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an example of a neural network
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represents a neural network with two inputs x1, x2, two outputs y1, y2,
and three layers

z1 = ν
(

A(1)x + b1

)
z2 = ν

(
A(2)z1 + b2

)
y = ν

(
A(3)z2 + b3

)
where A(1),A(2),A(3) are the weights, b1, b2, b3, are the biases, and
ν is an activation function.
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skip connections

Skip connections (or shortcut connections, or residual connections)
add the output of a particular layer to the input of a later layer.

ResNet [He, Zhang, Ren, Sun, IEEE, 2016]
uses deep residual learning for image recognition.
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a piecewise linear activation function

The output of the first layer of a neural network is given by:

ν(x) = ReLU(Ax + b) = max(Ax + b,0),

where A is the weight matrix of the first layer,
and b is the corresponding bias.

As the ReLU activation function is piecewise linear, the nonlinearity of
the neural network can be studied via tropical geometry.
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tropical algebra

Decompose the matrix A as A := A+ − A−

where the (i , j)-th entry of A+ is max{aij ,0}, and
where the (i , j)-th entry of A− is max{−aij ,0}.

Then layer ν(x) is the difference of two tropical polynomials:

ν(x) = max{A+x + b,A−x} − A−x

=
(
(x⊗A+ ⊗ b)⊕ x⊗A−

)
⊘ A−x

where

x ⊕ y = max{x , y}, x ⊗ y = x + y , x ⊘ y = x + (−y) = x − y ,

and
x⊙n = x · n.
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linear regions

A linear region in a neural network is a connected region for which the
map defined by the neural network is linear.
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a recurrence relation gives the result

Let f be an L-layered neural network with ReLU activations
and with n1, n2, . . . , nL neurons on each layer.
Then any set of vectors {vℓ ∈ {−1,1}nℓ | ℓ ∈ [L]} uniquely specifies a
single linear region of f , where the region is given by:

{x ∈ Rn | H̃(x , ℓ) ≤ G̃(x , ℓ) for all ℓ ∈ [L]}

where
H̃(x , ℓ) := diag(vℓ)

(
H(ℓ)

A (x)x + h(ℓ)
b (x)

)
G̃(x , ℓ) := diag(vℓ)

(
G(ℓ)

A (x)x + g(ℓ)
b (x)

)
with H and G as in the summands in the tropical polynomial of f ,

and where diag(vℓ) =
nℓ∑

i=1

e⊺
i vℓei , with ei the i-th unit vector.
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method to find linear regions
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tree traversal to find linear regions
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complexity

The number of linear regions is exponential in the number of layers.

The tree traversal has the benefit over the brute-force method that
it can abandon large branches of the tree if empty at an early layer
as is the case for truth assignments outside the training data.

However, the tree has as many leaves as 2#neurons.
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a small example network

Consider a network
with a 2-dimensional input layer,
2 hidden layers with 2 neurons per layer,
and a 1-dimensional output layer.

The weights and biases of each hidden layer in the network are:

A(1) =

[
−4 1
−4 −1

]
, b(1) =

[
2
3

]
,

A(2) =

[
−8 3
−21

4
19
4

]
, b(2) =

[
−4

1

]
.

We assume that the 1-dimensional output layer does not have an
activation function, so we can focus on the two hidden layers.
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walkthrough on the small example network
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the search tree of the small example network
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regression problems

Each function has two scalar input variables x and y ,
and one scalar output:

ϕ1(x , y) = sin(log |x |+ log |y |)

ϕ2(x , y) = sin

(√
x2 + y2

)
÷
√

x2 + y2

ϕ3(x , y) = sin
(
cos(x/2)

)
sin

(
cos(y/2)

)
ϕ4(x , y) = sin

(
tan(x/2)

)
sin

(
tan(y/2)

)
We expect ϕ1, ϕ2, ϕ3 to be modeled well by neural networks,
whereas overfitting is expected on ϕ4.
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using two and five layers on ϕ1
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The 5-layer network partitioned the input into regions that mimic
the patterns in the training data, producing a star-like pattern.
The 2-layer network also produced visual patterns matching the
training data in less detail.
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using two and five layers on ϕ2
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The 5-layer network partitioned the input into regions that mimic
the patterns in the training data, producing a radial pattern.
The 2-layer network also produced visual patterns matching the
training data in less detail.
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using two and five layers on ϕ3
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Despite contours more difficult than ϕ1 and ϕ2,
the patterns produced by the 5-layer network are still sensible.
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using two and five layers on ϕ4
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Overfitting was expected and the network produced clusters of tiny
linear regions near the center.

According to intuive understanding, overfitting occurs when too much
emphasis is placed on noise in training data.
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comparing networks with and without skip connections
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caching values in neural networks

What can we do with the linear regions?

We propose a method to compress nonlinear neural networks
into one single layer.

Experiments are on classifier models on three different data sets:
1 MNIST data set of handwritten digits,
2 CIFAR-10 data set of images,
3 Street View House Number (SVHN) data set.
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rates of caching for 8, 16, 32 neurons on MNIST
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Blue points denote test data in the same linear region
as at least 1 training set instance.
Red points are not in the same region as any training instance.
Gray points represent training data.
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rates of caching for 8, 16, 32 neurons on CIFAR-10
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Blue points denote test data in the same linear region
as at least 1 training set instance.
Red points are not in the same region as any training instance.
Gray points represent training data.
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rates of caching for 8, 16, 32 neurons on SVHN
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Blue points denote test data in the same linear region
as at least 1 training set instance.
Red points are not in the same region as any training instance.
Gray points represent training data.
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conclusions

Recurrence relations form the basis for algorithms
to compute all linear regions of a neural network,
generalized to work for networks with skip connections.

Visualizations of those linear regions help to understand
how patterns in the training data may lead to overfitting.

Caching the linear transformations allows for faster predictions.

Through experimentation, we found that skip connections allow a
model to both be more expressive by creating more advanced
output maps, while also ensuring that these maps can generalize
to new data.
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