Next: Getting Started
Up: PHCpack: a general-purpose solver
Previous: Conclusions and Future Developments
- Allison, Chakraborty, and Watson
1989
-
Allison, D. C. S., Chakraborty, A., and Watson, L. T. 1989.
Granularity issues for solving polynomial systems via globally
convergent algorithms on a hypercube.
J. of Supercomputing 3, 5-20.
- Backelin and Fröberg 1991
-
Backelin, J. and Fröberg, R. 1991.
How we proved that there are exactly 924 cyclic 7-roots.
In Proceedings of ISSAC-91 (1991), pp. 101-111. ACM.
- Bellido 1992
-
Bellido, A. M. 1992.
Construction of iteration functions for the simultaneous computation
of the solutions of equations and algebraic systems.
Numerical Algorithms 6, 3-4, 317-351.
- Bernshtein 1975
-
Bernshtein, D. N. 1975.
The number of roots of a system of equations.
Functional Anal. Appl. 9, 3, 183-185.
Translated from Funktsional. Anal. i Prilozhen.,
9(3):1-4,1975.
- Bini and Mourrain 1998
-
Bini, D. and Mourrain, B. 1998.
Polynomial test suite.
Available at http://www-sop.inria.fr/saga/POL/.
- Björk and Fröberg1991
-
Björk, G. and Fröberg, R. 1991.
A faster way to count the solutions of inhomogeneous systems of
algebraic equations, with applications to cyclic n-roots.
J. Symbolic Computation 12, 3, 329-336.
- Björk and FröbergBjörk and
Fröberg1994
-
Björk, G. and Fröberg, R. 1994.
Methods to ``divide out'' certain solutions from systems of algebraic
equations, applied to find all cyclic 8-roots.
In M. Gyllenberg and L. Persson Eds., Analysis,
Algebra and Computers in Math. research, Volume 564 of Lecture
Notes in Applied Mathematics, pp. 57-70. Marcel Dekker.
- Blum, Cucker, Shub, and Smale 1997
-
Blum, L., Cucker, F., Shub, M., and Smale, S. 1997.
Complexity and Real Computation.
Springer-Verlag, New York.
- Boege, Gebauer, and Kredel 1986
-
Boege, W., Gebauer, R., and Kredel, H. 1986.
Some examples for solving systems of algebraic equations by
calculating Groebner bases.
J. Symbolic Computation 2, 83-98.
- Boon 1992
-
Boon, S. 1992.
Solving systems of equations.
Article 2972 of sci.math.symbolic and Article 3529 of
sci.math.num-analysis, 25 June 1992.
- Canny and Rojas1991
-
Canny, J. and Rojas, J. M. 1991.
An optimal condition for determining the exact number of roots of a
polynomial system.
In Proceedings of ISSAC-91 (1991), pp. 96-101. ACM.
- Chu, Li, and Sauer 1988
-
Chu, M., Li, T. Y., and Sauer, T. 1988.
Homotopy method for general -Matrix problems.
SIAM J. Matrix Anal. Appl. 9, 4, 528-536.
- Cox, Little, and O'Shea 1998
-
Cox, D., Little, J., and O'Shea, D. 1998.
Using Algebraic Geometry, Volume 185 of Graduate
Texts in Mathematics.
Springer-Verlag, New York.
- Emiris 1994
-
Emiris, I. Z. 1994.
Sparse Elimination and Applications in Kinematics.
Ph. D. thesis, Computer Science Division, Dept. of Electrical
Engineering and Computer Science, University of California, Berkeley.
Available at http://www.inria.fr/saga/emiris.
- Emiris 1997
-
Emiris, I. Z. 1997.
A general solver based on sparse resultants: Numerical issues and
kinematic applications.
Rapport de recherche no. 3110, INRIA, France.
Available via anonymous ftp to ftp.inria.fr.
- Emiris 1998
-
Emiris, I. Z. 1998.
Symbolic-numeric algebra for polynomials.
In A. Kent and J. Williams Eds., Encyclopedia of
Computer Science and Technology, Volume 39 of Encyclopedia of
Computer Science, pp. 261-281. Marcel Dekker.
- Emiris and CannyEmiris and
Canny1995
-
Emiris, I. Z. and Canny, J. F. 1995.
Efficient incremental algorithms for the sparse resultant and the
mixed volume.
J. Symbolic Computation 20, 2, 117-149.
Software available at http://www.inria.fr/saga/emiris.
- Emiris and Verschelde 1997
-
Emiris, I. Z. and Verschelde, J. 1997.
How to count efficiently all affine roots of a polynomial system.
Rapport de recherche no. 3212, INRIA.
To appear in Discrete Applied Mathematics.
- Gao, Li, and Wang 1997
-
Gao, T., Li, T. Y., and Wang, X. 1997.
Finding isolated zeros of polynomial systems in Cn with stable
mixed volumes.
To appear in J. of Symbolic Computation.
- Garey and Johnson 1979
-
Garey, M. and Johnson, D. 1979.
Computers and Intractability. A Guide to the Theory
of NP-Completeness.
Freemann, San Francisco.
- Gatermann 1990
-
Gatermann, K. 1990.
Symbolic solution of polynomial equation systems with symmetry.
In S. Watanabe and M. Nagata Eds., Proceedings of
ISSAC-90 (Tokyo, Japan, 1990), pp. 112-119. ACM.
- Gel'fand, Kapranov, and
Zelevinsky 1994
-
Gel'fand, I. M., Kapranov, M. M., and Zelevinsky, A. V.
1994.
Discriminants, Resultants and Multidimensional
Determinants.
Birkhäuser, Boston.
- Giordano 1996
-
Giordano, T. 1996.
Implémention distribuée du calcul du volume mixte.
Master's thesis, University of Nice, Sophia-Antipolis.
- Harimoto and Watson 1989
-
Harimoto, S. and Watson, L. T. 1989.
The granularity of homotopy algorithms for polynomial systems of
equations.
In G. Rodrigue Ed., Parallel processing for
scientific computing (1989), pp. 115-120. SIAM.
- Huber 1995
-
Huber, B. 1995.
Pelican manual.
Available at http://www.mrsi.org/people/members/birk.
- Huber, Sottile, and Sturmfels 1998
-
Huber, B., Sottile, F., and Sturmfels, B. 1998.
Numerical Schubert calculus.
J. of Symbolic Computation 26, 6, 767-788.
- Huber and Sturmfels 1995
-
Huber, B. and Sturmfels, B. 1995.
A polyhedral method for solving sparse polynomial systems.
Math. Comp. 64, 212, 1541-1555.
- Huber and Sturmfels 1997
-
Huber, B. and Sturmfels, B. 1997.
Bernstein's theorem in affine space.
Discrete Comput. Geom. 17, 2, 137-141.
- Huber and Verschelde 1998
-
Huber, B. and Verschelde, J. 1998.
Polyhedral end games for polynomial continuation.
Numerical Algorithms 18, 1, 91-108.
- Huber 1996
-
Huber, B. T. 1996.
Solving Sparse Polynomial Systems.
Ph. D. thesis, Cornell University.
Available at http://www.msri.org/people/members/birk.
- Iserles 1995
-
Iserles, A. 1995.
Personal communication at the occasion of the AMS-SIAM Summer Seminar
in Applied Mathematics, Park City, Utah, July 17-August 11, 1995, Park City,
Utah.
- Khovanskii 1991
-
Khovanskii, A. 1991.
Fewnomials, Volume 88 of Translations of
Mathematical Monographs.
AMS, Providence, Rhode Island.
- Kleiman and Laksov 1972
-
Kleiman, S. and Laksov, D. 1972.
Schubert calculus.
American Mathematical Monthly 79, 10,
1061-1082.
- Kushnirenko 1976
-
Kushnirenko, A. 1976.
Newton Polytopes and the Bézout Theorem.
Functional Anal. Appl. 10, 3, 233-235.
Translated from Funktsional. Anal. i Prilozhen.,
10(3),82-83,1976.
- Li 1987
-
Li, T. Y. 1987.
Solving polynomial systems.
The Mathematical Intelligencer 9, 3, 33-39.
- LiLi1997
-
Li, T. Y. 1997.
Numerical solutions of multivariate polynomial systems by homotopy
continuation methods.
Acta Numerica 6, 399-436.
- Li and Sauer 1987
-
Li, T. Y. and Sauer, T. 1987.
Regularity results for solving systems of polynomials by homotopy
method.
Numer. Math. 50, 3, 283-289.
- Li, Sauer, and Yorke 1987a
-
Li, T. Y., Sauer, T., and Yorke, J. A. 1987a.
Numerical solution of a class of deficient polynomial systems.
SIAM J. Numer. Anal. 24, 2, 435-451.
- Li, Sauer, and Yorke 1987b
-
Li, T. Y., Sauer, T., and Yorke, J. A. 1987b.
The random product homotopy and deficient polynomial systems.
Numer. Math. 51, 5, 481-500.
- Li, Sauer, and Yorke 1989
-
Li, T. Y., Sauer, T., and Yorke, J. A. 1989.
The cheater's homotopy: an efficient procedure for solving systems of
polynomial equations.
SIAM J. Numer. Anal. 26, 5, 1241-1251.
- Li, Wang, and Wang 1996
-
Li, T. Y., Wang, T., and Wang, X. 1996.
Random product homotopy with minimal BKK bound.
In J. Renegar, M. Shub, and S. Smale Eds., The
Mathematics of Numerical Analysis, Volume 32 of Lectures in Applied
Mathematics (Park City, Utah, 1996).
- Li and Wang 1991
-
Li, T. Y. and Wang, X. 1991.
Solving deficient polynomial systems with homotopies which keep the
subschemes at infinity invariant.
Math. Comp. 56, 194, 693-710.
- Li and Wang 1992
-
Li, T. Y. and Wang, X. 1992.
Nonlinear homotopies for solving deficient polynomial systems with
parameters.
SIAM J. Numer. Anal. 29, 4, 1104-1118.
- Li and Wang 1996
-
Li, T. Y. and Wang, X. 1996.
The BKK root count in Cn.
Math. Comp. 65, 216, 1477-1484.
- Malajovich 1996
-
Malajovich, G. 1996.
pss 2.beta, polynomial system solver, version 2.beta.
Available at http://www.labma.ufrj.br:80/~gregorio.
- Ada Core Technologies 1997
-
Ada Core Technologies. 1997.
GNAT, User's Guide. GNAT, The GNU Ada 95
Compiler Version 3.09.
ACT.
Available at http://www.gnat.com.
- The FRISCO Consortium 1996
-
The FRISCO Consortium. 1996.
FRISCO - A Framework for Integrated Symbolic/Numeric
Computation.
Available at http://www.nag.co.uk/projects/FRISCO.html.
- The Pisa team of PoSSoThe Pisa
team of PoSSo1993
-
The Pisa team of PoSSo. 1993.
PoSSo home page.
Available at http://janet.dm.unipi.it/.
- Meintjes and Morgan 1990
-
Meintjes, K. and Morgan, A. P. 1990.
Chemical equilibrium systems as numerical test problems.
ACM Trans. Math. Soft. 16, 2, 143-151.
- Moore and Jones 1977
-
Moore, R. E. and Jones, S. T. 1977.
Safe starting regions for iterative methods.
SIAM J. Numer. Anal. 14, 6, 1051-1065.
- Moré, Garbow, and Hillstrom 1981
-
Moré, J., Garbow, B., and Hillstrom, K. 1981.
Testing unconstrained optimization software.
ACM Trans. Math. Softw. 7, 1, 17-41.
- Morgan 1987
-
Morgan, A. 1987.
Solving polynomial systems using continuation for
engineering and scientific problems.
Prentice-Hall, Englewood Cliffs, N.J.
- Morgan and Shapiro 1987
-
Morgan, A. and Shapiro, V. 1987.
Box-bisection for solving second-degree systems and the problem of
clustering.
ACM Trans. Math. Soft. 13, 2, 152-167.
- Morgan and Sommese 1987a
-
Morgan, A. and Sommese, A. 1987a.
Computing all solutions to polynomial systems using homotopy
continuation.
Appl. Math. Comput. 24, 2, 115-138.
- Morgan and Sommese 1987b
-
Morgan, A. and Sommese, A. 1987b.
A homotopy for solving general polynomial systems that respects
m-homogeneous structures.
Appl. Math. Comput. 24, 2, 101-113.
- Morgan and Sommese 1989
-
Morgan, A. P. and Sommese, A. J. 1989.
Coefficient-parameter polynomial continuation.
Appl. Math. Comput. 29, 2, 123-160.
Errata: Appl. Math. Comput. 51:207(1992).
- Morgan, Sommese, and Wampler 1991
-
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1991.
Computing singular solutions to nonlinear analytic systems.
Numer. Math. 58, 7, 669-684.
- Morgan, Sommese, and Wampler 1992a
-
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1992a.
Computing singular solutions to polynomial systems.
Adv. Appl. Math. 13, 3, 305-327.
- Morgan, Sommese, and Wampler 1992b
-
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1992b.
A power series method for computing singular solutions to nonlinear
analytic systems.
Numer. Math. 63, 391-409.
- Morgan, Sommese, and Wampler 1995
-
Morgan, A. P., Sommese, A. J., and Wampler, C. W. 1995.
A product-decomposition theorem for bounding Bézout numbers.
SIAM J. Numer. Anal. 32, 4, 1308-1325.
- Morgan, Sommese, and Watson 1989
-
Morgan, A. P., Sommese, A. J., and Watson, L. T. 1989.
Finding all isolated solutions to polynomial systems using HOMPACK.
ACM Trans. Math. Softw. 15, 2, 93-122.
- Morgan and WamplerMorgan and
Wampler1990
-
Morgan, A. P. and Wampler, C. W. 1990.
Solving a planar four-bar design problem using continuation.
ASME J. of Mechanical Design 112, 544-550.
- Mourrain 1993
-
Mourrain, B. 1993.
The 40 generic positions of a parallel robot.
In M. Bronstein Ed., Proceedings of ISSAC-93
(Kiev, Ukraine, 1993), pp. 173-182. ACM.
- Mourrain 1996
-
Mourrain, B. 1996.
The handbook of polynomial systems.
Available at http://www.inria.fr/saga/POL/index.html.
- NauheimNauheim1998
-
Nauheim, R. 1998.
Systems of algebraic equations with bad reduction.
J. Symbolic Computation 25, 619-641.
- Nelsen and Hodgkin 1981
-
Nelsen, C. V. and Hodgkin, B. C. 1981.
Determination of magnitudes, directions, and locations of two
independent dipoles in a circular conducting region from boundary potential
measurements.
IEEE Trans. Biomed. Engrg. BME-28, 12,
817-823.
- Noonburg 1989
-
Noonburg, V. W. 1989.
A neural network modeled by an adaptive Lotka-Volterra system.
SIAM J. Appl. Math. 49, 6, 1779-1792.
- Ravi, Rosenthal, and Wang 1996
-
Ravi, M. S., Rosenthal, J., and Wang, X. 1996.
Dynamic pole placement assignment and Schubert calculus.
SIAM J. Control and Optimization 34, 3,
813-832.
- Rojas 1994
-
Rojas, J. M. 1994.
A convex geometric approach to counting the roots of a polynomial
system.
Theoret. Comput. Sci. 133, 1, 105-140.
- Rojas 1996
-
Rojas, J. M. 1996.
Toric intersection theory for affine root counting.
To appear in Journal of Pure and Applied Algebra, vol 136, no 1,
March 1999. Available at http://www.cityu.edu.hk/ma/staff/rojas.
- Rojas 1997
-
Rojas, J. M. 1997.
Toric laminations, sparse generalized characteristic polynomials, and
a refinement of Hilbert's tenth problem.
In F. Cucker and M. Shub Eds., Foundations of
Computational Mathematics. Selected Papers of a Conference, Held at IMPA in
Rio de Janeiro, January 1997 (1997), pp. 369-381. Springer-Verlag.
Revised version available at http://www-math.mit.edu/~rojas.
- Rojas and Wang 1996
-
Rojas, J. M. and Wang, X. 1996.
Counting affine roots roots of polynomial systems via pointed
Newton polytopes.
J. Complexity 12, 116-133.
- Rosenthal and Sottile 1998
-
Rosenthal, J. and Sottile, F. 1998.
Some remarks on real and complex output feedback.
Systems and Control Lett. 33, 2, 73-80.
See http://www.nd.edu/~rosen/pole for a description of
computational aspects of the paper.
- Rosenthal and Willems 1998
-
Rosenthal, J. and Willems, J. C. 1998.
Open problems in the area of pole placement.
In V. Blondel, E. Sontag, M. Vidyasagar, and J. Willems Eds.,
Open Problems in Mathematical Systems and Control Theory,
Communication and Control Engineering Series, pp. 181-191. Berlin, New
York: Springer-Verlag.
- Schrans and Troost 1990
-
Schrans, S. and Troost, W. 1990.
Generalized Virasoro constructions for SU(3).
Nuclear Phys. B 345, 2-3, 584-606.
- Sosonkina, Watson, and Stewart 1996
-
Sosonkina, M., Watson, L. T., and Stewart, D. E. 1996.
Note on the end game in homotopy zero curve tracking.
ACM Trans. Math. Softw. 22, 3, 281-287.
- Sottile 1997
-
Sottile, F. 1997.
Enumerative geometry for real varieties.
In J. Kollár, R. Lazarsfeld, and D. R. Morrison Eds.,
Algebraic Geometry - Santa Cruz 1995 (University of California,
Santa Cruz, July 1995), Volume 62, Part I of Proceedings of
Symposia in Pure Mathematics, pp. 435-447. AMS.
- Sottile 1998
-
Sottile, F. 1998.
Real Schubert calculus: polynomial systems and a conjecture of
Shapiro and Shapiro.
Preprint #1998-066, MSRI.
- Steenkamp 1982
-
Steenkamp, M. C. 1982.
Die numeriese oplos van stelsels polinoomvergelykings.
Technical report, Nasionale Navorsingsinstituut vir Wiskundige
Wetenskappe, Pretoria.
- Stroud and Secrest 1966
-
Stroud, A. H. and Secrest, D. 1966.
Gaussian Quadrature Formulas.
Prentice-Hall series in automatic computation. Prentice-Hall,
Englewood Cliffs (N.J.).
- Sturmfels 1994
-
Sturmfels, B. 1994.
On the Newton polytope of the resultant.
Journal of Algebraic Combinatorics 3, 207-236.
- Sturmfels 1998
-
Sturmfels, B. 1998.
Polynomial equations and convex polytopes.
Amer. Math. Monthly 105, 10, 907-922.
- Sweldens 1994
-
Sweldens, W. 1994.
The construction and application of wavelets in numerical
analysis.
Ph. D. thesis, K.U.Leuven.
- Syiek 1995
-
Syiek, D. 1995.
C vs Ada: Arguing performance religion.
ACM Ada Letters XV, 6, 67-69.
- Traverso 1993
-
Traverso, C. 1993.
The posso test suite examples.
Available at http://www.inria.fr/saga/POL/index.html.
- Van Hentenryck, McAllester, and
Kapur 1997
-
Van Hentenryck, P., McAllester, D., and Kapur, D. 1997.
Solving polynomial systems using a branch and prune approach.
SIAM J. Numerical Analysis 34, 2, 797-827.
- Verschelde 1990
-
Verschelde, J. 1990.
Oplossen van stelsels veeltermvergelijkingen met behulp van
continueringsmethodes.
Bachelor's Thesis, K.U.Leuven.
- Verschelde 1995
-
Verschelde, J. 1995.
PHC and MVC: two programs for solving polynomial systems by
homotopy continuation.
In J. Faugère, J. Marchand, and R. Rioboo Eds.,
Proceedings of the PoSSo Workshop on Software. Paris, March 1-4,
1995 (1995), pp. 165-175.
- Verschelde 1996
-
Verschelde, J. 1996.
Homotopy Continuation Methods for Solving Polynomial
Systems.
Ph. D. thesis, K.U.Leuven, Dept. of Computer Science.
- Verschelde 1998
-
Verschelde, J. 1998.
Numerical evidence for a conjecture in real algebraic geometry.
Preprint #1998-064, MSRI.
Paper and software available at the author's web-pages.
- Verschelde, Beckers, and Haegemans
1991
-
Verschelde, J., Beckers, M., and Haegemans, A. 1991.
A new start system for solving deficient polynomial systems using
continuation.
Appl. Math. Comput. 44, 3, 225-239.
- Verschelde and Cools 1992
-
Verschelde, J. and Cools, R. 1992.
Nonlinear reduction for solving deficient polynomial systems by
continuation methods.
Numer. Math. 63, 2, 263-282.
- Verschelde and Cools 1993a
-
Verschelde, J. and Cools, R. 1993a.
An Ada workbench for homotopy continuation for solving polynomial
systems.
The Ada Belgium Newsletter 2, 1, 23-40.
- Verschelde and Cools 1993b
-
Verschelde, J. and Cools, R. 1993b.
Symbolic homotopy construction.
Applicable Algebra in Engineering, Communication and
Computing 4, 3, 169-183.
- Verschelde and Cools 1994
-
Verschelde, J. and Cools, R. 1994.
Symmetric homotopy construction.
J. Comput. Appl. Math. 50, 575-592.
- Verschelde and Cools 1996
-
Verschelde, J. and Cools, R. 1996.
Polynomial homotopy continuation, a portable Ada software package.
The Ada-Belgium Newsletter 4, 59-83.
Proceedings of the 1996 Ada-Belgium Seminar, 22 November 1996,
Eurocontrol, Brussels, Belgium.
- Verschelde and Gatermann 1995
-
Verschelde, J. and Gatermann, K. 1995.
Symmetric Newton polytopes for solving sparse polynomial systems.
Adv. Appl. Math. 16, 1, 95-127.
- Verschelde, Gatermann, and Cools
1996
-
Verschelde, J., Gatermann, K., and Cools, R. 1996.
Mixed-volume computation by dynamic lifting applied to polynomial
system solving.
Discrete Comput. Geom. 16, 1, 69-112.
- Verschelde and Haegemans 1993
-
Verschelde, J. and Haegemans, A. 1993.
The GBQ-Algorithm for constructing start systems of
homotopies for polynomial systems.
SIAM J. Numer. Anal. 30, 2, 583-594.
- Verschelde, Verlinden, and Cools
1994
-
Verschelde, J., Verlinden, P., and Cools, R. 1994.
Homotopies exploiting Newton polytopes for solving sparse
polynomial systems.
SIAM J. Numer. Anal. 31, 3, 915-930.
- Wallack, Emiris, and Manocha
1998
-
Wallack, A., Emiris, I., and Manocha, D. 1998.
MARS: A Maple/Matlab/C resultant-based solver.
In O. Gloor Ed., Proceedings of ISSAC-98
(Rostock, Germany, 1998), pp. 244-251. ACM.
- Wampler and Morgan 1991
-
Wampler, C. and Morgan, A. 1991.
Solving the 6R inverse position problem using a generic-case
solution methodology.
Mech. Mach. Theory 26, 1, 91-106.
- Wampler 1992
-
Wampler, C. W. 1992.
Bezout number calculations for multi-homogeneous polynomial systems.
Appl. Math. Comput. 51, 2-3, 143-157.
- Wampler 1996
-
Wampler, C. W. 1996.
Isotropic coordinates, circularity and Bezout numbers: planar
kinematics from a new perspective.
Proceedings of the 1996 ASME Design Engineering Technical Conference,
Irvine, California August 18-22, 1996. CD-ROM edited by McCarthy, J.M.,
American society of mechanical engineers. Also available as GM Technical
Report, Publication R&D-8188.
- Watson 1986
-
Watson, L. T. 1986.
Numerical linear algebra aspects of globally convergent homotopy
methods.
SIAM Rev. 28, 4, 529-545.
- Watson, Billups, and Morgan 1987
-
Watson, L. T., Billups, S. C., and Morgan, A. P. 1987.
Algorithm 652: HOMPACK: a suite of codes for globally convergent
homotopy algorithms.
ACM Trans. Math. Softw. 13, 3, 281-310.
- Watson, Sosonkina, Melville, Morgan, and
Walker 1997
-
Watson, L. T., Sosonkina, M., Melville, R. C., Morgan, A. P., and
Walker, H. F. 1997.
HOMPACK90: A suite of Fortran 90 codes for globally convergent
homotopy algorithms.
ACM Trans. Math. Softw. 23, 4, 514-549.
Available at http://www.cs.vt.edu/~ltw/.
- Wise, Sommese, and Watson
1998
-
Wise, S., Sommese, A., and Watson, L. 1998.
POLSYS_PLP: A partitioned linear product homotopy code for solving
polynomial systems of equations.
Available at http://www.cs.vt.edu/~ltw/.
- Wright 1985
-
Wright, A. H. 1985.
Finding all solutions to a system of polynomial equations.
Math. of Comp. 44, 169, 125-133.
Jan Verschelde
3/7/1999