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problem statement

A polynomial in n variables x = (x0, x1, . . . , xn−1) consists of a vector of
nonzero complex coefficients with corresponding exponents in A:

f (x) =
∑

a∈A

caxa, ca ∈ C \ {0}, xa = xa0
0 xa1

1 · · · xan−1
n−1 .

Solve f(x) = 0, f = (f0, f1, . . . , fN−1) with supports (A0,A1, . . . ,AN−1).

Systems are sparse: few monomials have a nonzero coefficient.

For a ∈ Zn, we consider Laurent polynomials, f ∈ C[x±1]
⇒ only solutions with coordinates in C∗ = C \ {0} matter.

Many applications give rise to symmetric polynomial systems.
The solution set is invariant under permutations of the variables.
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the cyclic n-roots system

f(x) =



































x0 + x1 + · · ·+ xn−1 = 0

x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0 = 0

i = 3,4, . . . ,n − 1 :

n−1
∑

j=0

j+i−1
∏

k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

Lemma (Backelin)

If m2 divides n, then the cyclic n-roots system has a solution set of
dimension m − 1.

J. Backelin: Square multiples n give infinitely many cyclic n-roots.
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.
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Newton polytopes and Puiseux series
The sparse structure is modeled by its Newton polytope.

Definition

Consider the support A ⊂ Zn of f (x) =
∑

a∈A

caxa, ca ∈ C \ {0}.

The Newton polytope of f is the convex hull of A.

Definition
Consider a curve C defined by f(x) = 0.
A Puiseux series of the curve C has the form

{

x0 = tv0

xk = zk tvk (1 + O(t)), k = 1,2, . . . ,n − 1,

where (z1, . . . , zn−1) ∈ (C∗)n−1.

The Newton-Puiseux algorithm is in Walker’s Algebraic Curves, 1950.
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initial forms and tropisms
Denote the inner product of vectors u and v as 〈u, v〉.

Definition

Let v ∈ Zn \ {0} be a direction vector. Consider f (x) =
∑

a∈A

caxa.

The initial form of f in the direction v is

inv(f ) =
∑

a ∈ A
〈a, v〉 = m

caxa, where m = min{ 〈a, v〉 | a ∈ A }.

Definition
Let the system f(x) = 0 define a curve. A tropism consists of the
leading powers (v0, v1, . . . , vn−1) of a Puiseux series of the curve.

The leading coefficients of the Puiseux series satisfy inv(f)(x) = 0.
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relevant software

Maple, of course...

cddlib by Komei Fukuda and Alain Prodon implements the
double description method to efficiently enumerate all extreme
rays of a general polyhedral cone.

Gfan by Anders Jensen to compute Gröbner fans and tropical
varieties uses cddlib .

The Singular library tropical.lib by Anders Jensen,
Hannah Markwig and Thomas Markwig for computations in
tropical geometry.

Macaulay2 interfaces to Gfan.

Sage interfaces to Gfan.

PHCpack (published as Algorithm 795 ACM TOMS) provides our
numerical blackbox solver.
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binomial systems

Definition
A binomial system has exactly two monomials with nonzero
coefficient in every equation.

The binomial equation caxa − cbxb = 0, a,b ∈ Zn, ca, cb ∈ C \ {0},
has normal representation xa−b = cb/ca.

A binomial system of N equations in n variables is then defined by an
exponent matrix A ∈ ZN×n and a coefficient vector c ∈ (C∗)N : xA = c.

Solution sets of binomial systems are related to toric varieties.

Solution sets of binomial systems can be represented exactly by the
first term of their Puiseux series.

Jan Verschelde (UIC) Newton polytopes, tropisms, Puiseux series SIAM DM 2012 9 / 34



an example
Consider as an example for xA = c the system

{

x2
0 x1x4

2 x3
3 − 1 = 0

x0x1x2x3 − 1 = 0
A =

[

2 1 4 3
1 1 1 1

]T

c =

[

1
1

]

.

As basis of the null space of A we can for example take
u = (−3,2,1,0) and v = (−2,1,0,1).

The vectors u and v are tropisms for a two dimensional algebraic set.

Placing u and v in the first two rows of a matrix M, extended so
det(M) = 1, we obtain a coordinate transformation, x = yM :

M =









−3 2 1 0
−2 1 0 1

1 0 0 0
0 1 0 0



























x0 = y−3
0 y−2

1 y2

x1 = y2
0 y1y3

x2 = y0

x3 = y1.
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monomial transformations
By construction, as Au = 0 and Av = 0:

MA =









−3 2 1 0
−2 1 0 1

1 0 0 0
0 1 0 0

















2 1
1 1
4 1
3 1









=









0 0
0 0
2 1
1 1









= B.

The corresponding monomial transformation x = yM performed on
xA = c yields yMA = yB = c, eliminating the first two variables:

{

y2
2 y3 − 1 = 0

y2y3 − 1 = 0.

Solving this reduced system gives values z2 and z3 for y2 and y3.
Leaving y0 and y1 as parameters t0 and t1 we find as solution

(x0 = z2t−3
0 t−2

1 , x1 = z3t2
0 t1, x2 = t0, x3 = t1).
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unimodular coordinate transformations

Definition

A unimodular coordinate transformation x = yM is determined by
an invertible matrix M ∈ Zn×n: det(M) = ±1.

For a d dimensional solution set of a binomial system:
1 The null space of A gives d tropisms,

stored in the rows of a d -by-n-matrix B.
2 Compute the Smith normal form S of B: UBV = S.
3 There are three cases:

1 U = I ⇒ M = V−1

2 If U 6= I and S has ones on its diagonal,
then extend U−1 with an identity matrix to form M.

3 Compute the Hermite normal form H of B

and let D be the diagonal elements of H, then M =

[

D−1B
0 I

]

.
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cyclic 4-roots and binomial systems

f(x) =















x0 + x1 + x2 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

Looking for a special solution,
we apply the binomial system solver to







































x0 + x2 = 0
x1 + x3 = 0

x0x1 + x1x2 = 0
x2x3 + x3x0 = 0

x0x1x2 + x2x3x0 = 0
x1x2x3 + x3x0x1 = 0

x0x1x2x3 − 1 = 0
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the output of phc -b

4 5
t1 - t1 +
x0 - t1^1;
x2 - (-1 - 1.22464679914735E-16 * i) * t1^1;
x1 - (-1) * t1^-1;
x3 - (1 - 1.22464679914735E-16 * i) * t1^-1;
4 5
t1 - t1 +
x0 - t1^1;
x2 - (-1 - 1.22464679914735E-16 * i) * t1^1;
x1 - (1 - 1.22464679914735E-16 * i) * t1^-1;
x3 - (-1 + 2.44929359829471E-16 * i) * t1^-1;

This output corresponds to the two solutions
(x0 = t , x1 = −t−1, x2 = −t , x3 = t−1) and
(x0 = t , x1 = t−1, x2 = −t , x3 = −t−1) of the original problem.
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the Cayley embedding – an example
{

p = (x0 − x2
1 )(x0 + 1) = x2

0 + x0 − x2
1 x0 − x2

1 = 0

q = (x0 − x2
1 )(x1 + 1) = x0x1 + x0 − x3

1 − x2
1 = 0

The Cayley polytope
is the convex hull of
{(2,0,0), (1,0,0),
(1,2,0), (0,2,0)}

∪
{(1,1,1), (1,0,1),
(0,3,1), (0,2,1)}.
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facet normals and initial forms

The Cayley polytope
has facets spanned by

one edge of the
Newton polygon of p

and
one edge of the
Newton polygon of q.

Consider v = (2,1,0).

{

in(2,1)(p) = in(2,1)
(

x2
0 + x0 − x2

1 x0 − x2
1

)

= x0 − x2
1

in(2,1)(q) = in(2,1)
(

x0x1 + x0 − x3
1 − x2

1

)

= x0 − x2
1
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computing all pretropisms

Definition
A nonzero vector v is a pretropism for the system f(x) = 0
if #inv(fk ) ≥ 2 for all k = 0,1, . . . ,N − 1.

Application of the Cayley embedding to (A0,A1, . . . ,AN−1):

E = { (a,0) | a ∈ A0 } ∪
N−1
⋃

k=1

{ (a,ek ) | a ∈ Ak } ⊂ Zn+N−1,

where 0,e1 = (1,0, . . . ,0), e2 = (0,1, . . . ,0), . . ., eN−1 = (0,0, . . . ,1)
span the standard unit simplex in RN−1.

The set of all facet normals to the convex hull of E contains
all normals to facets spanned by at least two points of each support.

We used cddlib to compute all pretropisms of the cyclic n-roots
system, up to n = 12.
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cones of pretropisms

Definition
A cone of pretropism is a polyhedral cone spanned by pretropisms.

If we are looking for an algebraic set of dimension d and

if there are no cones of vectors perpendicular to edges of the
Newton polytopes of f (x) = 0 of dimension d ,
then the system f (x) = 0 has no solution set of dimension d
that intersects the first d coordinate planes properly; otherwise

if a d -dimensional cone of vectors perpendicular to edges of the
Newton polytopes exists, then that cone defines a part of the
tropical prevariety.

For the cyclic 9-roots system,
we found a two dimensional cone of pretropisms.
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solving the cyclic 4-roots system

f (x) =















x0 + x1 + x2 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x0x1x2 + x1x2x3 + x2x3x0 + x3x0x1 = 0
x0x1x2x3 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f )(z) = 0:

inv(f )(x) =















x1 + x3 = 0
x0x1 + x1x2 + x2x3 + x3x0 = 0

x1x2x3 + x3x0x1 = 0
x0x1x2x3 − 1 = 0















x0 = y+1
0

x1 = y−1
0 y2

x2 = y+1
0 y3

x3 = y−1
0 y4

The system inv(f )(y) = 0 has two solutions.
We find two solution curves:

(

t ,−t−1,−t , t−1
)

and
(

t , t−1,−t ,−t−1
)

.
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Puiseux series for algebraic sets

Proposition
If f (x) = 0 is in Noether position and defines a d-dimensional solution
set in Cn, intersecting the first d coordinate planes in regular isolated
points, then there are d linearly independent tropisms
v0, v1, . . . vd−1 ∈ Qn so that the initial form system
inv0(inv1(· · · invd−1(f ) · · · ))(x = yM) = 0 has a solution c ∈ (C \ {0})n−d .

This solution and the tropisms are the leading coefficients and powers
of a generalized Puiseux series expansion for the algebraic set:

x0 = tv0,0

0

x1 = tv0,1

0 tv1,1

1
...

xd−1 = tv0,d−1

0 tv1,d−1

1 · · · tvd−1,d−1

d−1

xd = c0tv0,d

0 tv1,d

1 · · · tvd−1,d

d−1 + · · ·

xd+1 = c1tv0,d+1

0 tv1,d+1

1 · · · tvd−1,d+1

d−1 + · · ·
...

xn = cn−d−1tv0,n−1

0 tv1,n−1

1 · · · tvd−1,n−1

d−1 + · · ·
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our polyhedral approach

For every d -dimensional cone C of pretropisms:

1 We select d linearly independent generators to form the d -by-n
matrix A and the unimodular transformation x = yM .

2 If inv0(inv1(· · · invd−1(f ) · · · ))(x = yM) = 0 has no solution in
(C∗)n−d , then return to step 1 with the next cone C, else continue.

3 If the leading term of the Puiseux series satisfies the entire
system, then we report an explicit solution of the system and
return to step 1 to process the next cone C.
Otherwise, we take the current leading term to the next step.

4 If there is a second term in the Puiseux series,
then we have computed an initial development for an algebraic set
and report this development in the output.

Note: to ensure the solution of the initial form system is not isolated,
it suffices to compute a series development for a curve.
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applied to the cyclic 8-roots system

Our approach applied to the cyclic 8-roots system:

831 facet normals (computed with cddlib )

29 pretropism generators
5 lead to initial forms with solutions

◮ (1,−1, 0, 1, 0, 0,−1, 0)
◮ (1,−1, 1,−1, 1,−1, 1,−1)
◮ (1, 0,−1, 0, 0, 1, 0,−1)
◮ (1, 0,−1, 1, 0,−1, 0, 0)
◮ (1, 0, 0,−1, 0, 1,−1, 0)

For the initial form solutions we used the blackbox solver of PHCpack.

Symbolic manipulations for the computation of the second term of the
Puiseux series were done with Sage.
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an initial form system

The pretropism v = (1,−1,0,1,0,0,−1,0) defines

inv(f)(x) =































































x1 + x6 = 0

x1x2 + x5x6 + x6x7 = 0

x4x5x6 + x5x6x7 = 0

x0x1x6x7 + x4x5x6x7 = 0

x0x1x2x6x7 + x0x1x5x6x7 = 0

x0x1x2x5x6x7 + x0x1x4x5x6x7 + x1x2x3x4x5x6 = 0

x0x1x2x4x5x6x7 + x1x2x3x4x5x6x7 = 0

x0x1x2x3x4x5x6x7 − 1 = 0

v defines the unimodular coordinate transformation: x0 = y0,
x1 = y1/y0, x2 = y2, x3 = y0y3, x4 = y4, x5 = y5, x6 = y6/y0, x7 = y7.
Using the new coordinates, we transform inv(f)(x).
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the transformed initial form system

inv(f)(y) =















































y1 + y6 = 0
y1y2 + y5y6 + y6y7 = 0

y4y5y6 + y5y6y7 = 0
y4y5y6y7 + y1y6y7 = 0

y1y2y6y7 + y1y5y6y7 = 0
y1y2y3y4y5y6 + y1y2y5y6y7 + y1y4y5y6y7 = 0

y1y2y3y4y5y6y7 + y1y2y4y5y6y7 = 0
y1y2y3y4y5y6y7 − 1 = 0

Solving inv(f)(y), we obtain 8 solutions (all in the same orbit), e.g.:

y0 = t , y1 = −I, y2 =
−1
2

− I
2
, y3 = −1, y4 = 1 + I,

y5 =
1
2
+

I
2
, y6 = I, y7 = −1 − I, I =

√
−1.
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developing a series for the solution
Taking solution at
infinity, we build a
series of the form:

y0 = t

y1 = −I + c1t

y2 =
−1
2

− I
2
+ c2t

y3 = −1 + c3t

y4 = 1 + I + c4t

y5 =
1
2
+

I
2
+ c5t

y6 = I + c6t

y7 = (−1 − I) + c7t

Plugging series form
into transformed
system, collecting all
coefficients of t1,
solving yields

c1 = −1 − I

c2 =
1
2

c3 = 0

c4 = −1

c5 =
−1
2

c6 = 1 + I

c7 = 1

The second term in
the series, still in the
transformed
coordinates:

y0 = t

y1 = −I + (−1 − I)t

y2 =
−1
2

− I
2
+

1
2

t

y3 = −1

y4 = 1 + I − t

y5 =
1
2
+

I
2
− 1

2
t

y6 = I + (1 + I)t

y7 = (−1 − I) + t
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degree computations

Definition (Branch Degree)

Let v = (v0, v1, . . . , vn−1) be a tropism and let R be the set of initial
roots of the initial form system inv(f)(y) = 0.

Then the degree of the branch is #R ×
∣

∣

∣

∣

n−1
max
i=0

vi −
n−1
min
i=0

vi

∣

∣

∣

∣

.

Tropisms, their cyclic permutations, and degrees:

(1,−1,1,−1,1,−1,1,−1) 8 × 2 = 16
(1,−1,0,1,0,0,−1,0) → (1,0,0,−1,0,1,−1,0) 8 × 2 + 8 × 2 = 32
(1,0,−1,0,0,1,0,−1) → (1,0,−1,1,0,−1,0,0) 8 × 2 + 8 × 2 = 32
(1,0,−1,1,0,−1,0,0) → (1,0,−1,0,0,1,0,−1) 8 × 2 + 8 × 2 = 32
(1,0,0,−1,0,1,−1,0) → (1,−1,0,1,0,0,−1,0) 8 × 2 + 8 × 2 = 32

TOTAL = 144

144 is the degree of the solution curve of the cyclic 8-root system.
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an initial form of cyclic 9-roots

v0 = (1,1,−2,1,1,−2,1,1,−2) and v1 = (0,1,−1,0,1,−1,0,1,−1)
define the initial form system















































































x2 + x5 + x8 = 0
x0x8 + x2x3 + x5x6 = 0

x0x1x2 + x0x1x8 + x0x7x8 + x1x2x3 + x2x3x4 + x3x4x5

+ x4x5x6 + x5x6x7 + x6x7x8 = 0
x0x1x2x8 + x2x3x4x5 + x5x6x7x8 = 0

x0x1x2x3x8 + x0x5x6x7x8 + x2x3x4x5x6 = 0
x0x1x2x3x4x5 + x0x1x2x3x4x8 + x0x1x2x3x7x8

+ x0x1x2x6x7x8 + x0x1x5x6x7x8 + x0x4x5x6x7x8 + x1x2x3x4x5x6

+ x2x3x4x5x6x7 + x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x8 + x0x1x2x5x6x7x8 + x2x3x4x5x6x7x8 = 0

x0x1x2x3x4x5x6x8 + x0x1x2x3x5x6x7x8 + x0x2x3x4x5x6x7x8 = 0
x0x1x2x3x4x5x6x7x8 − 1 = 0

Jan Verschelde (UIC) Newton polytopes, tropisms, Puiseux series SIAM DM 2012 27 / 34



the unimodular transformation x = yM

M =





























1 1 −2 1 1 −2 1 1 −2
0 1 −1 0 1 −1 0 1 −1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























x0 = y0

x1 = y0y1

x2 = y−2
0 y−1

1 y2

x3 = y0y3

x4 = y0y1y4

x5 = y−2
0 y−1

1 y5

x6 = y0y6

x7 = y0y1y7

x8 = y−2
0 y−1

1 y8

We use the coordinate change to transform the initial form system and
the original cyclic 9-roots system.
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the transformed initial form system


















































































y2 + y5 + y8 = 0
y2y3 + y5y6 + y8 = 0

y2y3y4 + y3y4y5 + y4y5y6 + y5y6y7

+ y6y7y8 + y2y3 + y7y8 + y2 + y8 = 0
y2y3y4y5 + y5y6y7y8 + y2y8 = 0

y2y3y4y5y6 + y5y6y7y8 + y2y3y8 = 0
y2y3y4y5y6y7 + y3y4y5y6y7y8 + y2y3y4y5y6

+ y4y5y6y7y8 + y2y3y4y5 + y2y3y4y8

+ y2y3y7y8 + y2y6y7y8 + y5y6y7y8 = 0
y3y4y6y7 + y3y4 + y6y7 = 0

y4y7 + y4 + y7 = 0
y2y3y4y5y6y7y8 − 1 = 0

A solution is
y2 = −1

2 −
√

3I
2 , y3 = −1

2 +
√

3I
2 , y4 = −1

2 +
√

3I
2 , y5 = 1, y6 = −1

2 −
√

3I
2 ,

y7 = −1
2 −

√
3I
2 , y8 = −1

2 +
√

3I
2 , where I =

√
−1.
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an exact representation of a two dimensional set

x0 = y0

x1 = y0y1

x2 = y−2
0 y−1

1 y2

x3 = y0y3

x4 = y0y1y4

x5 = y−2
0 y−1

1 y5

x6 = y0y6

x7 = y0y1y7

x8 = y−2
0 y−1

1 y8

y0 = t1
y1 = t2

y2 = −1
2
−

√
3I
2

y3 = −1
2
+

√
3I
2

y4 = −1
2
+

√
3I
2

y5 = 1

y6 = −1
2
−

√
3I
2

y7 = −1
2
−

√
3I
2

y8 = −1
2
+

√
3I
2

x0 = t1
x1 = t1t2

x2 = t−2
1 t−1

2 (−1
2
−

√
3I
2

)

x3 = t1(−
1
2
+

√
3I
2

)

x4 = t1t2(−
1
2
+

√
3I
2

)

x5 = t−2
1 t−1

2

x6 = t1(−
1
2
−

√
3I
2

)

x7 = t1t2(−
1
2
−

√
3I
2

)

x8 = t−2
1 t−1

2 (−1
2
+

√
3I
2

)
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a tropical interpretation of Backelin’s Lemma
Denoting by u = ei2π/3 the primitive third root of unity, u3 − 1 = 0:

x0 = t0
x1 = t0t1
x2 = t−2

0 t−1
1 u2

x3 = t0u
x4 = t0t1u
x5 = t−2

0 t−1
1

x6 = t0u2

x7 = t0t1u2

x8 = t−2
0 t−1

1 u.

Introducing new variables y0 = t0, y1 = t0t1, and y2 = t−2
0 t−1

1 u2:

x0 = y0

x1 = y1

x2 = y2

x3 = y0u
x4 = y1u
x5 = y2u

x6 = y0u2

x7 = y1u2

x8 = y2u2

which modulo y3
0 y3

1 y3
2 u9 − 1 = 0 satisfies by plain substitution the

cyclic 9-roots system, as in the proof of Backelin’s Lemma, see
J.C. Faugère. Finding all the solutions of Cyclic 9 using Gröbner basis
techniques. In Computer Mathematics - Proceedings of the Fifth Asian
Symposium (ASCM 2001), pages 1–12. World Scientific, 2001.
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degree computations
For u3 = 1, our representation of the solution set is

x0 = t0
x1 = t0t1
x2 = t−2

0 t−1
1 u2

x3 = t0u
x4 = t0t1u
x5 = t−2

0 t−1
1

x6 = t0u2

x7 = t0t1u2

x8 = t−2
0 t−1

1 u.

We compute the degree of the surface using two random hyperplanes:

{

α1t0 + α2t0t1 + α3t−2
0 t−1

1 = 0
α4t0 + α5t0t1 + α6t−2

0 t−1
1 = 0, α1, α2, . . . , α6 ∈ C.

Simplifying, the system becomes

{

t−2
0 t−1

1 − β1 = 0
t1 − β2 = 0, β1, β2 ∈ C.

There are 3 solutions, so we have a cubic surface of cyclic 9 roots.
Applying symmetry, we find an orbit of 6 cubic surfaces.
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cyclic m2-roots

Proposition

For n = m2, there is an (m − 1)-dimensional set of cyclic n-roots,
represented exactly as

xkm+0 = uk t0
xkm+1 = uk t0t1
xkm+2 = uk t0t1t2

...
xkm+m−2 = uk t0t1t2 · · · tm−2

xkm+m−1 = uk t−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

for k = 0,1,2, . . . ,m − 1 and uk = ei2kπ/m.

The degree of this solution set equals m.
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conclusion

Promising results on the cyclic n-roots problem give a proof of concept
for a new polyhedral method to compute algebraic sets.

Papers available via http://www.math.uic.edu/˜jan :

J. Verschelde. Polyhedral methods in numerical algebraic
geometry. In Interactions of Classical and Numerical Algebraic
Geometry, volume 496 of Contemporary Mathematics, pages
243–263. AMS, 2009.

D. Adrovic and J. Verschelde. Polyhedral methods for space
curves exploiting symmetry. arXiv:1109.0241v1 .

D. Adrovic and J. Verschelde. Computing Puiseux series for
algebraic surfaces. Proceedings of ISSAC 2012, to appear.

Version 2.3.68 of PHCpack solves binomial systems with phc -b .
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