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Computing Linear Regions in Neural Networks

@ Introduction
@ neural networks with skip connections
@ tropical geometry and linear regions
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an example of a neural network

o
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represents a neural network with two inputs x1, x», two outputs y1, o,
and three layers

z1 = v (A(”x + b1)
Z> = v (A(2)21 + bg)
y = v (A(3)22 + bs)

where A, A A®) are the weights, by, by, bs, are the biases, and
v is an activation function.
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skip connections

Skip connections (or shortcut connections, or residual connections)
add the output of a particular layer to the input of a later layer.

Layer

ResNet [He, Zhang, Ren, Sun, IEEE, 2016]
uses deep residual learning for image recognition.
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a piecewise linear activation function
ReLU

Y

T

The output of the first layer of a neural network is given by:
v(x) = ReLU(AX + b) = max(Ax + b, 0),

where A is the weight matrix of the first layer,
and b is the corresponding bias.

As the ReLU activation function is piecewise linear, the nonlinearity of
the neural network can be studied via tropical geometry.
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tropical algebra

Decompose the matrix Aas A:= A, — A_
@ where the (/,j)-th entry of A, is max{a;,0}, and
@ where the (/,j)-th entry of A_ is max{—aj, 0}.

Then layer v(x) is the difference of two tropical polynomials:
v(x) = max{Aix+b,A_x} —A_x
= ((x®A+ ® b) ® x®A*) @ A_x
where
Xy =max{x,y}, XQy=x+y, Xoy=x+(-y)=x-y,
and

X" = x.n.
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linear regions

A linear region in a neural network is a connected region for which the
map defined by the neural network is linear.
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Computing Linear Regions in Neural Networks

9 Computing Linear Regions
@ recurrences and algorithms
@ a small example network
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a recurrence relation gives the result

Let f be an L-layered neural network with ReLU activations
and with ny, no, ..., ny neurons on each layer.

Then any set of vectors {v, € {—1,1}™ | £ € [L]} uniquely specifies a
single linear region of f, where the region is given by:

{x €R" | H(x,?) < G(x,¢) for all ¢ € [L]}

where A(x,6) = diag(v) (Hﬁf’(x)x+h“)(X))

G(x,0) = aiag(v) (G5 0)x+ g (%))
with H and G as in the summands in the tropical polynomial of f,
ng

and where diag(vy) Z e vye;, with e; the i-th unit vector.
i=1
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method to find linear regions

1: function FINDLINEARREGION(vy, ..., vL)

2. FO,G0 HY, 79, 6 h{9) « Initial values laid out in (4)

3: S < Empty array // To be filled with inequalities that define the linear
region.

4 for!=0,...,L—1do

5: A + weight matrix of layer £+ 1

6: b < bias vector of layer £+ 1

7 GS“), HX'H), gﬁ“’l), h,(,“'l) + Values for the next layer laid out in (3)

8 Ff,“n < a blank matrix to be filled out

9: f,f“l) < a blank vector to be filled out

10: fori=1,...,l do

11: @ < i-th row of HXH) - G’ff"'l)

12: B < i-th entry of h,()”l) - gé”l)

13: if (vi+1)i == +1 then

14: Append the inequality & -z + 8 <0 to S

15: i-th row of F/(f'H) < i-th row of G%H)

16: i-th entry of f,f“l) < i-th entry of g,()Hl)
17: else
18: Append the inequality —a -2 — 8 <0to S
19: i-th row of FSY ¢ 4-th row of H{ ™
20: i-th entry of fé“l) < i-th entry of hg“l)
21: if the region given by the intersection of elements of S is empty then
22: return Message indicating that the region is empty,

and specify the current index ¢ where we reached an empty set

23: return S
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tree traversal to find linear regions

1: results < a global array, accessible within nested calls
2: function TRAVERSE(depth, v)
// v is some set of elements {v™@, ..., v}, Initially, v is empty.

3: if depth == L then
4 msg < FINDLINEARREGION(v) // Call algorithm 1.
5: if msg shows an empty region then
6: return index of failure
7 else
8 Append msg containing linear region to global array of results
9: _ return nothing
10: else
11: for each possible assignment of —1 and +1 to entries of Ydepth do
12: v’ ¢ current assignment of —1 and +1
13: msg + TRAVERSE(depth+1, v Uv") // Recursive call.
14: if msg contains index of a failure, and current depth > index of failure
then
15: return index of failure
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complexity

The number of linear regions is exponential in the number of layers.

The tree traversal has the benefit over the brute-force method that
it can abandon large branches of the tree if empty at an early layer
as is the case for truth assignments outside the training data.

However, the tree has as many leaves as 2#N€Urons,
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a small example network

Consider a network
@ with a 2-dimensional input layer,
@ 2 hidden layers with 2 neurons per layer,
@ and a 1-dimensional output layer.
The weights and biases of each hidden layer in the network are:

m_| 4 1 M| 2
S R A

o[ 4] o[ 1]
'y 4 1

We assume that the 1-dimensional output layer does not have an
activation function, so we can focus on the two hidden layers.

3 o
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walkthrough on the small example network

Layer 2, neuron 1

Layer 1, neuron 1
A

A
r ~ Ve ~
O—® O ;| OQ—® O i
ReLU ; [\ | ReU | /)
Input 1 [\ £\
P Pre- Post- Pre- Post-
activation activation activation activation
®
Layer 1, neuron 2 Layer 2, neuron 2
A A
- o - o Resulting
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ReLU \ /\ | ReLU | ./
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activation activation activation activation
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the search tree of the small example network
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Computing Linear Regions in Neural Networks

e Experiments and Applications
@ visualization of linear regions
@ comparing networks with and without skip connections
@ caching linear regions after training
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regression problems

Each function has two scalar input variables x and y,
and one scalar output:

¢1(x,y) = sin(log x|+ log|y|)

(
$2(x,y) = (\/X2+y) VXE+ 2
¢3(x,y) = sin(cos(x/2))sin (cos(y/2))
¢a(x,y) = sin(tan(x/2))sin (tan(y/2))

We expect ¢1, ¢2, ¢3 t0 be modeled well by neural networks,
whereas overfitting is expected on ¢4.
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using two and five layers on ¢4

10

> 0

T

@ The 5-layer network partitioned the input into regions that mimic
the patterns in the training data, producing a star-like pattern.

f(z,y) = sin(log |z| +log|y])
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@ The 2-layer network also produced visual patterns matching the
training data in less detail.
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using two and five layers on ¢,

sin(v/z2 +y?)

T2 1 12

zy) =

10!

Linear regions: 235

Linear regions: 37
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z

@ The 5-layer network partitioned the input into regions that mimic
the patterns in the training data, producing a radial pattern.
@ The 2-layer network also produced visual patterns matching the
training data in less detail.

Johnny Joyce & Jan Verschelde (UIC)

Linear Regions in Neural Networks

CASC 2025, November 24

21/29



using two and five layers on ¢3
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Despite contours more difficult than ¢ and ¢,
the patterns produced by the 5-layer network are still sensible.
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using two and five layers on ¢4
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Overfitting was expected and the network produced clusters of tiny
linear regions near the center.

According to intuive understanding, overfitting occurs when too much

emphasis is placed on noise in training data.
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comparing networks with and without skip connections

Comparison of Number Of Linear Regions Throughout Training
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caching values in neural networks

What can we do with the linear regions?

We propose a method to compress nonlinear neural networks
into one single layer.

Experiments are on classifier models on three different data sets:
@ MNIST data set of handwritten digits,
© CIFAR-10 data set of images,

© Street View House Number (SVHN) data set.
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rates of caching for 8, 16, 32 neurons on MNIST

UMAP Embedding (MNIST)

UMAP Embedding (MNIST)
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@ Blue points denote test data in the same linear region
as at least 1 training set instance.

@ Red points are not in the same region as any training instance.

@ Gray points represent training data.
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rates of caching for 8, 16, 32 neurons on CIFAR-10

UMAP ing (CIFAR-10)

UMAP Embedding (CIFAR-10)

UMAP Embedding (CIFAR-10)

125 ached regions: 9400
Uncached: 600
100
Truc
50 J

125 Cached regions: 2170
Uncached: 7830

16 ¥

5.0 Blrd

o Cached regions: 8
Uncached: 9992
| "nuc

Ca

@ Blue points denote test data in the same linear region
as at least 1 training set instance.

@ Red points are not in the same region as any training instance.

@ Gray points represent training data.
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rates of caching for 8, 16, 32 neurons on SVHN

'UMAP Embedding (SVHN)
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@ Blue points denote test data in the same linear region
as at least 1 training set instance.

@ Red points are not in the same region as any training instance.

@ Gray points represent training data.
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conclusions

@ Recurrence relations form the basis for algorithms
to compute all linear regions of a neural network,
generalized to work for networks with skip connections.

@ Visualizations of those linear regions help to understand
how patterns in the training data may lead to overfitting.

@ Caching the linear transformations allows for faster predictions.

@ Through experimentation, we found that skip connections allow a
model to both be more expressive by creating more advanced
output maps, while also ensuring that these maps can generalize
to new data.
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