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problem statement

To solve a polynomial system, we apply homotopy continuation,
in two stages:

1 A homotopy method constructs a family of polynomial systems,
connecting the input system to a system with known solutions.

2 A continuation method tracks the solution paths originating
at the known solutions leading to the solutions of the input system.

Consider homotopies in one single parameter and assume
1 no singularity on each path, and
2 no diverging paths.

Problem: determine the step size of the path tracker.

Too small: inefficient.
Too large: jump off the path, possibly onto another path.
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the main references for this talk
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numerical continuation

Numerical continuation applies an adaptive step size control
in a predictor-corrector method with double precision arithmetic.

Alternatives to numerical continuation:
interval or ball arithmetic
[Kearfott and Xing, 1994], [Lecerf and van der Hoeven, 2016];
symbolic deformation methods
[Jeronimo, Matera, Solernó, and Waissbein, 2009],
[Hauenstein, Safey El Din, Schost, Vu, 2021];
certified homotopy tracking
[Beltrán and Leykin, 2013], [Xu, Burr, and Yap, 2018].
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Padé approximants as predictors

1 H. Schwetlick and J. Cleve. Higher order predictors and adaptive
steplength control in path following algorithms.
SIAM Journal on Numerical Analysis, 24(6):1382–1393, 1987.

2 A. Trias. The holomorphic embedding load flow method. In 2012
IEEE Power and Energy Society General Meeting, pages 1–8.
IEEE, 2012.

3 A. Trias and J. L. Martin. The holomorphic embedding loadflow
method for DC power systems and nonlinear DC circuits. IEEE
Transactions on Circuits and Systems, 63(2):322–333, 2016.

The holomorphic embedding load flow method takes the poles
of the Padé approximants into account in its step size control.
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a posteriori and a priori step size control
To solve a polynomial system f (x) = 0, a typical homotopy is

h(x , t) = γ(1− t)g(x) + t f (x) = 0, t ∈ [0,1], random γ ∈ C.
An a posteriori step size control uses feedback loops.

∆t := β∆t
- predictor - corrector -t

6

‖h(y(∆t),∆t)‖ > α

t
6

‖h(z(∆t),∆t)‖ > ε

Extreme choices for α and ε (not recommended):
If α ≤ ε, then the corrector is not needed.
If α =∞, then the first feedback loop does never happen.

Setting 0.5 for β cuts the step size ∆ in half.

An a priori step size control does not need feedback loops.
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two causes of path jumping

Curves are far apart, with high curvature:

Curves are close to each other, with low curvature:
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detecting nearby singularities

Applying the ratio theorem of Fabry, we can detect singular points
based on the coefficients of the Taylor series.

Theorem (the ratio theorem, Fabry 1896)

If for the series x(t) = c0 + c1t + c2t2 + · · ·+ cntn + cn+1tn+1 + · · · ,
we have lim

n→∞
cn/cn+1 = z, then

z is a singular point of the series, and
it lies on the boundary of the circle of convergence of the series.

Then the radius of this circle is less than |z|.

The ratio cn/cn+1 is the pole of Padé approximants of degrees [n/1]
(n is the degree of the numerator, with linear denominator).
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error analysis of a lower triangular block Toeplitz solver
Solving (A0 + A1t + A2t2 + · · ·+ Ad td )(x0 + x1t + x2t2 + · · ·+ xd td )

= (b0 + b1t + b2t2 + · · ·+ bd td )
leads to a lower triangular block system:

A0
A1 A0
A2 A1 A0
...

...
...

. . .
Ad Ad−1 Ad−2 · · · A0




x0
x1
x2
...

xd

 =


b0
b1
b2
...

bd

 .

Cost to solve: O(n3) + O(dn2).

Let κ be the condition number of A0. Let ‖A0‖ = ‖x0‖ = 1, ‖xd‖ ≈ ρd .

In our context, ρ ≈ 1/R, where R is the convergence radius.

If ‖Ad‖ ≈ ρd , then
‖∆xd‖
‖xd‖

≈ κd+1εmach, and accuracy is lost.
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estimating the distance to the nearest path
Consider a Taylor series expansion of the homotopy at one path,
truncated after degree 2, to estimate the distance to the nearest path.

The distance ‖∆z‖ to the nearest path is estimated by

η =
2σn(Jh)√

σ2
1,1 + σ2

2,1 + · · ·+ σ2
n,1

. ‖∆z‖,

where
σn(Jh) is the smallest singular value of the Jacobian matrix,
σi,1 is the largest singular value of the Hessian matrix
at the i-th polynomial in the homotopy h.

With Padé approximants pi/qi we compute an estimate for the error e0:∥∥∥∥x(∆t)−
(

p1(∆t)
q1(∆t)

, . . . ,
pn(∆t)
qn(∆t)

)∥∥∥∥ ≈ ‖e0‖ |∆t |k ,

where k is determined by the degrees of the Padé approximants.
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schematic summary of a priori step size control

(h, Jh, z
(i)
t∗ , t

∗)
����)

PPPPq

Newton

Padé

Differentiate

SVD

x(t) power series Hi Hessians

pj (t)
qj (t)

‖e0‖
XXXXXz

σn(Jh) σ1(Hk )
? ?

? ?

∆t2 = β2D ‘pole distance’ ∆t1 = k
√

β1η
‖e0‖ ‘curvature bound’

PPPPPPq

������)

∆t = min(∆t1,∆t2, tend game − t∗)

The values β1 and β2 are experimentally defined tolerances.
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cost analysis

For n variables,
the cost of the linear algebra is O(n4),
the cost to differentiate and evaluate n Hessians
is 2n times the cost of computing the Jacobian,
for power series truncated at degree n,
the cost overhead factor of Newton’s method is O(n log(n)).

Relative to a posteriori step size control,
the cost overhead of a priori step size control is O(n log(n)).

Use parallel computers to offset the cost overhead.
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computational results

Available in PHCpack since v2.4.72, released 1 September 2019.
To track a large number of paths, a static workload distribution
message passing implementation ran on a 44-core workstation.

Two benchmarks:
1 1,048,576 paths defined by 20 quadrics, one linear equation,

the katsura-20 benchmark from computational physics.
About 66 solutions have a large condition number of about 107.
HOM4PS-2.0para [Li, Tsai, Parallel Computing 2009]
reported 4 path jumpings in their runs on katsura-20.

2 1,594,297 paths defined by 13 cubic equations, in noon-13,
arising in a model of a neural network.

All runs were done in double precision, no path jumpings occurred.

Homogeneous coordinate formulations are important.
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a pipelined algorithm to solve matrix series
We solve A(t)x(t) = b(t) for series x(t),
given A(t) = A0 + A1t + A2t2 + · · · and b(t) = b0 + b1t + b2t2 + · · · .
For example, for series truncated at degree 2:

A0x0 = b0

A0x1 = b1 − A1x0

A0x2 = b2 − A2x0 − A1x1

1 F = Factor(A0); x0 = Solve(F ,b0)

2 for k from 1 to d do
1 update b` with b` − A`xk simultaneously, for ` from k to d
2 xk = Solve(F ,bk )

With d threads, the speedup is then 1 +
d(d − 1)

4(d + 1)
.

As d →∞, this ratio equals 1 + d/4.
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accelerated polynomial evaluation and differentiation
Evaluating polynomials at power series of degree d = 152 in deca
double precision (CAMPARY software), on five different GPUs.
The last line is the wall clock time for all convolution and addition
kernels. All units are milliseconds.

C2050 K20C P100 V100 RTX 2080
convolution 12947.26 11290.22 1060.03 634.29 10002.32

addition 10.72 11.13 1.37 0.77 5.01
sum 12957.98 11301.35 1061.40 635.05 10007.34

wall clock 12964.00 11309.00 1066.00 640.00 10024.00

The 12964/640 ≈ 20.26 is for the V100 over the oldest C2050.
Compare the ratio of the wall clock times for P100 over V100
1066/640 ≈ 1.67 with the ratios of theoretical double peak
performance of the V100 of the P100: 7.9/4.7 ≈ 1.68.

IPDPSW 2021
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solving power series systems

Solving with power series⇒ solving systems of power series.

Consider input coefficients as power series given up to some degree:{
sin(t)− y = 0

x2 + y2 = 1.

The solution x = cos(t) is obtained as a power series,
running Newton’s method on{

t − 1/6t3 + 1/120t5 − 1/5040t7 − y = 0
x2 + y2 = 1

yields x = 1− 1/2t2 + 1/24t4 − 1/720t6 + 1/40320t8.

Laurent series are needed if sin(t) and cos(t) are flipped in the input.

Jan Verschelde (UIC) a priori step size control SIAM AG 2021 18 / 19



conclusions

Trends in Polynomial Homotopy Continuation:
a priori step size control,
parallel algorithms,
multiple double arithmetic,
systems of power series.

GNU GPL software at
https://github.com/janverschelde/PHCpack.

Link to a prerecording of this talk:
https://youtu.be/AUFpEkZYtLI.
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