

Emiris and CannyEmiris and Canny1995
Emiris, I. Z. and Canny, J. F. 1995.
Efficient incremental algorithms for the sparse resultant and the mixed volume.
J. Symbolic Computation 20, 2, 117-149.
Software available at http://www.inria.fr/saga/emiris.

Emiris and Verschelde 1997
Emiris, I. Z. and Verschelde, J. 1997.
How to count efficiently all affine roots of a polynomial system.
Rapport de recherche no. 3212, INRIA.
To appear in Discrete Applied Mathematics.

Gao, Li, and Wang 1997
Gao, T., Li, T. Y., and Wang, X. 1997.
Finding isolated zeros of polynomial systems in Cn with stable mixed volumes.
To appear in J. of Symbolic Computation.

Garey and Johnson 1979
Garey, M. and Johnson, D. 1979.
Computers and Intractability. A Guide to the Theory of NP-Completeness.
Freemann, San Francisco.

Gatermann 1990
Gatermann, K. 1990.
Symbolic solution of polynomial equation systems with symmetry.
In S. Watanabe and M. Nagata Eds., Proceedings of ISSAC-90 (Tokyo, Japan, 1990), pp. 112-119. ACM.

Gel'fand, Kapranov, and Zelevinsky 1994
Gel'fand, I. M., Kapranov, M. M., and Zelevinsky, A. V. 1994.
Discriminants, Resultants and Multidimensional Determinants.
Birkhäuser, Boston.

Giordano 1996
Giordano, T. 1996.
Implémention distribuée du calcul du volume mixte.
Master's thesis, University of Nice, Sophia-Antipolis.

Harimoto and Watson 1989
Harimoto, S. and Watson, L. T. 1989.
The granularity of homotopy algorithms for polynomial systems of equations.
In G. Rodrigue Ed., Parallel processing for scientific computing (1989), pp. 115-120. SIAM.

Huber 1995
Huber, B. 1995.
Pelican manual.
Available at http://www.mrsi.org/people/members/birk.

Huber, Sottile, and Sturmfels 1998
Huber, B., Sottile, F., and Sturmfels, B. 1998.
Numerical Schubert calculus.
J. of Symbolic Computation 26, 6, 767-788.

Huber and Sturmfels 1995
Huber, B. and Sturmfels, B. 1995.
A polyhedral method for solving sparse polynomial systems.
Math. Comp. 64, 212, 1541-1555.

Huber and Sturmfels 1997
Huber, B. and Sturmfels, B. 1997.
Bernstein's theorem in affine space.
Discrete Comput. Geom. 17, 2, 137-141.

Huber and Verschelde 1998
Huber, B. and Verschelde, J. 1998.
Polyhedral end games for polynomial continuation.
Numerical Algorithms 18, 1, 91-108.

Huber 1996
Huber, B. T. 1996.
Solving Sparse Polynomial Systems.
Ph. D. thesis, Cornell University.
Available at http://www.msri.org/people/members/birk.

Iserles 1995
Iserles, A. 1995.
Personal communication at the occasion of the AMS-SIAM Summer Seminar in Applied Mathematics, Park City, Utah, July 17-August 11, 1995, Park City, Utah.

Khovanskii 1991
Khovanskii, A. 1991.
Fewnomials, Volume 88 of Translations of Mathematical Monographs.
AMS, Providence, Rhode Island.

Kleiman and Laksov 1972
Kleiman, S. and Laksov, D. 1972.
Schubert calculus.
American Mathematical Monthly 79, 10, 1061-1082.

Kushnirenko 1976
Kushnirenko, A. 1976.
Newton Polytopes and the Bézout Theorem.
Functional Anal. Appl. 10, 3, 233-235.
Translated from Funktsional. Anal. i Prilozhen., 10(3),82-83,1976.

Li 1987
Li, T. Y. 1987.
Solving polynomial systems.
The Mathematical Intelligencer 9, 3, 33-39.

LiLi1997
Li, T. Y. 1997.
Numerical solutions of multivariate polynomial systems by homotopy continuation methods.
Acta Numerica 6, 399-436.

Li and Sauer 1987
Li, T. Y. and Sauer, T. 1987.
Regularity results for solving systems of polynomials by homotopy method.
Numer. Math. 50, 3, 283-289.

Li, Sauer, and Yorke 1987a
Li, T. Y., Sauer, T., and Yorke, J. A. 1987a.
Numerical solution of a class of deficient polynomial systems.
SIAM J. Numer. Anal. 24, 2, 435-451.

Li, Sauer, and Yorke 1987b
Li, T. Y., Sauer, T., and Yorke, J. A. 1987b.
The random product homotopy and deficient polynomial systems.
Numer. Math. 51, 5, 481-500.

Li, Sauer, and Yorke 1989
Li, T. Y., Sauer, T., and Yorke, J. A. 1989.
The cheater's homotopy: an efficient procedure for solving systems of polynomial equations.
SIAM J. Numer. Anal. 26, 5, 1241-1251.

Li, Wang, and Wang 1996
Li, T. Y., Wang, T., and Wang, X. 1996.
Random product homotopy with minimal BKK bound.
In J. Renegar, M. Shub, and S. Smale Eds., The Mathematics of Numerical Analysis, Volume 32 of Lectures in Applied Mathematics (Park City, Utah, 1996).

Li and Wang 1991
Li, T. Y. and Wang, X. 1991.
Solving deficient polynomial systems with homotopies which keep the subschemes at infinity invariant.
Math. Comp. 56, 194, 693-710.

Li and Wang 1992
Li, T. Y. and Wang, X. 1992.
Nonlinear homotopies for solving deficient polynomial systems with parameters.
SIAM J. Numer. Anal. 29, 4, 1104-1118.

Li and Wang 1996
Li, T. Y. and Wang, X. 1996.
The BKK root count in Cn.
Math. Comp. 65, 216, 1477-1484.

Malajovich 1996
Malajovich, G. 1996.
pss 2.beta, polynomial system solver, version 2.beta.
Available at http://www.labma.ufrj.br:80/~gregorio.

Ada Core Technologies 1997
Ada Core Technologies. 1997.
GNAT, User's Guide. GNAT, The GNU Ada 95 Compiler Version 3.09.
ACT.
Available at http://www.gnat.com.

The FRISCO Consortium 1996
The FRISCO Consortium. 1996.
FRISCO - A Framework for Integrated Symbolic/Numeric Computation.
Available at http://www.nag.co.uk/projects/FRISCO.html.

The Pisa team of PoSSoThe Pisa team of PoSSo1993
The Pisa team of PoSSo. 1993.
PoSSo home page.
Available at http://janet.dm.unipi.it/.

Meintjes and Morgan 1990
Meintjes, K. and Morgan, A. P. 1990.
Chemical equilibrium systems as numerical test problems.
ACM Trans. Math. Soft. 16, 2, 143-151.

Moore and Jones 1977
Moore, R. E. and Jones, S. T. 1977.
Safe starting regions for iterative methods.
SIAM J. Numer. Anal. 14, 6, 1051-1065.

Moré, Garbow, and Hillstrom 1981
Moré, J., Garbow, B., and Hillstrom, K. 1981.
Testing unconstrained optimization software.
ACM Trans. Math. Softw. 7, 1, 17-41.

Morgan 1987
Morgan, A. 1987.
Solving polynomial systems using continuation for engineering and scientific problems.
Prentice-Hall, Englewood Cliffs, N.J.

Morgan and Shapiro 1987
Morgan, A. and Shapiro, V. 1987.
Box-bisection for solving second-degree systems and the problem of clustering.
ACM Trans. Math. Soft. 13, 2, 152-167.

Morgan and Sommese 1987a
Morgan, A. and Sommese, A. 1987a.
Computing all solutions to polynomial systems using homotopy continuation.
Appl. Math. Comput. 24, 2, 115-138.

Morgan and Sommese 1987b
Morgan, A. and Sommese, A. 1987b.
A homotopy for solving general polynomial systems that respects m-homogeneous structures.
Appl. Math. Comput. 24, 2, 101-113.

Morgan and Sommese 1989
Morgan, A. P. and Sommese, A. J. 1989.
Coefficient-parameter polynomial continuation.
Appl. Math. Comput. 29, 2, 123-160.
Errata: Appl. Math. Comput. 51:207(1992).

Morgan, Sommese, and Wampler 1991
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1991.
Computing singular solutions to nonlinear analytic systems.
Numer. Math. 58, 7, 669-684.

Morgan, Sommese, and Wampler 1992a
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1992a.
Computing singular solutions to polynomial systems.
Adv. Appl. Math. 13, 3, 305-327.

Morgan, Sommese, and Wampler 1992b
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1992b.
A power series method for computing singular solutions to nonlinear analytic systems.
Numer. Math. 63, 391-409.

Morgan, Sommese, and Wampler 1995
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1995.
A product-decomposition theorem for bounding Bézout numbers.
SIAM J. Numer. Anal. 32, 4, 1308-1325.

Morgan, Sommese, and Watson 1989
Morgan, A. P., Sommese, A. J., and Watson, L. T. 1989.
Finding all isolated solutions to polynomial systems using HOMPACK.
ACM Trans. Math. Softw. 15, 2, 93-122.

Morgan and WamplerMorgan and Wampler1990
Morgan, A. P. and Wampler, C. W. 1990.
Solving a planar four-bar design problem using continuation.
ASME J. of Mechanical Design 112, 544-550.

Mourrain 1993
Mourrain, B. 1993.
The 40 generic positions of a parallel robot.
In M. Bronstein Ed., Proceedings of ISSAC-93 (Kiev, Ukraine, 1993), pp. 173-182. ACM.

Mourrain 1996
Mourrain, B. 1996.
The handbook of polynomial systems.
Available at http://www.inria.fr/saga/POL/index.html.

NauheimNauheim1998
Nauheim, R. 1998.
Systems of algebraic equations with bad reduction.
J. Symbolic Computation 25, 619-641.

Nelsen and Hodgkin 1981
Nelsen, C. V. and Hodgkin, B. C. 1981.
Determination of magnitudes, directions, and locations of two independent dipoles in a circular conducting region from boundary potential measurements.
IEEE Trans. Biomed. Engrg. BME-28, 12, 817-823.

Noonburg 1989
Noonburg, V. W. 1989.
A neural network modeled by an adaptive Lotka-Volterra system.
SIAM J. Appl. Math. 49, 6, 1779-1792.

Ravi, Rosenthal, and Wang 1996
Ravi, M. S., Rosenthal, J., and Wang, X. 1996.
Dynamic pole placement assignment and Schubert calculus.
SIAM J. Control and Optimization 34, 3, 813-832.

Rojas 1994
Rojas, J. M. 1994.
A convex geometric approach to counting the roots of a polynomial system.
Theoret. Comput. Sci. 133, 1, 105-140.

Rojas 1996
Rojas, J. M. 1996.
Toric intersection theory for affine root counting.
To appear in Journal of Pure and Applied Algebra, vol 136, no 1, March 1999. Available at http://www.cityu.edu.hk/ma/staff/rojas.

Rojas 1997
Rojas, J. M. 1997.
Toric laminations, sparse generalized characteristic polynomials, and a refinement of Hilbert's tenth problem.
In F. Cucker and M. Shub Eds., Foundations of Computational Mathematics. Selected Papers of a Conference, Held at IMPA in Rio de Janeiro, January 1997 (1997), pp. 369-381. Springer-Verlag.
Revised version available at http://www-math.mit.edu/~rojas.

Rojas and Wang 1996
Rojas, J. M. and Wang, X. 1996.
Counting affine roots roots of polynomial systems via pointed Newton polytopes.
J. Complexity 12, 116-133.

Rosenthal and Sottile 1998
Rosenthal, J. and Sottile, F. 1998.
Some remarks on real and complex output feedback.
Systems and Control Lett. 33, 2, 73-80.
See http://www.nd.edu/~rosen/pole for a description of computational aspects of the paper.

Rosenthal and Willems 1998
Rosenthal, J. and Willems, J. C. 1998.
Open problems in the area of pole placement.
In V. Blondel, E. Sontag, M. Vidyasagar, and J. Willems Eds., Open Problems in Mathematical Systems and Control Theory, Communication and Control Engineering Series, pp. 181-191. Berlin, New York: Springer-Verlag.

Schrans and Troost 1990
Schrans, S. and Troost, W. 1990.
Generalized Virasoro constructions for SU(3).
Nuclear Phys. B 345, 2-3, 584-606.

Sosonkina, Watson, and Stewart 1996
Sosonkina, M., Watson, L. T., and Stewart, D. E. 1996.
Note on the end game in homotopy zero curve tracking.
ACM Trans. Math. Softw. 22, 3, 281-287.

Sottile 1997
Sottile, F. 1997.
Enumerative geometry for real varieties.
In J. Kollár, R. Lazarsfeld, and D. R. Morrison Eds., Algebraic Geometry - Santa Cruz 1995 (University of California, Santa Cruz, July 1995), Volume 62, Part I of Proceedings of Symposia in Pure Mathematics, pp. 435-447. AMS.

Sottile 1998
Sottile, F. 1998.
Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro.
Preprint #1998-066, MSRI.

Steenkamp 1982
Steenkamp, M. C. 1982.
Die numeriese oplos van stelsels polinoomvergelykings.
Technical report, Nasionale Navorsingsinstituut vir Wiskundige Wetenskappe, Pretoria.

Stroud and Secrest 1966
Stroud, A. H. and Secrest, D. 1966.
Gaussian Quadrature Formulas.
Prentice-Hall series in automatic computation. Prentice-Hall, Englewood Cliffs (N.J.).

Sturmfels 1994
Sturmfels, B. 1994.
On the Newton polytope of the resultant.
Journal of Algebraic Combinatorics 3, 207-236.

Sturmfels 1998
Sturmfels, B. 1998.
Polynomial equations and convex polytopes.
Amer. Math. Monthly 105, 10, 907-922.

Sweldens 1994
Sweldens, W. 1994.
The construction and application of wavelets in numerical analysis.
Ph. D. thesis, K.U.Leuven.

Syiek 1995
Syiek, D. 1995.
C vs Ada: Arguing performance religion.
ACM Ada Letters XV, 6, 67-69.

Traverso 1993
Traverso, C. 1993.
The posso test suite examples.
Available at http://www.inria.fr/saga/POL/index.html.

Van Hentenryck, McAllester, and Kapur 1997
Van Hentenryck, P., McAllester, D., and Kapur, D. 1997.
Solving polynomial systems using a branch and prune approach.
SIAM J. Numerical Analysis 34, 2, 797-827.

Verschelde 1990
Verschelde, J. 1990.
Oplossen van stelsels veeltermvergelijkingen met behulp van continueringsmethodes.
Bachelor's Thesis, K.U.Leuven.

Verschelde 1995
Verschelde, J. 1995.
PHC and MVC: two programs for solving polynomial systems by homotopy continuation.
In J. Faugère, J. Marchand, and R. Rioboo Eds., Proceedings of the PoSSo Workshop on Software. Paris, March 1-4, 1995 (1995), pp. 165-175.

Verschelde 1996
Verschelde, J. 1996.
Homotopy Continuation Methods for Solving Polynomial Systems.
Ph. D. thesis, K.U.Leuven, Dept. of Computer Science.

Verschelde 1998
Verschelde, J. 1998.
Numerical evidence for a conjecture in real algebraic geometry.
Preprint #1998-064, MSRI.
Paper and software available at the author's web-pages.

Verschelde, Beckers, and Haegemans 1991
Verschelde, J., Beckers, M., and Haegemans, A. 1991.
A new start system for solving deficient polynomial systems using continuation.
Appl. Math. Comput. 44, 3, 225-239.

Verschelde and Cools 1992
Verschelde, J. and Cools, R. 1992.
Nonlinear reduction for solving deficient polynomial systems by continuation methods.
Numer. Math. 63, 2, 263-282.

Verschelde and Cools 1993a
Verschelde, J. and Cools, R. 1993a.
An Ada workbench for homotopy continuation for solving polynomial systems.
The Ada Belgium Newsletter 2, 1, 23-40.

Verschelde and Cools 1993b
Verschelde, J. and Cools, R. 1993b.
Symbolic homotopy construction.
Applicable Algebra in Engineering, Communication and Computing 4, 3, 169-183.

Verschelde and Cools 1994
Verschelde, J. and Cools, R. 1994.
Symmetric homotopy construction.
J. Comput. Appl. Math. 50, 575-592.

Verschelde and Cools 1996
Verschelde, J. and Cools, R. 1996.
Polynomial homotopy continuation, a portable Ada software package.
The Ada-Belgium Newsletter 4, 59-83.
Proceedings of the 1996 Ada-Belgium Seminar, 22 November 1996, Eurocontrol, Brussels, Belgium.

Verschelde and Gatermann 1995
Verschelde, J. and Gatermann, K. 1995.
Symmetric Newton polytopes for solving sparse polynomial systems.
Adv. Appl. Math. 16, 1, 95-127.

Verschelde, Gatermann, and Cools 1996
Verschelde, J., Gatermann, K., and Cools, R. 1996.
Mixed-volume computation by dynamic lifting applied to polynomial system solving.
Discrete Comput. Geom. 16, 1, 69-112.

Verschelde and Haegemans 1993
Verschelde, J. and Haegemans, A. 1993.
The GBQ-Algorithm for constructing start systems of homotopies for polynomial systems.
SIAM J. Numer. Anal. 30, 2, 583-594.

Verschelde, Verlinden, and Cools 1994
Verschelde, J., Verlinden, P., and Cools, R. 1994.
Homotopies exploiting Newton polytopes for solving sparse polynomial systems.
SIAM J. Numer. Anal. 31, 3, 915-930.

Wallack, Emiris, and Manocha 1998
Wallack, A., Emiris, I., and Manocha, D. 1998.
MARS: A Maple/Matlab/C resultant-based solver.
In O. Gloor Ed., Proceedings of ISSAC-98 (Rostock, Germany, 1998), pp. 244-251. ACM.

Wampler and Morgan 1991
Wampler, C. and Morgan, A. 1991.
Solving the 6R inverse position problem using a generic-case solution methodology.
Mech. Mach. Theory 26, 1, 91-106.

Wampler 1992
Wampler, C. W. 1992.
Bezout number calculations for multi-homogeneous polynomial systems.
Appl. Math. Comput. 51, 2-3, 143-157.

Wampler 1996
Wampler, C. W. 1996.
Isotropic coordinates, circularity and Bezout numbers: planar kinematics from a new perspective.
Proceedings of the 1996 ASME Design Engineering Technical Conference, Irvine, California August 18-22, 1996. CD-ROM edited by McCarthy, J.M., American society of mechanical engineers. Also available as GM Technical Report, Publication R&D-8188.

Watson 1986
Watson, L. T. 1986.
Numerical linear algebra aspects of globally convergent homotopy methods.
SIAM Rev. 28, 4, 529-545.

Watson, Billups, and Morgan 1987
Watson, L. T., Billups, S. C., and Morgan, A. P. 1987.
Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms.
ACM Trans. Math. Softw. 13, 3, 281-310.

Watson, Sosonkina, Melville, Morgan, and Walker 1997
Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P., and Walker, H. F. 1997.
HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms.
ACM Trans. Math. Softw. 23, 4, 514-549.
Available at http://www.cs.vt.edu/~ltw/.

Wise, Sommese, and Watson 1998
Wise, S., Sommese, A., and Watson, L. 1998.
POLSYS_PLP: A partitioned linear product homotopy code for solving polynomial systems of equations.
Available at http://www.cs.vt.edu/~ltw/.

Wright 1985
Wright, A. H. 1985.
Finding all solutions to a system of polynomial equations.
Math. of Comp. 44, 169, 125-133.



Jan Verschelde
3/7/1999